Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Nucleic Acids Res ; 48(14): 8099-8112, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32602532

ABSTRACT

Translational frameshift errors are often deleterious to the synthesis of functional proteins and could therefore be promoted therapeutically to kill bacteria. TrmD (tRNA-(N(1)G37) methyltransferase) is an essential tRNA modification enzyme in bacteria that prevents +1 errors in the reading frame during protein translation and represents an attractive potential target for the development of new antibiotics. Here, we describe the application of a structure-guided fragment-based drug discovery approach to the design of a new class of inhibitors against TrmD in Mycobacterium abscessus. Fragment library screening, followed by structure-guided chemical elaboration of hits, led to the rapid development of drug-like molecules with potent in vitro TrmD inhibitory activity. Several of these compounds exhibit activity against planktonic M. abscessus and M. tuberculosis as well as against intracellular M. abscessus and M. leprae, indicating their potential as the basis for a novel class of broad-spectrum mycobacterial drugs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , RNA, Transfer/metabolism , tRNA Methyltransferases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Drug Discovery/methods , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Mycobacterium abscessus/drug effects , Mycobacterium abscessus/enzymology , Mycobacterium leprae/drug effects , Mycobacterium leprae/enzymology , Protein Binding , tRNA Methyltransferases/chemistry , tRNA Methyltransferases/metabolism
2.
J Cell Biochem ; 119(12): 9838-9852, 2018 12.
Article in English | MEDLINE | ID: mdl-30125973

ABSTRACT

Leprosy (causative, Mycobacterium leprae) continues to be the persisting public health problem with stable incidence rates, owing to the emergence of dapsone resistance that being the principal drug in the ongoing multidrug therapy. Hence, to overcome the drug resistance, structural modification through medicinal chemistry was used to design newer dapsone derivative(s) (DDs), against folic acid biosynthesis pathway. The approach included theoretical modeling, molecular docking, and molecular dynamic (MD) simulation as well as binding free energy estimation for validation of newly designed seven DDs, before synthesis. Theoretical modeling, docking, and MD simulation studies were used to understand the mode of binding and efficacy of DDs against the wild-type and mutant dihydropteroate synthases (DHPS). Principal component analysis was performed to understand the conformational dynamics of DHPS-DD complexes. Furthermore, the overall stability and negative-binding free energy of DHPS-DD complexes were deciphered using Molecular Mechanics/Poisson-Boltzmann Surface Area technique. Molecular mechanics study revealed that DD3 possesses higher binding free energy than dapsone against mutant DHPS. Energetic contribution analysis portrayed that van der Waals and electrostatic energy contributes profoundly to the overall negative free energy, whereas polar solvation energy opposes the binding. Finally, DD3 was synthesized and characterized using Fourier-transform infrared spectroscopy, UV, liquid chromatography-mass spectrometry, and proton nuclear magnetic resonance techniques. This study suggested that DD3 could be further promoted as newer antileprosy agent. The principles of medicinal chemistry and bioinformatics tools help to locate effective therapeutics to minimize resources and time in current drug development modules.


Subject(s)
Dapsone/pharmacology , Dihydropteroate Synthase/antagonists & inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Mycobacterium leprae/enzymology , Dapsone/analogs & derivatives , Dapsone/metabolism , Dapsone/therapeutic use , Dihydropteroate Synthase/genetics , Dihydropteroate Synthase/metabolism , Drug Therapy, Combination , Leprostatic Agents/pharmacology , Leprostatic Agents/therapeutic use , Mutation , Mycobacterium leprae/drug effects , Protein Binding , Protein Conformation
3.
Curr Opin Infect Dis ; 30(3): 309-315, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28134679

ABSTRACT

PURPOSE OF REVIEW: We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. RECENT FINDINGS: DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. SUMMARY: Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.


Subject(s)
Bacteria/pathogenicity , Epigenesis, Genetic , Gene Expression Regulation, Bacterial/genetics , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/pathogenicity , Bacteria/enzymology , DNA Methylation , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Humans , Macrophages/metabolism , Macrophages/microbiology , Mycobacterium leprae/enzymology , Mycobacterium leprae/pathogenicity , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/pathogenicity , Mycoplasma hyorhinis/enzymology , Mycoplasma hyorhinis/pathogenicity , Porphyromonas gingivalis/enzymology , Porphyromonas gingivalis/pathogenicity , Schwann Cells/metabolism , Schwann Cells/microbiology
4.
Microbiology (Reading) ; 162(9): 1651-1661, 2016 09.
Article in English | MEDLINE | ID: mdl-27450520

