Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Nature ; 586(7830): 612-617, 2020 10.
Article in English | MEDLINE | ID: mdl-32814901

ABSTRACT

Single-cell RNA sequencing of embryos can resolve the transcriptional landscape of development at unprecedented resolution. To date, single-cell RNA-sequencing studies of mammalian embryos have focused exclusively on eutherian species. Analysis of mammalian outgroups has the potential to identify deeply conserved lineage specification and pluripotency factors, and can extend our understanding of X dosage compensation. Metatherian (marsupial) mammals diverged from eutherians around 160 million years ago. They exhibit distinctive developmental features, including late implantation1 and imprinted X chromosome inactivation2, which is associated with expression of the XIST-like noncoding RNA RSX3. Here we perform a single-cell RNA-sequencing analysis of embryogenesis and X chromosome inactivation in a marsupial, the grey short-tailed opossum (Monodelphis domestica). We resolve the developmental trajectory and transcriptional signatures of the epiblast, primitive endoderm and trophectoderm, and identify deeply conserved lineage-specific markers that pre-date the eutherian-marsupial divergence. RSX coating and inactivation of the X chromosome occurs early and rapidly. This observation supports the hypothesis that-in organisms with early X chromosome inactivation-imprinted X chromosome inactivation prevents biallelic X silencing. We identify XSR, an RSX antisense transcript expressed from the active X chromosome, as a candidate for the regulator of imprinted X chromosome inactivation. Our datasets provide insights into the evolution of mammalian embryogenesis and X dosage compensation.


Subject(s)
Embryo, Mammalian/cytology , Embryonic Development/genetics , Monodelphis/embryology , Monodelphis/genetics , Single-Cell Analysis , Transcriptome/genetics , X Chromosome Inactivation/genetics , Animals , Cell Lineage/genetics , Embryo, Mammalian/embryology , Female , Germ Layers/cytology , Germ Layers/embryology , Male , Monodelphis/classification , RNA, Antisense/genetics , RNA, Untranslated/genetics , Up-Regulation , X Chromosome/genetics
2.
Nature ; 566(7745): 528-532, 2019 02.
Article in English | MEDLINE | ID: mdl-30760927

ABSTRACT

Over the past two centuries, mammalian chewing and related anatomical features have been among the most discussed of all vertebrate evolutionary innovations1-3. Chief among these features are two characters: the dentary-only mandible, and the tribosphenic molar with its triangulated upper cusps and lower talonid basin3-5. The flexible mandibular joint and the unfused symphysis of ancestral mammals-in combination with transformations of the adductor musculature and palate-are thought to have permitted greater mobility of each lower jaw, or hemimandible6,7. Following the appearance of precise dental occlusion near the origin of the mammalian crown8,9, therians evolved a tribosphenic molar with a craggy topography that is presumed to have been used to catch, cut and crush food. Here we describe the ancestral tribosphenic therian chewing stroke, as conserved in the short-tailed opossum Monodelphis domestica: it is a simple symmetrical sequence of lower tooth-row eversion and inversion during jaw opening and closing, respectively, enacted by hemimandibular long-axis rotation. This sequence is coupled with an eversion-inversion rotational grinding stroke. We infer that the ancestral therian chewing stroke relied heavily on long-axis rotation, including symmetrical eversion and inversion (inherited from the first mammaliaforms) as well as a mortar-and-pestle rotational grinding stroke that was inherited from stem therians along with the tribosphenic molar. The yaw-dominated masticatory cycle of primates, ungulates and other bunodont therians is derived; it is necessitated by a secondarily fused jaw symphysis, and permitted by the reduction of high, interlocking cusps10-12. The development of an efficient masticatory system-culminating in the tribosphenic apparatus-allowed early mammals to begin the process of digestion by shearing and crushing food into small boli instead of swallowing larger pieces in the reptilian manner, which necessitates a long, slow and wholly chemical breakdown. The vast diversity of mammalian teeth has emerged from the basic tribosphenic groundplan13.


Subject(s)
Jaw/physiology , Mastication/physiology , Molar/physiology , Monodelphis/physiology , Animals , Biological Evolution , Biomechanical Phenomena , Jaw/anatomy & histology , Male , Molar/anatomy & histology , Monodelphis/anatomy & histology , Rotation , Temporomandibular Joint/anatomy & histology , Temporomandibular Joint/physiology
3.
Brain Behav Evol ; 99(2): 69-85, 2024.
Article in English | MEDLINE | ID: mdl-38527443