ABSTRACT

The second messenger, bis-(3',5')-cyclic dimeric guanosine monophosphate (cyclic di-GMP), is involved in the control of multiple bacterial phenotypes, including those that impact host-pathogen interactions. Bioinformatics analyses predicted that Mycobacterium leprae, an obligate intracellular bacterium and the causative agent of leprosy, encodes three active diguanylate cyclases. In contrast, the related pathogen Mycobacterium tuberculosis encodes only a single diguanylate cyclase. One of the M. leprae unique diguanylate cyclases (ML1419c) was previously shown to be produced early during the course of leprosy. Thus, functional analysis of ML1419c was performed. The gene encoding ML1419c was cloned and expressed in Pseudomonas aeruginosa PAO1 to allow for assessment of cyclic di-GMP production and cyclic di-GMP-mediated phenotypes. Phenotypic studies revealed that ml1419c expression altered colony morphology, motility and biofilm formation of P. aeruginosa PAO1 in a manner consistent with increased cyclic di-GMP production. Direct measurement of cyclic di-GMP levels by liquid chromatography-mass spectrometry confirmed that ml1419c expression increased cyclic di-GMP production in P. aeruginosa PAO1 cultures in comparison to the vector control. The observed phenotypes and increased levels of cyclic di-GMP detected in P. aeruginosa expressing ml1419c could be abrogated by mutation of the active site in ML1419c. These studies demonstrated that ML1419c of M. leprae functions as diguanylate cyclase to synthesize cyclic di-GMP. Thus, this protein was renamed DgcA (Diguanylate cyclase A). These results also demonstrated the ability to use P. aeruginosa as a heterologous host for characterizing the function of proteins involved in the cyclic di-GMP pathway of a pathogen refractory to in vitro growth, M. leprae.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Mycobacterium leprae/enzymology , Phosphorus-Oxygen Lyases/metabolism , Bacterial Proteins/genetics , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Mutation , Mycobacterium leprae/genetics , Phosphorus-Oxygen Lyases/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism
5.
Int J Mol Sci ; 15(2): 1826-41, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24469317

ABSTRACT

Homoserine dehydrogenase (HSD) from Mycobacterium leprae TN is an antifungal target for antifungal properties including efficacy against the human pathogen. The 3D structure of HSD has been firmly established by homology modeling methods. Using the template, homoserine dehydrogenase from Thiobacillus denitrificans (PDB Id 3MTJ), a sequence identity of 40% was found and molecular dynamics simulation was used to optimize a reliable structure. The substrate and co-factor-binding regions in HSD were identified. In order to determine the important residues of the substrate (L-aspartate semialdehyde (L-ASA)) binding, the ASA was docked to the protein; Thr163, Asp198, and Glu192 may be important because they form a hydrogen bond with HSD through AutoDock 4.2 software. neuraminidaseAfter use of a virtual screening technique of HSD, the four top-scoring docking hits all seemed to cation-π ion pair with the key recognition residue Lys107, and Lys207. These ligands therefore seemed to be new chemotypes for HSD. Our results may be helpful for further experimental investigations.


Subject(s)
Enzyme Inhibitors/chemistry , Homoserine Dehydrogenase/chemistry , Models, Molecular , Mycobacterium leprae/enzymology , Amino Acid Sequence , Aspartic Acid/analogs & derivatives , Aspartic Acid/chemistry , Aspartic Acid/metabolism , Binding Sites , Catalytic Domain , Enzyme Inhibitors/metabolism , Homoserine Dehydrogenase/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Sequence Data , NAD/chemistry , NAD/metabolism , Protein Conformation , ROC Curve , Reproducibility of Results , Sequence Alignment , Substrate Specificity
6.
J Exp Med ; 204(1): 73-8, 2007 Jan 22.
Article in English | MEDLINE | ID: mdl-17227913

ABSTRACT

Thioamide drugs, ethionamide (ETH) and prothionamide (PTH), are clinically effective in the treatment of Mycobacterium tuberculosis, M. leprae, and M. avium complex infections. Although generally considered second-line drugs for tuberculosis, their use has increased considerably as the number of multidrug resistant and extensively drug resistant tuberculosis cases continues to rise. Despite the widespread use of thioamide drugs to treat tuberculosis and leprosy, their precise mechanisms of action remain unknown. Using a cell-based activation method, we now have definitive evidence that both thioamides form covalent adducts with nicotinamide adenine dinucleotide (NAD) and that these adducts are tight-binding inhibitors of M. tuberculosis and M. leprae InhA. The crystal structures of the inhibited M. leprae and M. tuberculosis InhA complexes provide the molecular details of target-drug interactions. The purified ETH-NAD and PTH-NAD adducts both showed nanomolar Kis against M. tuberculosis and M. leprae InhA. Knowledge of the precise structures and mechanisms of action of these drugs provides insights into designing new drugs that can overcome drug resistance.


Subject(s)
Ethionamide/pharmacology , Leprosy/drug therapy , Prothionamide/pharmacology , Tuberculosis/drug therapy , Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Crystallography, X-Ray , Drug Design , Drug Resistance, Multiple, Bacterial , Ethionamide/chemistry , Ethionamide/metabolism , Humans , In Vitro Techniques , Leprostatic Agents/chemistry , Leprostatic Agents/metabolism , Leprostatic Agents/pharmacology , Models, Molecular , Mycobacterium avium Complex/drug effects , Mycobacterium avium Complex/enzymology , Mycobacterium avium-intracellulare Infection/drug therapy , Mycobacterium leprae/drug effects , Mycobacterium leprae/enzymology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , NAD/chemistry , NAD/metabolism , Oxidoreductases/antagonists & inhibitors , Prothionamide/chemistry , Prothionamide/metabolism , Tuberculosis, Multidrug-Resistant/drug therapy
7.
Biochim Biophys Acta ; 1814(12): 1802-11, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22001565

ABSTRACT

Mycobacterium leprae is closely related to Mycobacterium tuberculosis, yet causes a very different illness. Detailed genomic comparison between these two species of mycobacteria reveals that the decaying M. leprae genome contains less than half of the M. tuberculosis functional genes. The reduction of genome size and accumulation of pseudogenes in the M. leprae genome is thought to result from multiple recombination events between related repetitive sequences, which provided the impetus to investigate the recombination-like activities of RecA protein. In this study, we have cloned, over-expressed and purified M. leprae RecA and compared its activities with that of M. tuberculosis RecA. Both proteins, despite being 91% identical at the amino acid level, exhibit strikingly different binding profiles for single-stranded DNA with varying GC contents, in the ability to catalyze the formation of D-loops and to promote DNA strand exchange. The kinetics and the extent of single-stranded DNA-dependent ATPase and coprotease activities were nearly equivalent between these two recombinases. However, the degree of inhibition exerted by a range of ATP:ADP ratios was greater on strand exchange promoted by M. leprae RecA compared to its M. tuberculosis counterpart. Taken together, our results provide insights into the mechanistic aspects of homologous recombination and coprotease activity promoted by M. lepare RecA, and further suggests that it differs from the M. tuberculosis counterpart. These results are consistent with an emerging concept of DNA-sequence influenced structural differences in RecA nucleoprotein filaments and how these differences reflect on the multiple activities associated with RecA protein.


Subject(s)
Mycobacterium leprae/enzymology , Mycobacterium tuberculosis/enzymology , Rec A Recombinases/chemistry , Rec A Recombinases/physiology , Structural Homology, Protein , Amino Acid Sequence , Base Composition , Binding Sites/genetics , Cloning, Molecular , DNA, Single-Stranded/metabolism , Molecular Sequence Data , Mycobacterium leprae/chemistry , Mycobacterium leprae/genetics , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Protein Binding , Protein Structure, Secondary , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Homology , Species Specificity , Substrate Specificity
8.
Antimicrob Agents Chemother ; 56(2): 697-702, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22106221

ABSTRACT

Amino acid substitutions at position 89 or 91 in GyrA of fluoroquinolone-resistant Mycobacterium leprae clinical isolates have been reported. In contrast, those at position 94 in M. tuberculosis, equivalent to position 95 in M. leprae, have been identified most frequently. To verify the possible contribution of amino acid substitutions at position 95 in M. leprae to fluoroquinolone resistance, we conducted an in vitro assay using wild-type and mutant recombinant DNA gyrases. Fluoroquinolone-mediated supercoiling activity inhibition assay and DNA cleavage assay revealed the potent contribution of an amino acid substitution of Asp to Gly or Asn at position 95 to fluoroquinolone resistance. These results suggested the possible future emergence of quinolone-resistant M. leprae isolates with these amino acid substitutions and the usefulness of detecting these mutations for the rapid identification of fluoroquinolone resistance in leprosy.