ABSTRACT

INTRODUCTION: The gray short-tailed opossum, Monodelhis domestica (M. domestica), is a widely used marsupial model species that presents unique advantages for neurodevelopmental studies. Notably their extremely altricial birth allows manipulation of postnatal pups at timepoints equivalent to embryonic stages of placental mammals. A robust literature exists on the development of short-tailed opossums, but many researchers working in the more conventional model species of mice and rats may find it daunting to identify the appropriate age at which to conduct experiments. METHODS: Here, we present detailed staging diagrams taken from photographic observations of 40 individual pups, in 6 litters, over 25 timepoints across postnatal development. We also present a comparative neurodevelopmental timeline of short-tailed opossums (M. domestica), the house mouse (Mus musculus), and the laboratory rat (Rattus norvegicus) during embryonic as well as postnatal development, using timepoints taken from this study and a review of existing literature, and use this dataset to present statistical models comparing the opossum to the rat and mouse. RESULTS: One aim of this research was to aid in testing the generalizability of results found in rodents to other mammalian brains, such as the more distantly related metatherians. However, this broad dataset also allows the identification of potential heterochronies in opossum development compared to rats and mice. In contrast to previous work, we found broad similarity between the pace of opossum neural development with that of rats and mice. We also found that development of some systems was accelerated in the opossum, such as the forelimb motor plant, oral motor control, and some aspects of the olfactory system, while the development of the cortex, some aspects of the retina, and other aspects of the olfactory system are delayed compared to the rat and mouse. DISCUSSION: The pace of opossum development is broadly similar to that of mice and rats, which underscores the usefulness of this species as a compliment to the more commonly used rodents. Many features that differ the most between opossums and rats and mice were either clustered around the day of birth and were features that have functional importance for the pup immediately after or during birth, or were features that have reduced functional importance for the pup until later in postnatal development, given that it is initially attached to the mother.


Subject(s)
Monodelphis , Animals , Mice , Rats , Monodelphis/anatomy & histology , Benchmarking , Female , Models, Animal , Male , Species Specificity
4.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338755

ABSTRACT

In marsupials, upper-layer cortical neurons derived from the progenitors of the subventricular zone of the lateral ventricle (SVZ) mature morphologically and send their axons to form interhemispheric connections through the anterior commissure. In contrast, eutherians have evolved a new extra callosal pathway, the corpus callosum, that interconnects both hemispheres. In this study, we aimed to examine neurogenesis during the formation of cortical upper layers, including their morphological maturation in a marsupial species, namely the opossum (Monodelphis domestica). Furthermore, we studied how the axons of upper layers neurons pass through the anterior commissure of the opossum, which connects neocortical areas. We showed that upper-layer II/III neurons were generated within at least seven days in the opossum neocortex. Surprisingly, these neurons expressed special AT-rich sequence binding protein 2 (Satb2) and neuropilin 1 interacting protein (Nrp1), which are proteins known to be essential for the formation of the corpus callosum in eutherians. This indicates that extrinsic, but not intrinsic, cues could be key players in guiding the axons of newly generated cortical neurons in the opossum. Although oligodendrocyte precursor cells were present in the neocortex and anterior commissure, newly generated upper-layer neurons sent unmyelinated axons to the anterior commissure. We also found numerous GFAP-expressing progenitor cells in both brain structures, the neocortex and the anterior commissure. However, at P12-P17 in the opossums, a small population of astrocytes was observed only in the midline area of the anterior commissure. We postulate that in the opossum, midline astrocytes allow neocortical axons to be guided to cross the midline, as this structure resembles the glial wedge required by fibers to cross the midline area of the corpus callosum in the rodent.


Subject(s)
Monodelphis , Neocortex , Animals , Astrocytes , Axon Guidance , Neurons , Corpus Callosum , Axons/physiology , Eutheria
5.
Circulation ; 146(2): 125-139, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35616010

ABSTRACT

BACKGROUND: Early neonates of both large and small mammals are able to regenerate the myocardium through cardiomyocyte proliferation for only a short period after birth. This myocardial regenerative capacity declines in parallel with withdrawal of cardiomyocytes from the cell cycle in the first few postnatal days. No mammalian species examined to date has been found capable of a meaningful regenerative response to myocardial injury later than 1 week after birth. METHODS: We examined cardiomyocyte proliferation in neonates of the marsupial opossum (Monodelphis domestica) by immunostaining at various times after birth. The regenerative capacity of the postnatal opossum myocardium was assessed after either apex resection or induction of myocardial infarction at postnatal day 14 or 29, whereas that of the postnatal mouse myocardium was assessed after myocardial infarction at postnatal day 7. Bioinformatics data analysis, immunofluorescence staining, and pharmacological and genetic intervention were applied to determine the role of AMPK (5'-AMP-activated protein kinase) signaling in regulation of the mammalian cardiomyocyte cell cycle. RESULTS: Opossum neonates were found to manifest cardiomyocyte proliferation for at least 2 weeks after birth at a frequency similar to that apparent in early neonatal mice. Moreover, the opossum heart at postnatal day 14 showed substantial regenerative capacity both after apex resection and after myocardial infarction injury, whereas this capacity had diminished by postnatal day 29. Transcriptomic and immunofluorescence analyses indicated that AMPK signaling is activated in postnatal cardiomyocytes of both opossum and mouse. Pharmacological or genetic inhibition of AMPK signaling was sufficient to extend the postnatal window of cardiomyocyte proliferation in both mouse and opossum neonates as well as of cardiac regeneration in neonatal mice. CONCLUSIONS: The marsupial opossum maintains cardiomyocyte proliferation and a capacity for myocardial regeneration for at least 2 weeks after birth. As far as we are aware, this is the longest postnatal duration of such a capacity among mammals examined to date. AMPK signaling was implicated as an evolutionarily conserved regulator of mammalian postnatal cardiomyocyte proliferation.