Subject(s)
Amino Acid Substitution , Anti-Bacterial Agents/pharmacology , DNA Gyrase/genetics , Drug Resistance, Bacterial/genetics , Fluoroquinolones/pharmacology , Mycobacterium leprae/drug effects , Base Sequence , DNA Gyrase/chemistry , Humans , Microbial Sensitivity Tests , Molecular Sequence Data , Mycobacterium leprae/enzymology , Mycobacterium leprae/genetics
9.
Antimicrob Agents Chemother ; 56(1): 391-402, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22037849

ABSTRACT

CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin "open" conformation of the enzyme (K(d) [dissociation constant] of 0.1 µM), with binding to the low-spin "closed" form being significantly hindered (K(d) of 338 µM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.


Subject(s)
Antifungal Agents/metabolism , Bacterial Proteins/chemistry , Cytochrome P-450 Enzyme System/chemistry , Econazole/metabolism , Leprosy/drug therapy , Mycobacterium leprae , Antifungal Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Conserved Sequence , Crystallography, X-Ray , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/metabolism , Econazole/pharmacology , Heme/metabolism , Histidine/metabolism , Humans , Iron/metabolism , Kinetics , Leprosy/microbiology , Models, Molecular , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium leprae/drug effects , Mycobacterium leprae/enzymology , Mycobacterium smegmatis/chemistry , Mycobacterium smegmatis/enzymology , Porphyrins/metabolism , Protein Binding , Protein Structure, Secondary
10.
Nihon Hansenbyo Gakkai Zasshi ; 80(1): 17-27, 2011 Feb.
Article in Japanese | MEDLINE | ID: mdl-21404592

ABSTRACT

Drugs included in new-quinolone are used for the treatment of leprosy with single lesion. These drugs are also known to be effective drugs for the treatment of multi-drug resistant M. tuberculosis. Recent emergence of new-quinolone resistant M. leprae and M. tuberculosis enforced the urgent elucidation of the mode of emergence of new-quinolone resistant strains. In this review, new-quinolone drugs, their mode of action and mechanism of acquisition of resistance by M. leprae and M. tuberculosis were explained. And rapid differentiation methods for resistant bacilli were also introduced.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriological Techniques/methods , Drug Resistance, Bacterial/genetics , Mycobacterium leprae/drug effects , Mycobacterium leprae/isolation & purification , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Quinolones/pharmacology , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Microbial Sensitivity Tests/methods , Mutation , Mycobacterium leprae/enzymology , Mycobacterium tuberculosis/enzymology , Topoisomerase II Inhibitors
11.
Clin Microbiol Infect ; 27(11): 1601-1612, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34265461

ABSTRACT

BACKGROUND: The fact that Mycobacterium leprae does not grow in vitro remains a challenge in the survey of its antimicrobial resistance (AMR). Mainly molecular methods are used to diagnose AMR in M. leprae to provide reliable data concerning mutations and their impact. Fluoroquinolones (FQs) are efficient for the treatment of leprosy and the main second-line drugs in case of multidrug resistance. OBJECTIVES: This study aimed at performing a systematic review (a) to characterize all DNA gyrase gene mutations described in clinical isolates of M. leprae, (b) to distinguish between those associated with FQ resistance or susceptibility and (c) to delineate a consensus numbering system for M. leprae GyrA and GyrB. DATA SOURCES: Data source was PubMed. STUDY ELIGIBILITY CRITERIA: Publications reporting genotypic susceptibility-testing methods and gyrase gene mutations in M. leprae clinical strains. RESULTS: In 25 studies meeting our inclusion criteria, 2884 M. leprae isolates were analysed (2236 for gyrA only (77%) and 755 for both gyrA and gyrB (26%)): 3.8% of isolates had gyrA mutations (n = 110), mostly at position 91 (n = 75, 68%) and 0.8% gyrB mutations (n = 6). Since we found discrepancies regarding the location of substitutions associated with FQ resistance, we established a consensus numbering system to properly number the mutations. We also designed a 3D model of the M. leprae DNA gyrase to predict the impact of mutations whose role in FQ-susceptibility has not been demonstrated previously. CONCLUSIONS: Mutations in DNA gyrase are observed in 4% of the M. leprae clinical isolates. To solve discrepancies among publications and to distinguish between mutations associated with FQ resistance or susceptibility, the consensus numbering system we proposed as well as the 3D model of the M. leprae gyrase for the evaluation of the impact of unknown mutations in FQ resistance, will provide help for resistance surveillance.


Subject(s)
DNA Gyrase , Drug Resistance, Bacterial , Fluoroquinolones , Mycobacterium leprae , DNA Gyrase/genetics , Drug Resistance, Bacterial/genetics , Fluoroquinolones/pharmacology , Humans , Microbial Sensitivity Tests , Mutation , Mycobacterium leprae/enzymology , Mycobacterium leprae/genetics
12.
Front Immunol ; 12: 647987, 2021.
Article in English | MEDLINE | ID: mdl-34248935

ABSTRACT

Cutaneous leishmaniasis caused by L. braziliensis induces a pronounced Th1 inflammatory response characterized by IFN-γ production. Even in the absence of parasites, lesions result from a severe inflammatory response in which inflammatory cytokines play an important role. Different approaches have been used to evaluate the therapeutic potential of orally administrated heat shock proteins (Hsp). These proteins are evolutionarily preserved from bacteria to humans, highly expressed under inflammatory conditions and described as immunodominant antigens. Tolerance induced by the oral administration of Hsp65 is capable of suppressing inflammation and inducing differentiation in regulatory cells, and has been successfully demonstrated in several experimental models of autoimmune and inflammatory diseases. We initially administered recombinant Lactococcus lactis (L. lactis) prior to infection as a proof of concept, in order to verify its immunomodulatory potential in the inflammatory response arising from L. braziliensis. Using this experimental approach, we demonstrated that the oral administration of a recombinant L. lactis strain, which produces and secretes Hsp65 from Mycobacterium leprae directly into the gut, mitigated the effects of inflammation caused by L. braziliensis infection in association or not with PAM 3CSK4 (N-α-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-L-cysteine, a TLR2 agonist). This was evidenced by the production of anti-inflammatory cytokines and the expansion of regulatory T cells in the draining lymph nodes of BALB/c mice. Our in vitro experimental results suggest that IL-10, TLR-2 and LAP are important immunomodulators in L. braziliensis infection. In addition, recombinant L. lactis administered 4 weeks after infection was observed to decrease lesion size, as well as the number of parasites, and produced a higher IL-10 production and decrease IFN-γ secretion. Together, these results indicate that Hsp65-producing L. lactis can be considered as an alternative candidate for treatment in both autoimmune diseases, as well as in chronic infections that cause inflammatory disease.


Subject(s)
Bacterial Proteins/administration & dosage , Bacterial Proteins/metabolism , Chaperonin 60/administration & dosage , Chaperonin 60/metabolism , Immune Tolerance/drug effects , Lactococcus lactis/metabolism , Leishmania braziliensis/drug effects , Leishmaniasis, Cutaneous/drug therapy , Mycobacterium leprae/enzymology , Administration, Oral , Animals , Bacterial Proteins/genetics , Chaperonin 60/genetics , Cytokines/metabolism , Female , Inflammation/drug therapy , Inflammation/immunology , Lactococcus lactis/genetics , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Mice , Mice, Inbred BALB C , Organisms, Genetically Modified/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology
13.
J Biol Chem ; 284(38): 25912-28, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19605345

ABSTRACT

Mycobacterium leprae, which has undergone reductive evolution leaving behind a minimal set of essential genes, has retained intervening sequences in four of its genes implicating a vital role for them in the survival of the leprosy bacillus. A single in-frame intervening sequence has been found embedded within its recA gene. Comparison of the M. leprae recA intervening sequence with the known intervening sequences indicated that it has the consensus amino acid sequence necessary for being a LAGLIDADG-type homing endonuclease. In light of massive gene decay and function loss in the leprosy bacillus, we sought to investigate whether its recA intervening sequence encodes a catalytically active homing endonuclease. Here we show that the purified M. leprae RecA intein (PI-MleI) binds to cognate DNA and displays endonuclease activity in the presence of alternative divalent cations, Mg2+ or Mn2+. A combination of approaches, including four complementary footprinting assays such as DNase I, copper-phenanthroline, methylation protection, and KMnO4, enhancement of 2-aminopurine fluorescence, and mapping of the cleavage site revealed that PI-MleI binds to cognate DNA flanking its insertion site, induces helical distortion at the cleavage site, and generates two staggered double strand breaks. Taken together, these results implicate that PI-MleI possesses a modular structure with separate domains for DNA target recognition and cleavage, each with distinct sequence preferences. From a biological standpoint, it is tempting to speculate that our findings have implications for understanding the evolution of the LAGLIDADG family of homing endonucleases.