Subject(s)
AMP-Activated Protein Kinases , Heart , Monodelphis , Myocardial Infarction , Regeneration , AMP-Activated Protein Kinases/metabolism , Animals , Animals, Newborn , Cell Proliferation , Heart/physiology , Mice , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism
6.
J Anat ; 243(6): 910-935, 2023 12.
Article in English | MEDLINE | ID: mdl-37497834

ABSTRACT

Recent didelphid marsupials resemble the assumed mammalian ancestor and are suitable to inform on the evolution of the mammalian lung. This study uses X-ray computed tomography (µCT) to three-dimensionally reconstruct the bronchial tree of the marsupial Gray short-tailed opossum (Monodelphis domestica) in order to reveal the timeline of morphogenesis during the postnatal period. The development of the bronchial tree was examined in 37 animals from embryonic day 13, during the postnatal period (neonate to 57 days) and in adults. The first appearance and the branching of lobar, segmental and sub-segmental bronchioles in the lungs were documented. Based on the reconstructions, the generation of end-branching airways, the median and maximum generation and the number of branches were calculated for each pulmonary lobe. At birth, the lung of M. domestica has a primitive appearance since it consists of a simple system of branching airways that end in a number of terminal air spaces, lobar bronchioles, and first segmental bronchioles are present. During the postnatal period, the volumes of the lung and bronchial tree steadily increase and development, differentiation, and expansion of the bronchial tree takes place. By 14 days, the fundamental bronchial tree consisting of lobar, segmental, and sub-segmental bronchioles has been established. A mature bronchial tree, including respiratory bronchioles and alveolar ducts is present by day 35. The asymmetry of the right (predominately four lobes) and the left lung (predominately two lobes), as present in M. domestica, can be considered as plesiomorphic for Mammalia. In marsupials, the process of branching morphogenesis, which takes place intrauterine in the placental fetus, is shifted to the postnatal period, but follows similar patterns as described in placentals. Lung maturation in general and the branching morphogenesis in particular seems to be highly conservative within mammalian evolution.


Subject(s)
Monodelphis , Animals , Female , Pregnancy , Imaging, Three-Dimensional , Placenta , Lung , Organogenesis
7.
Am J Physiol Renal Physiol ; 322(1): F14-F26, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34747197

ABSTRACT

The multiligand receptors megalin (Lrp2) and cubilin (Cubn) and their endocytic adaptor protein Dab2 (Dab2) play essential roles in maintaining the integrity of the apical endocytic pathway of proximal tubule (PT) cells and have complex and poorly understood roles in the development of chronic kidney disease. Here, we used RNA-sequencing and CRISPR/Cas9 knockout (KO) technology in a well-differentiated cell culture model to identify PT-specific transcriptional changes that are directly consequent to the loss of megalin, cubilin, or Dab2 expression. KO of Lrp2 had the greatest transcriptional effect, and nearly all genes whose expression was affected in Cubn KO and Dab2 KO cells were also changed in Lrp2 KO cells. Pathway analysis and more granular inspection of the altered gene profiles suggested changes in pathways with immunomodulatory functions that might trigger the pathological changes observed in KO mice and patients with Donnai-Barrow syndrome. In addition, differences in transcription patterns between Lrp2 and Dab2 KO cells suggested the possibility that altered spatial signaling by aberrantly localized receptors contributes to transcriptional changes upon the disruption of PT endocytic function. A reduction in transcripts encoding sodium-glucose cotransporter isoform 2 was confirmed in Lrp2 KO mouse kidney lysates by quantitative PCR analysis. Our results highlight the role of megalin as a master regulator and coordinator of ion transport, metabolism, and endocytosis in the PT. Compared with the studies in animal models, this approach provides a means to identify PT-specific transcriptional changes that are directly consequent to the loss of these target genes.NEW & NOTEWORTHY Megalin and cubilin receptors together with their adaptor protein Dab2 represent major components of the endocytic machinery responsible for efficient uptake of filtered proteins by the proximal tubule (PT). Dab2 and megalin expression have been implicated as both positive and negative modulators of kidney disease. We used RNA sequencing to knock out CRISPR/Cas9 cubilin, megalin, and Dab2 in highly differentiated PT cells to identify PT-specific changes that are directly consequent to knockout of each component.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Gene Knockout Techniques , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Receptors, Cell Surface/metabolism , Transcription, Genetic , Adaptor Proteins, Signal Transducing/genetics , Agenesis of Corpus Callosum/genetics , Agenesis of Corpus Callosum/metabolism , Agenesis of Corpus Callosum/pathology , Animals , Apoptosis Regulatory Proteins/genetics , Cells, Cultured , Databases, Genetic , Gene Regulatory Networks , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Hernias, Diaphragmatic, Congenital/genetics , Hernias, Diaphragmatic, Congenital/metabolism , Hernias, Diaphragmatic, Congenital/pathology , Humans , Kidney Tubules, Proximal/pathology , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Male , Mice, Knockout , Monodelphis , Myopia/genetics , Myopia/metabolism , Myopia/pathology , Proteinuria/genetics , Proteinuria/metabolism , Proteinuria/pathology , Receptors, Cell Surface/genetics , Renal Tubular Transport, Inborn Errors/genetics , Renal Tubular Transport, Inborn Errors/metabolism , Renal Tubular Transport, Inborn Errors/pathology
8.
Biochem Biophys Res Commun ; 587: 85-91, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34864550