Subject(s)
Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Endonucleases/metabolism , Evolution, Molecular , Inteins/physiology , Mycobacterium leprae/enzymology , Rec A Recombinases/metabolism , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Endonucleases/genetics , Magnesium/metabolism , Manganese/metabolism , Mycobacterium leprae/genetics , Protein Binding/physiology , Protein Structure, Tertiary/physiology , Rec A Recombinases/genetics
14.
J Mol Model ; 26(6): 138, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32415338

ABSTRACT

The theoretical charge density study for the gas phase of anti-leprosy drug Dapsone has been carried out in the light of the theory of atoms in molecules using density functional theory employing B3LYP(6-311G++(d, p) hybrid functional completed with dispersion corrections. The Hirshfeld surface analysis as well as fingerprint plots has been utilized to visualize and quantify the intermolecular contacts present in the molecule. The topological properties such as electron density and its Laplacian, delocalization index have been elucidated to throw light into the chemical bonding and atomic and molecular details. The electron localization function has been used to visualize and deduce information on the lone pair and the subshells of the Cl atom. The electrostatic potential visualizes the positive and negative electrostatic potential regions which are susceptible to nucleophilic and electrophilic attack. On the whole, this study provides an exact mechanism, interaction, and topological and electrostatic properties of the drug through theoretical insights which all will be a platform for our further investigation of the interaction between dapsone and dihydropteroate synthase (DHPS).


Subject(s)
Dapsone/chemistry , Dihydropteroate Synthase/antagonists & inhibitors , Models, Molecular , Bacterial Proteins/antagonists & inhibitors , Computational Chemistry , Dapsone/pharmacology , Hydrogen Bonding , Leprostatic Agents/chemistry , Leprostatic Agents/pharmacology , Molecular Docking Simulation , Mycobacterium leprae/enzymology , Static Electricity
15.
Mem Inst Oswaldo Cruz ; 104(8): 1132-8, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20140374

ABSTRACT

Members of the high temperature requirement A (HtrA) family of chaperone proteases have been shown to play a role in bacterial pathogenesis. In a recent report, we demonstrated that the gene ML0176, which codes for a predicted HtrA-like protease, a gene conserved in other species of mycobacteria, is transcribed by Mycobacterium leprae in human leprosy lesions. In the present study, the recombinant ML0176 protein was produced and its enzymatic properties investigated. M. lepraerecombinant ML0176 was able to hydrolyse a variety of synthetic and natural peptides. Similar to other HtrA proteins, this enzyme displayed maximum proteolytic activity at temperatures above 40 degrees C and was completely inactivated by aprotinin, a protease inhibitor with high selectivity for serine proteases. Finally, analysis of M. leprae ML0176 specificity suggested a broader cleavage preference than that of previously described HtrAs homologues. In summary, we have identified an HtrA-like protease in M. lepraethat may constitute a potential new target for the development of novel prophylactic and/or therapeutic strategies against mycobacterial infections.


Subject(s)
Mycobacterium leprae/enzymology , Serine Endopeptidases/biosynthesis , Base Sequence , Cloning, Molecular , Gene Expression Regulation, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Humans , Molecular Sequence Data , Mycobacterium leprae/genetics , Spectroscopy, Fourier Transform Infrared
16.
Int J Mycobacteriol ; 8(3): 229-236, 2019.
Article in English | MEDLINE | ID: mdl-31512598

ABSTRACT

Background: Leprosy is a neglected tropical disease affecting millions of people. The current treatment against leprosy includes various antibacterial drugs of which dapsone is known to bind to dihydropteroate synthase of Mycobacterium leprae. Dapsone is an expensive antibacterial drug with many side effects. A natural alternative for dapsone having less to no side effects and cheaper in production is needed. The three-dimensional protein structure of dihydropteroate synthase of M. leprae is not available. Methods: Protein homology modeling of target protein was carried out, and protein structure validation and energy minimization were performed. Phytochemicals mentioned in literature having anti-leprosy properties were studied for absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and that which passed ADMET filters were further carried for comparative in silico docking analysis along with dapsone. Preliminary docking analysis was carried using AutoDock Vina, and results obtained were validated using AutoDock 4.2.6 and SwissDock. Results: Neobavaisoflavone was predicted to be ten times safer for administration than dapsone. On performing in silico docking, it was found that neobavaisoflavone has better binding affinity than dapsone and forms a stable protein-ligand complex. Residues GLY.50, THR.88, and VAL.107 play an important role as binding site residues. Conclusion: Further, in vitro and in vivo experimental studies are required to confirm anti-leprosy properties of neobavaisoflavone over drug dapsone.


Subject(s)
Dapsone/pharmacology , Dihydropteroate Synthase/antagonists & inhibitors , Isoflavones/pharmacology , Leprostatic Agents/pharmacology , Molecular Docking Simulation , Mycobacterium leprae/drug effects , Bacterial Proteins/antagonists & inhibitors , Binding Sites , Mycobacterium leprae/enzymology , Phytochemicals/pharmacology , Protein Binding
17.
J Med Microbiol ; 68(11): 1629-1640, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31553301

ABSTRACT

Introduction. ML1899 is conserved in all mycobacterium sp. and is a middle member of mle-ML1898 operon involved in mycolic acid modification.Aim. In the present study attempts were made to characterize ML1899 in detail.Methodology. Bioinformatics tools were used for prediction of active-site residues, antigenic epitopes and a three-dimensional model of protein. The gene was cloned, expressed and purified as His-tagged protein in Escherichia coli for biophysical/biochemical characterization. Recombinant protein was used to treat THP-1 cells to study change in production of nitric oxide (NO), reactive oxygen species (ROS), cytokines and chemokines using flowcytometry/ELISA.Results. In silico analysis predicted ML1899 as a member of α/ß hydrolase family with GXSXG-motif and Ser126, His282, Asp254 as active-site residues that were confirmed by site-directed mutagensis. ML1899 exhibited esterase activity. It hydrolysed pNP-butyrate as optimum substrate at pH 8.0 and 50 °C with 5.56 µM-1 min-1 catalytic efficiency. The enzyme exhibited stability up to 60 °C temperature and between pH 6.0 to 9.0. K m, V max and specific activity of ML1899 were calculated to be 400 µM, 40 µmoles min-1 ml-1 and 27 U mg- 1, respectively. ML1899 also exhibited phospholipase activity. The protein affected the survival of macrophages when treated at higher concentration. ML1899 enhanced ROS/NO production and up-regulated pro-inflammatory cytokines and chemokine including TNF-α, IFN-γ, IL-6 and IL-8 in macrophages. ML1899 was also observed to elicit humoral response in 69 % of leprosy patients.Conclusion. These results suggested that ML1899, an esterase could up-regulate the immune responses in favour of macrophages at a low concentration but kills the THP-1 macrophages cells at a higher concentration.


Subject(s)
Bacterial Proteins/immunology , Esterases/immunology , Leprosy/microbiology , Mycobacterium leprae/enzymology , Amino Acid Sequence , Antibodies, Bacterial/immunology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cytokines/genetics , Cytokines/immunology , Enzyme Stability , Esterases/chemistry , Esterases/genetics , Female , Humans , Hydrogen-Ion Concentration , Kinetics , Leprosy/immunology , Macrophages/immunology , Macrophages/microbiology , Male , Mycobacterium leprae/chemistry , Mycobacterium leprae/genetics , Mycobacterium leprae/immunology , Nitric Oxide/immunology , Reactive Oxygen Species/immunology , Sequence Alignment
18.
Infect Genet Evol ; 60: 58-65, 2018 06.
Article in English | MEDLINE | ID: mdl-29454978

ABSTRACT

Leprosy is a chronic infection of skin and nerve caused by Mycobacterium leprae. The treatment is based on standard multi drug therapy consisting of dapsone, rifampicin and clofazamine. The use of rifampicin alone or with dapsone led to the emergence of rifampicin-resistant Mycobacterium leprae strains. The emergence of drug-resistant leprosy put a hurdle in the leprosy eradication programme. The present study aimed to predict the molecular model of ribonucleotide reductase (RNR), the enzyme responsible for biosynthesis of nucleotides, to screen new drugs for treatment of drug-resistant leprosy. The study was conducted by retrieving RNR of M. leprae from GenBank. A molecular 3D model of M. leprae was predicted using homology modelling and validated. A total of 325 characters were included in the analysis. The predicted 3D model of RNR showed that the ϕ and φ angles of 251 (96.9%) residues were positioned in the most favoured regions. It was also conferred that 18 α-helices, 6 ß turns, 2 γ turns and 48 helix-helix interactions contributed to the predicted 3D structure. Virtual screening of Food and Drug Administration approved drug molecules recovered 1829 drugs of which three molecules, viz., lincomycin, novobiocin and telithromycin, were taken for the docking study. It was observed that the selected drug molecules had a strong affinity towards the modelled protein RNR. This was evident from the binding energy of the drug molecules towards the modelled protein RNR (-6.10, -6.25 and -7.10). Three FDA-approved drugs, viz., lincomycin, novobiocin and telithromycin, could be taken for further clinical studies to find their efficacy against drug resistant leprosy.