ABSTRACT

One of the major challenges of modern neurobiology concerns the inability of the adult mammalian central nervous system (CNS) to regenerate and repair itself after injury. It is still unclear why the ability to regenerate CNS is lost during evolution and development and why it becomes very limited in adult mammals. A convenient model to study cellular and molecular basis of this loss is neonatal opossum (Monodelphis domestica). Opossums are marsupials that are born very immature with the unique possibility to successfully regenerate postnatal spinal cord after injury in the first two weeks of their life, after which this ability abbruptly stops. Using comparative proteomic approach we identified the proteins that are differentially distributed in opossum spinal tissue that can and cannot regenerate after injury, among which stand out the proteins related to neurodegenerative diseases (NDD), such as Huntington, Parkinson and Alzheimer's disease, previously detected by comparative transcriptomics on the analog tissue. The different distribution of the selected proteins detected by comparative proteomics was further confirmed by Western blot (WB), and the changes in the expression of related genes were analysed by quantitative reverse transcription PCR (qRT-PCR). Furthermore, we explored the cellular localization of the selected proteins using immunofluorescent microscopy. To our knowledge, this is the first report on proteins differentially present in developing, non-injured mammalian spinal cord tissue with different regenerative capacities. The results of this study indicate that the proteins known to have an important role in the pathophysiology of neurodegeneration in aged CNS, could also have an important phyisological role during CNS postnatal development and in neuroregeneration process.


Subject(s)
Gene Expression Regulation, Developmental , Monodelphis/genetics , Nerve Regeneration/genetics , Nerve Tissue Proteins/genetics , Spinal Cord/metabolism , Transcriptome , Animals , Animals, Newborn , Female , Gene Expression Profiling , Gene Ontology , Male , Molecular Sequence Annotation , Monodelphis/growth & development , Monodelphis/metabolism , Nerve Tissue Proteins/classification , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Proteomics/methods , Spinal Cord/growth & development , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Time Factors
9.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293487

ABSTRACT

Marsupials have been a powerful comparative model to understand mammalian biology. However, because of the unique characteristics of their embryology, marsupial pluripotency architecture remains to be fully understood, and nobody has succeeded in developing embryonic stem cells (ESCs) from any marsupial species. We have developed an integration-free iPSC reprogramming method and established validated iPSCs from two inbred strains of a marsupial, Monodelphis domestica. The monoiPSCs showed a significant (6181 DE-genes) and highly uniform (r2 [95% CI] = 0.973 ± 0.007) resetting of the cellular transcriptome and were similar to eutherian ESCs and iPSCs in their overall transcriptomic profiles. However, monoiPSCs showed unique regulatory architecture of the core pluripotency transcription factors and were more like marsupial epiblasts. Our results suggest that POU5F1 and the splice-variant-specific expression of POU5F3 synergistically regulate the opossum pluripotency gene network. It is plausible that POU5F1, POU5F3 splice variant XM_016427856.1, and SOX2 form a self-regulatory network. NANOG expression, however, was specific to monoiPSCs and epiblasts. Furthermore, POU5F1 was highly expressed in trophectoderm cells, whereas all other pluripotency transcription factors were significantly downregulated, suggesting that the regulatory architecture of core pluripotency genes of marsupials may be distinct from that of eutherians.


Subject(s)
Induced Pluripotent Stem Cells , Monodelphis , Animals , Monodelphis/genetics , Induced Pluripotent Stem Cells/metabolism , Embryonic Stem Cells , Transcription Factors/genetics , Transcription Factors/metabolism , Mammals , Cellular Reprogramming/genetics
10.
Traffic ; 20(6): 448-459, 2019 06.
Article in English | MEDLINE | ID: mdl-30989771

ABSTRACT

Kidney proximal tubule (PT) cells have high-metabolic demands to drive the extraordinary ion and solute transport, water reabsorption, and endocytic uptake that occur in this nephron segment. Increases in renal blood flow alter glomerular filtration rate and lead to rapid mechanosensitive adaptations in PT transport, impacting metabolic demand. Although the PT reabsorbs essentially all of the filtered glucose, PT cells rely primarily on oxidative metabolism rather than glycolysis to meet their energy demands. We lack an understanding of how PT functions are impacted by changes in O2 availability via cortical capillaries and mechanosensitive signaling in response to alterations in luminal flow. Previously, we found that opossum kidney (OK) cells recapitulate key features of PT cells in vivo, including enhanced endocytic uptake and ion transport, when exposed to mechanical stimulation by culture on an orbital shaker. We hypothesized that increased oxygenation resulting from orbital shaking also contributes to this more physiologic phenotype. RNA seq of OK cells maintained under static conditions or exposed to orbital shaking for up to 96 hours showed significant time- and culture-dependent changes in gene expression. Transcriptional and metabolomics data were consistent with a decrease in glycolytic flux and with an increased utilization of aerobic metabolic pathways in cells exposed to orbital shaking. Moreover, we found spatial differences in the pattern of mitogenesis vs development of ion transport and endocytic capacities in our culture system that highlight the complexity of O2 -dependent and mechanosensitive crosstalk to regulate PT cell function.


Subject(s)
Endocytosis , Epithelial Cells/metabolism , Kidney Tubules, Proximal/cytology , Oxygen/metabolism , Stress, Mechanical , Transcriptome , Animals , Cell Culture Techniques/standards , Cell Line , Glycolysis , Kidney Tubules, Proximal/metabolism , Metabolome , Monodelphis
11.
PLoS Biol ; 16(8): e2005594, 2018 08.
Article in English | MEDLINE | ID: mdl-30142145

ABSTRACT

Among animal species, cell types vary greatly in terms of number and kind. The number of cell types found within an organism differs considerably between species, and cell type diversity is a significant contributor to differences in organismal structure and function. These observations suggest that cell type origination is a significant source of evolutionary novelty. The molecular mechanisms that result in the evolution of novel cell types, however, are poorly understood. Here, we show that a novel cell type of eutherians mammals, the decidual stromal cell (DSC), evolved by rewiring an ancestral cellular stress response. We isolated the precursor cell type of DSCs, endometrial stromal fibroblasts (ESFs), from the opossum Monodelphis domestica. We show that, in opossum ESFs, the majority of decidual core regulatory genes respond to decidualizing signals but do not regulate decidual effector genes. Rather, in opossum ESFs, decidual transcription factors function in apoptotic and oxidative stress response. We propose that rewiring of cellular stress responses was an important mechanism for the evolution of the eutherian decidual cell type.


Subject(s)
Decidua/physiology , Stress, Physiological/physiology , Animals , Biological Evolution , Endometrium/physiology , Evolution, Molecular , Female , Fibroblasts , Mammals , Monodelphis/physiology , Stress, Physiological/genetics , Stromal Cells/metabolism , Stromal Cells/physiology , Transcription Factors/metabolism
12.
Genome Res ; 27(12): 1961-1973, 2017 12.
Article in English | MEDLINE | ID: mdl-29079676

ABSTRACT

Sexual dimorphism depends on sex-biased gene expression, but the contributions of microRNAs (miRNAs) have not been globally assessed. We therefore produced an extensive small RNA sequencing data set to analyze male and female miRNA expression profiles in mouse, opossum, and chicken. Our analyses uncovered numerous cases of somatic sex-biased miRNA expression, with the largest proportion found in the mouse heart and liver. Sex-biased expression is explained by miRNA-specific regulation, including sex-biased chromatin accessibility at promoters, rather than piggybacking of intronic miRNAs on sex-biased protein-coding genes. In mouse, but not opossum and chicken, sex bias is coordinated across tissues such that autosomal testis-biased miRNAs tend to be somatically male-biased, whereas autosomal ovary-biased miRNAs are female-biased, possibly due to broad hormonal control. In chicken, which has a Z/W sex chromosome system, expression output of genes on the Z Chromosome is expected to be male-biased, since there is no global dosage compensation mechanism that restores expression in ZW females after almost all genes on the W Chromosome decayed. Nevertheless, we found that the dominant liver miRNA, miR-122-5p, is Z-linked but expressed in an unbiased manner, due to the unusual retention of a W-linked copy. Another Z-linked miRNA, the male-biased miR-2954-3p, shows conserved preference for dosage-sensitive genes on the Z Chromosome, based on computational and experimental data from chicken and zebra finch, and acts to equalize male-to-female expression ratios of its targets. Unexpectedly, our findings thus establish miRNA regulation as a novel gene-specific dosage compensation mechanism.


Subject(s)
Chickens/genetics , Dosage Compensation, Genetic/genetics , MicroRNAs/genetics , Monodelphis/genetics , Sex Characteristics , Animals , Datasets as Topic , Female , Finches/genetics , Gene Expression Profiling , Male , Mice , MicroRNAs/biosynthesis , Proteins/genetics , Regulatory Sequences, Nucleic Acid
13.
J Anat ; 236(6): 1126-1136, 2020 06.
Article in English | MEDLINE | ID: mdl-32052440

ABSTRACT

Mammalian pregnancy involves remodelling of the uterine epithelium to enable placentation. In marsupials, such remodelling has probably played a key role in the transition from ancestral invasive placentation to non-invasive placentation. Identifying uterine alterations that are unique to marsupials with non-invasive placentation can thus elucidate mechanisms of marsupial placental evolution. We identified apical alterations to uterine epithelial cells prior to implantation in Monodelphis domestica, a member of the least derived living marsupial clade (Didelphidae) with invasive (endotheliochorial) placentation. We then compared these traits with those of Macropus eugenii (Macropodidae) and Trichosurus vulpecula (Phalangeridae), both with non-invasive placentation, to identify which alterations to the uterine epithelium are ancestral and which facilitate secondarily evolved non-invasive placentation. In M. domestica, remodelling of the uterine epithelium involves reduced cellular heterogeneity and development of uterodome-like cells, suggesting that similar alterations may also have occurred in the marsupial common ancestor. These alterations also overlap with those of both T. vulpecula and Ma. eugenii, suggesting that the placental shift from invasive to non-invasive placentation in marsupials involves essential, conserved characteristics, irrespective of placental mode. However, unique apical alterations of both T. vulpecula and Ma. eugenii, relative to M. domestica, imply that lineage-specific alterations underpin the evolutionary shift to non-invasive placentation in marsupials.


Subject(s)
Epithelium/physiology , Placentation/physiology , Pregnancy, Animal/physiology , Uterus/physiology , Animals , Biological Evolution , Embryo Implantation/physiology , Female , Monodelphis , Pregnancy
14.
Int J Syst Evol Microbiol ; 70(12): 6032-6043, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33079029

ABSTRACT

In a search for potential causes of increased prolapse incidence in grey short-tailed opossum colonies, samples from the gastrointestinal tracts of 94 clinically normal opossums with rectal prolapses were screened for Helicobacter species by culture and PCR. Forty strains of two novel Helicobacter species which differed from the established Helicobacter taxa were isolated from opossums with and without prolapses. One of the Helicobacter species was spiral-shaped and urease-negative whereas the other Helicobacter strain had fusiform morphology with periplasmic fibres and was urease-positive. 16S rRNA gene sequence analysis revealed that all the isolates had over 99 % sequence identity with each other, and were most closely related to Helicobacter canadensis. Strains from the two novel Helicobacter species were subjected to gyrB and hsp60 gene and whole genome sequence analyses. These two novel Helicobacter species formed separate phylogenetic clades, divergent from other known Helicobacter species. The bacteria were confirmed as novel Helicobacter species based on digital DNA-DNA hybridization and average nucleotide identity analysis of their genomes, for which we propose the names Helicobacter monodelphidis sp. nov. with the type strain MIT 15-1451T (=LMG 29780T=NCTC 14189T) and Helicobacter didelphidarum sp. nov with type strain MIT 17-337T (=LMG 31024T=NCTC 14188T).


Subject(s)
Cloaca/pathology , Helicobacter/classification , Monodelphis/microbiology , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , Cloaca/microbiology , DNA, Bacterial/genetics , Fatty Acids/chemistry , Gastrointestinal Tract/microbiology , Genes, Bacterial , Helicobacter/isolation & purification , Nucleic Acid Hybridization , Prolapse , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Texas
15.
Cereb Cortex ; 29(9): 3666-3675, 2019 08 14.
Article in English | MEDLINE | ID: mdl-30272136

ABSTRACT

We have previously reported that the blockage of TrkB and TrkC signaling in primary culture of opossum neocortical cells affects neurogenesis that involves a range of processes including cell proliferation, differentiation, and survival. Here, we studied whether TrkB and TrkC activity specifically affects various types of progenitor cell populations during neocortex formation in the Monodelphis opossum in vivo. We found that the inhibition of TrkB and TrkC activities affects the same proliferative cellular phenotype, but TrkC causes more pronounced changes in the rate of cell divisions. Additionally, inhibition of TrkB and TrkC does not affect apoptosis in vivo, which was found in cell culture experiments. The lack of TrkB and TrkC receptor activity caused the arrest of newly generated neurons; therefore, they could not penetrate the subplate zone. We suggest that at this time point in development, migration consists of 2 steps. During the initial step, neurons migrate and reach the base of the subplate, whereas during the next step the migration of neurons to their final position is regulated by TrkB or TrkC signaling.


Subject(s)
Monodelphis/physiology , Neocortex/physiology , Neurogenesis , Neurons/physiology , Receptor, trkB/physiology , Receptor, trkC/physiology , Animals , Cell Differentiation , Cell Movement , Cell Proliferation , Cell Survival , Female , Male , Signal Transduction
16.
Proc Natl Acad Sci U S A ; 114(32): E6566-E6575, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28747528

ABSTRACT

The molecular changes that support implantation in eutherian mammals are necessary to establish pregnancy. In marsupials, pregnancy is relatively short, and although a placenta does form, it is present for only a few days before parturition. However, morphological changes in the uterus of marsupials at term mimic those that occur during implantation in humans and mice. We investigated the molecular similarity between term pregnancy in the marsupials and implantation in eutherian mammals using the gray short-tailed opossum (Monodelphis domestica) as a model. Transcriptomic analysis shows that term pregnancy in the opossum is characterized by an inflammatory response consistent with implantation in humans and mice. This immune response is temporally correlated with the loss of the eggshell, and we used immunohistochemistry to report that this reaction occurs at the materno-fetal interface. We demonstrate that key markers of implantation, including Heparin binding EGF-like growth factor and Mucin 1, exhibit expression and localization profiles consistent with the pattern observed during implantation in eutherian mammals. Finally, we show that there are transcriptome-wide similarities between the opossum attachment reaction and implantation in rabbits and humans. Our data suggest that the implantation reaction that occurs in eutherians is derived from an attachment reaction in the ancestral therian mammal which, in the opossum, leads directly to parturition. Finally, we argue that the ability to shift from an inflammatory attachment reaction to a noninflammatory period of pregnancy was a key innovation in eutherian mammals that allowed an extended period of intimate placentation.


Subject(s)
Biological Evolution , Embryo Implantation/physiology , Embryo, Mammalian/embryology , Monodelphis/embryology , Pregnancy/physiology , Animals , Female , Gene Expression Regulation, Developmental/physiology , Heparin-binding EGF-like Growth Factor/biosynthesis , Humans , Mice , Mucin-1/biosynthesis
17.
J Neurosci ; 38(27): 6172-6189, 2018 07 04.
Article in English | MEDLINE | ID: mdl-29807911

ABSTRACT

Sensory systems do not develop and function independently of one another, yet they are typically studied in isolation. Effects of multisensory interactions on the developing neocortex can be revealed by altering the ratios of incoming sensory inputs associated with different modalities. We investigated neural responses in primary somatosensory cortex (S1) of short-tailed opossums (Monodelphis domestica; either sex) after the elimination of visual input through bilateral enucleation very early in development. To assess the influence of tactile experience after vision loss, we also examined naturally occurring patterns of exploratory behavior. In early blind (EB) animals, overall levels of tactile experience were similar to those of sighted controls (SC); locomotor activity was unimpaired and accompanied by whisking. Using extracellular single-unit recording techniques under anesthesia, we found that EB animals exhibited a reduction in the magnitude of neural responses to whisker stimuli in S1, coupled with spatial sharpening of receptive fields, in comparison to SC animals. These alterations manifested as two different effects on sensory processing in S1 of EB animals: the ability of neurons to detect single whisker stimulation was decreased, whereas their ability to discriminate between stimulation of neighboring whiskers was enhanced. The increased selectivity of S1 neurons in EB animals was reflected in improved population decoding performance for whisker stimulus position, particularly along the rostrocaudal axis of the snout, which aligns with the primary axis of natural whisker motion. These findings suggest that a functionally distinct form of somatosensory plasticity occurs when vision is lost early in development.SIGNIFICANCE STATEMENT After sensory loss, compensatory behavior mediated through the spared senses could be generated entirely through the recruitment of brain areas associated with the deprived sense. Alternatively, functional compensation in spared modalities may be achieved through a combination of plasticity in brain areas corresponding to both spared and deprived sensory modalities. Although activation of neurons in cortex associated with a deprived sense has been described frequently, it is unclear whether this is the only substrate available for compensation or if plasticity within cortical fields corresponding to spared modalities, particularly primary sensory cortices, may also contribute. Here, we demonstrate empirically that early loss of vision alters coding of sensory inputs in primary somatosensory cortex in a manner that supports enhanced tactile discrimination.


Subject(s)
Blindness , Neuronal Plasticity/physiology , Somatosensory Cortex/physiology , Touch Perception/physiology , Animals , Female , Male , Monodelphis , Vibrissae/innervation
18.
Development ; 143(1): 66-74, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26732839

ABSTRACT

The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2(+) intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2(+) cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution.


Subject(s)
Basal Ganglia/cytology , Basal Ganglia/embryology , Neocortex/embryology , Neural Stem Cells/cytology , Neurons/cytology , Ambystoma mexicanum , Animals , Cell Lineage/physiology , Cell Proliferation/physiology , Chick Embryo , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/metabolism , Gene Expression Regulation, Developmental , Mice , Monodelphis/embryology , Neocortex/cytology , Turtles/embryology , Xenopus laevis
19.
Proc Biol Sci ; 286(1905): 20190691, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31213185

ABSTRACT

In human pregnancy, recognition of an embryo within the uterus is essential to support the fetus through gestation. In most marsupials, such as the opossums, pregnancy is shorter than the oestrous cycle and the steroid hormone profile during pregnancy and oestrous cycle are indistinguishable. For these reasons, it was assumed that recognition of pregnancy, as a trait, evolved in the eutherian (placental) stem lineage and independently in wallabies and kangaroos. To investigate whether uterine recognition of pregnancy occurs in species with pregnancy shorter than the oestrous cycle, we examined reproduction in the short-tailed opossum ( Monodelphis domestica), a marsupial with a plesiomorphic mode of pregnancy. We examined the morphological and gene expression changes in the uterus of females in the non-pregnant oestrous cycle and compared these to pregnancy. We found that the presence of an embryo did not alter some aspects of uterine development but increased glandular activity. Transcriptionally, we saw big differences between the uterus of pregnant and cycling animals. These differences included an upregulation of genes involved in transport, inflammation and metabolic-activity in response to the presence of a fetus. Furthermore, transcriptional differences reflected protein level differences in transporter abundance. Our results suggest that while the uterus exhibits programmed changes after ovulation, its transcriptional landscape during pregnancy responds to the presence of a fetus and upregulates genes that may be essential for fetal support. These results are consistent with endometrial recognition of pregnancy occurring in the opossum. While the effects on maternal physiology appear to differ, recognition of pregnancy has now been observed in eutherian mammals, as well as, Australian and American marsupials.


Subject(s)
Monodelphis/physiology , Pregnancy , Animals , Estrous Cycle , Female , Marsupialia
20.
BMC Genomics ; 19(1): 732, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30290757

ABSTRACT

BACKGROUND: After a short gestation, marsupials give birth to immature neonates with lungs that are not fully developed and in early life the neonate partially relies on gas exchange through the skin. Therefore, significant lung development occurs after birth in marsupials in contrast to eutherian mammals such as humans and mice where lung development occurs predominantly in the embryo. To explore the mechanisms of marsupial lung development in comparison to eutherians, morphological and gene expression analysis were conducted in the gray short-tailed opossum (Monodelphis domestica). RESULTS: Postnatal lung development of Monodelphis involves three key stages of development: (i) transition from late canalicular to early saccular stages, (ii) saccular and (iii) alveolar stages, similar to developmental stages overlapping the embryonic and perinatal period in eutherians. Differentially expressed genes were identified and correlated with developmental stages. Functional categories included growth factors, extracellular matrix protein (ECMs), transcriptional factors and signalling pathways related to branching morphogenesis, alveologenesis and vascularisation. Comparison with published data on mice highlighted the conserved importance of extracellular matrix remodelling and signalling pathways such as Wnt, Notch, IGF, TGFß, retinoic acid and angiopoietin. The comparison also revealed changes in the mammalian gene expression program associated with the initiation of alveologenesis and birth, pointing to subtle differences between the non-functional embryonic lung of the eutherian mouse and the partially functional developing lung of the marsupial Monodelphis neonates. The data also highlighted a subset of contractile proteins specifically expressed in Monodelphis during and after alveologenesis. CONCLUSION: The results provide insights into marsupial lung development and support the potential of the marsupial model of postnatal development towards better understanding of the evolution of the mammalian bronchioalveolar lung.


Subject(s)
Gene Expression Profiling , Lung/embryology , Monodelphis/growth & development , Monodelphis/genetics , Organogenesis/genetics , Animals , Lung/physiology , Organ Specificity
SELECTION OF CITATIONS
SEARCH DETAIL