Subject(s)
Bacterial Proteins/chemistry , Drug Resistance, Bacterial , Leprostatic Agents/metabolism , Mycobacterium leprae/enzymology , Ribonucleotide Reductases/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Drug Delivery Systems , Leprostatic Agents/chemistry , Molecular Docking Simulation , Protein Binding , Ribonucleotide Reductases/antagonists & inhibitors , Ribonucleotide Reductases/metabolism
19.
Cell Biochem Biophys ; 76(1-2): 125-134, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28822069

ABSTRACT

Mycobacterium leprae, the causal agent of leprosy is non-cultivable in vitro. Thus, the assessment of antibiotic activity against Mycobacterium leprae depends primarily upon the time-consuming mouse footpad system. The GyrA protein of Mycobacterium leprae is the target of the antimycobacterial drug, Ofloxacin. In recent times, the GyrA mutation (A91V) has been found to be resistant to Ofloxacin. This phenomenon has necessitated the development of new, long-acting antimycobacterial compounds. The underlying mechanism of drug resistance is not completely known. Currently, experimentally crystallized GyrA-DNA-OFLX models are not available for highlighting the binding and mechanism of Ofloxacin resistance. Hence, we employed computational approaches to characterize the Ofloxacin interaction with both the native and mutant forms of GyrA complexed with DNA. Binding energy measurements obtained from molecular docking studies highlights hydrogen bond-mediated efficient binding of Ofloxacin to Asp47 in the native GyrA-DNA complex in comparison with that of the mutant GyrA-DNA complex. Further, molecular dynamics studies highlighted the stable binding of Ofloxacin with native GyrA-DNA complex than with the mutant GyrA-DNA complex. This mechanism provided a plausible reason for the reported, reduced effect of Ofloxacin to control leprosy in individuals with the A91V mutation. Our report is the first of its kind wherein the basis for the Ofloxacin drug resistance mechanism has been explored with the help of ternary Mycobacterium leprae complex, GyrA-DNA-OFLX. These structural insights will provide useful information for designing new drugs to target the Ofloxacin-resistant DNA gyrase.


Subject(s)
Bacterial Proteins/metabolism , DNA Gyrase/metabolism , Mycobacterium leprae/enzymology , Ofloxacin/metabolism , Quinolones/metabolism , Algorithms , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Catalytic Domain , DNA/chemistry , DNA/metabolism , DNA Gyrase/chemistry , DNA Gyrase/genetics , Drug Resistance, Bacterial , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Ofloxacin/chemistry , Quinolones/chemistry
20.
Protein Sci ; 16(9): 1896-904, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17660248

ABSTRACT

Mycobacterium leprae protein ML2640c belongs to a large family of conserved hypothetical proteins predominantly found in mycobacteria, some of them predicted as putative S-adenosylmethionine (AdoMet)-dependent methyltransferases (MTase). As part of a Structural Genomics initiative on conserved hypothetical proteins in pathogenic mycobacteria, we have determined the structure of ML2640c in two distinct crystal forms. As expected, ML2640c has a typical MTase core domain and binds the methyl donor substrate AdoMet in a manner consistent with other known members of this structural family. The putative acceptor substrate-binding site of ML2640c is a large internal cavity, mostly lined by aromatic and aliphatic side-chain residues, suggesting that a lipid-like molecule might be targeted for catalysis. A flap segment (residues 222-256), which isolates the binding site from the bulk solvent and is highly mobile in the crystal structures, could serve as a gateway to allow substrate entry and product release. The multiple sequence alignment of ML2640c-like proteins revealed that the central alpha/beta core and the AdoMet-binding site are very well conserved within the family. However, the amino acid positions defining the binding site for the acceptor substrate display a higher variability, suggestive of distinct acceptor substrate specificities. The ML2640c crystal structures offer the first structural glimpses at this important family of mycobacterial proteins and lend strong support to their functional assignment as AdoMet-dependent methyltransferases.


Subject(s)
Methyltransferases/chemistry , Mycobacteriaceae/enzymology , Mycobacterium leprae/enzymology , S-Adenosylmethionine/chemistry , Amino Acid Sequence , Binding Sites , Computational Biology/methods , Crystallography, X-Ray , Databases, Protein , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Molecular Sequence Data , Mycobacteriaceae/genetics , Mycobacterium leprae/genetics , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Static Electricity , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL