Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.577
Filter
1.
Nature ; 630(8017): 677-685, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839962

ABSTRACT

All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.


Subject(s)
Analgesics, Opioid , Myelin Sheath , Neural Pathways , Neuronal Plasticity , Reward , Ventral Tegmental Area , Animals , Female , Male , Mice , Analgesics, Opioid/pharmacology , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , Mice, Inbred C57BL , Morphine/pharmacology , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Nucleus Accumbens/cytology , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Nucleus Accumbens/drug effects , Oligodendroglia/metabolism , Oligodendroglia/cytology , Oligodendroglia/drug effects , Optogenetics , Ventral Tegmental Area/physiology , Ventral Tegmental Area/cytology , Ventral Tegmental Area/drug effects , Neural Pathways/drug effects , Cell Lineage
2.
J Neurosci ; 44(28)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38749703

ABSTRACT

Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand-mediated activation hindering myelin repair. Following chronic cuprizone (CPZ)-induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase-/butyrylcholinesterase (BChE)-mediated degradation. Using choline acetyltransferase (ChAT) reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and CPZ demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin-induced demyelination. In CPZ-demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following CPZ demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand-mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand-mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.


Subject(s)
Demyelinating Diseases , Oligodendroglia , Signal Transduction , Animals , Demyelinating Diseases/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Mice , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Female , Male , Signal Transduction/drug effects , Signal Transduction/physiology , Mice, Inbred C57BL , Acetylcholine/metabolism , Cuprizone/toxicity , Lysophosphatidylcholines/toxicity , Cell Differentiation/drug effects , Cell Differentiation/physiology , Choline O-Acetyltransferase/metabolism , Remyelination/physiology , Remyelination/drug effects , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Mice, Transgenic
3.
Glia ; 72(8): 1392-1401, 2024 08.
Article in English | MEDLINE | ID: mdl-38572807

ABSTRACT

Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) characterized by demyelination, axonal damage and, for the majority of people, a decline in neurological function in the long-term. Remyelination could assist in the protection of axons and their functional recovery, but such therapies are not, as yet, available. The TAM (Tyro3, Axl, and MERTK) receptor ligand GAS6 potentiates myelination in vitro and promotes recovery in pre-clinical models of MS. However, it has remained unclear which TAM receptor is responsible for transducing this effect and whether post-translational modification of GAS6 is required. In this study, we show that the promotion of myelination requires post-translational modification of the GLA domain of GAS6 via vitamin K-dependent γ-carboxylation. We also confirmed that the intracerebroventricular provision of GAS6 for 2 weeks to demyelinated wild-type (WT) mice challenged with cuprizone increased the density of myelinated axons in the corpus callosum by over 2-fold compared with vehicle control. Conversely, the provision of GAS6 to Tyro3 KO mice did not significantly improve the density of myelinated axons. The improvement in remyelination following the provision of GAS6 to WT mice was also accompanied by an increased density of CC1+ve mature oligodendrocytes compared with vehicle control, whereas this improvement was not observed in the absence of Tyro3. This effect occurs independent of any influence on microglial activation. This work therefore establishes that the remyelinative activity of GAS6 is dependent on Tyro3 and includes potentiation of oligodendrocyte numbers.


Subject(s)
Cuprizone , Demyelinating Diseases , Intercellular Signaling Peptides and Proteins , Mice, Inbred C57BL , Mice, Knockout , Receptor Protein-Tyrosine Kinases , Remyelination , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Remyelination/physiology , Remyelination/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Cuprizone/toxicity , Mice , Disease Models, Animal , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Male , Female
4.
Glia ; 72(10): 1801-1820, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38899723

ABSTRACT

The kappa opioid receptor has been identified as a promising therapeutic target for promoting remyelination. In the current study, we evaluated the ability of nalfurafine to promote oligodendrocyte progenitor cell (OPC) differentiation and myelination in vitro, and its efficacy in an extended, cuprizone-induced demyelination model. Primary mouse (C57BL/6J) OPC-containing cultures were treated with nalfurafine (0.6-200 nM), clemastine (0.01-100 µM), T3 (30 ng/mL), or vehicle for 5 days. Using immunocytochemistry and confocal microscopy, we found that nalfurafine treatment increased OPC differentiation, oligodendrocyte (OL) morphological complexity, and myelination of nanofibers in vitro. Adult male mice (C57BL/6J) were given a diet containing 0.2% cuprizone and administered rapamycin (10 mg/kg) once daily for 12 weeks followed by 6 weeks of treatment with nalfurafine (0.01 or 0.1 mg/kg), clemastine (10 mg/kg), or vehicle. We quantified the number of OLs using immunofluorescence, gross myelination using black gold staining, and myelin thickness using electron microscopy. Cuprizone + rapamycin treatment produced extensive demyelination and was accompanied by a loss of mature OLs, which was partially reversed by therapeutic administration of nalfurafine. We also assessed these mice for functional behavioral changes in open-field, horizontal bar, and mouse motor skill sequence tests (complex wheel running). Cuprizone + rapamycin treatment resulted in hyperlocomotion, poorer horizontal bar scores, and less distance traveled on the running wheels. Partial recovery was observed on both the horizontal bar and complex running wheel tests over time, which was facilitated by nalfurafine treatment. Taken together, these data highlight the potential of nalfurafine as a remyelination-promoting therapeutic.


Subject(s)
Cuprizone , Demyelinating Diseases , Mice, Inbred C57BL , Morphinans , Myelin Sheath , Sirolimus , Spiro Compounds , Animals , Morphinans/pharmacology , Male , Spiro Compounds/pharmacology , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Demyelinating Diseases/drug therapy , Mice , Myelin Sheath/drug effects , Myelin Sheath/pathology , Myelin Sheath/metabolism , Sirolimus/pharmacology , Cuprizone/toxicity , Cells, Cultured , Disease Models, Animal , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Cell Differentiation/drug effects
5.
J Neurochem ; 168(9): 3250-3267, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39115025

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12-24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.


Subject(s)
Cuprizone , Demyelinating Diseases , Myelin Sheath , Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Male , Mice , Astrocytes/drug effects , Astrocytes/metabolism , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Insect Proteins , Locomotion/drug effects , Mice, Inbred C57BL , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Myelin Sheath/pathology , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/pharmacology
6.
Neurobiol Dis ; 199: 106611, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032797

ABSTRACT

Ultrastructural studies of contusive spinal cord injury (SCI) in mammals have shown that the most prominent acute changes in white matter are periaxonal swelling and separation of myelin away from their axon, axonal swelling, and axonal spheroid formation. However, the underlying cellular and molecular mechanisms that cause periaxonal swelling and the functional consequences are poorly understood. We hypothesized that periaxonal swelling and loss of connectivity between the axo-myelinic interface impedes neurological recovery by disrupting conduction velocity, and glial to axonal trophic support resulting in axonal swelling and spheroid formation. Utilizing in vivo longitudinal imaging of Thy1YFP+ axons and myelin labeled with Nile red, we reveal that periaxonal swelling significantly increases acutely following a contusive SCI (T13, 30 kdyn, IH Impactor) versus baseline recordings (laminectomy only) and often precedes axonal spheroid formation. In addition, using longitudinal imaging to determine the fate of myelinated fibers acutely after SCI, we show that ∼73% of myelinated fibers present with periaxonal swelling at 1 h post SCI and âˆ¼ 51% of those fibers transition to axonal spheroids by 4 h post SCI. Next, we assessed whether cation-chloride cotransporters present within the internode contributed to periaxonal swelling and whether their modulation would increase white matter sparing and improve neurological recovery following a moderate contusive SCI (T9, 50 kdyn). Mechanistically, activation of the cation-chloride cotransporter KCC2 did not improve neurological recovery and acute axonal survival, but did improve chronic tissue sparing. In distinction, the NKKC1 antagonist bumetanide improved neurological recovery, tissue sparing, and axonal survival, in part through preventing periaxonal swelling and disruption of the axo-myelinic interface. Collectively, these data reveal a novel neuroprotective target to prevent periaxonal swelling and improve neurological recovery after SCI.


Subject(s)
Axons , Recovery of Function , Solute Carrier Family 12, Member 2 , Spinal Cord Injuries , White Matter , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , White Matter/drug effects , White Matter/pathology , Recovery of Function/drug effects , Recovery of Function/physiology , Solute Carrier Family 12, Member 2/metabolism , Axons/drug effects , Axons/pathology , Female , Myelin Sheath/pathology , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Mice , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Bumetanide/pharmacology
7.
Eur J Neurosci ; 59(9): 2276-2292, 2024 May.
Article in English | MEDLINE | ID: mdl-38385867

ABSTRACT

Anxiety disorders are prevalent mental disorders. Their predisposition involves a combination of genetic and environmental risk factors, such as psychosocial stress. Myelin plasticity was recently associated with chronic stress in several mouse models. Furthermore, we found that changes in both myelin thickness and node of Ranvier morphology after chronic social defeat stress are influenced by the genetic background of the mouse strain. To understand cellular and molecular effects of stress-associated myelin plasticity, we established an oligodendrocyte (OL) model consisting of OL primary cell cultures isolated from the C57BL/6NCrl (B6; innately non-anxious and mostly stress-resilient strain) and DBA/2NCrl (D2; innately anxious and mostly stress-susceptible strain) mice. Characterization of naïve cells revealed that D2 cultures contained more pre-myelinating and mature OLs compared with B6 cultures. However, B6 cultures contained more proliferating oligodendrocyte progenitor cells (OPCs) than D2 cultures. Acute exposure to corticosterone, the major stress hormone in mice, reduced OPC proliferation and increased OL maturation and myelin production in D2 cultures compared with vehicle treatment, whereas only OL maturation was reduced in B6 cultures. In contrast, prolonged exposure to the synthetic glucocorticoid dexamethasone reduced OPC proliferation in both D2 and B6 cultures, but only D2 cultures displayed a reduction in OPC differentiation and myelin production. Taken together, our results reveal that genetic factors influence OL sensitivity to glucocorticoids, and this effect is dependent on the cellular maturation stage. Our model provides a novel framework for the identification of cellular and molecular mechanisms underlying stress-associated myelin plasticity.


Subject(s)
Cell Differentiation , Cell Proliferation , Corticosterone , Glucocorticoids , Mice, Inbred C57BL , Myelin Sheath , Oligodendroglia , Animals , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Cell Differentiation/drug effects , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Mice , Cell Proliferation/drug effects , Glucocorticoids/pharmacology , Corticosterone/pharmacology , Mice, Inbred DBA , Cells, Cultured , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Genetic Background , Male , Cell Lineage/drug effects , Stress, Psychological/metabolism
8.
Neurochem Res ; 49(8): 2087-2104, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38819698

ABSTRACT

Addressing inflammation, demyelination, and associated neurodegeneration in inflammatory demyelinating diseases like multiple sclerosis (MS) remains challenging. ACT-1004-1239, a first-in-class and potent ACKR3 antagonist, currently undergoing clinical development, showed promise in preclinical MS models, reducing neuroinflammation and demyelination. However, its effectiveness in treating established disease and impact on remyelination after the occurrence of demyelinated lesions remain unexplored. This study assessed the therapeutic effect of ACT-1004-1239 in two demyelinating disease models. In the proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) model, ACT-1004-1239 administered upon the detection of the first signs of paralysis, resulted in a dose-dependent reduction in EAE disease severity, concomitant with diminished immune cell infiltrates in the CNS and reduced demyelination. Notably, efficacy correlated with elevated plasma concentrations of CXCL11 and CXCL12, two pharmacodynamic biomarkers of ACKR3 antagonism. Combining ACT-1004-1239 with siponimod, an approved immunomodulatory treatment for MS, synergistically reduced EAE severity. In the cuprizone-induced demyelination model, ACT-1004-1239 administered after 5 weeks of cuprizone exposure, significantly accelerated remyelination, already quantifiable one week after cuprizone withdrawal. Additionally, ACT-1004-1239 penetrated the CNS, elevating brain CXCL12 concentrations. These results demonstrate that ACKR3 antagonism significantly reduces the severity of experimental demyelinating diseases, even when treatment is initiated therapeutically, after the occurrence of lesions. It confirms the dual mode of action of ACT-1004-1239, exhibiting both immunomodulatory effects by reducing neuroinflammation and promyelinating effects by accelerating myelin repair. The results further strengthen the rationale for evaluating ACT-1004-1239 in clinical trials for patients with demyelinating diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Remyelination , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Remyelination/drug effects , Mice , Female , Demyelinating Diseases/drug therapy , Demyelinating Diseases/chemically induced , Cuprizone , Azetidines/pharmacology , Azetidines/therapeutic use , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Benzyl Compounds/therapeutic use , Benzyl Compounds/pharmacology , Myelin Sheath/drug effects , Myelin Sheath/metabolism
9.
Pediatr Res ; 95(6): 1510-1518, 2024 May.
Article in English | MEDLINE | ID: mdl-38225450

ABSTRACT

BACKGROUND: Early-onset fetal growth restriction (FGR) is associated with adverse outcomes. We hypothesised that maternal melatonin administration will improve fetal brain structure in FGR. METHODS: Surgery was performed on twin-bearing ewes at 88 days (0.6 gestation), and FGR induced in one twin via single umbilical artery ligation. Melatonin was administered intravenously (6 mg/day) to a group of ewes commencing on day of surgery until 127 days (0.85 gestation), when the ewe/fetuses were euthanized, and fetal brains collected. RESULTS: Study groups were control (n = 5), FGR (n = 5), control+melatonin (control+MLT; n = 6) and FGR+melatonin (FGR + MLT; n = 6). Melatonin administration did not significantly alter fetal body or brain weights. Myelin (CNPase+) fibre density was reduced in FGR vs. control animals in most brain regions examined (p < 0.05) and melatonin treatment restored CNPase fibre density. Similar but less pronounced effect was seen with mature myelin (MBP+) staining. Significant differences in activated microglia (Iba-1) activity were seen between lamb groups (MLT mitigated FGR effect) in periventricular white matter, subventricular zone and external capsule (p < 0.05). Similar effects were seen in astrogliosis (GFAP) in intragyral white matter and cortex. CONCLUSIONS: Maternal melatonin administration in early onset FGR led to improved myelination of white matter brain regions, possibly mediated by decreased inflammation. IMPACT: Maternal melatonin administration might lead to neuroprotection in the growth-restricted fetus, possibly via dampening neuroinflammation and enhancing myelination. This preclinical study adds to the body of work on this topic, and informs clinical translation. Neuroprotection likely to improve long-term outcomes of this vulnerable infant group.


Subject(s)
Brain , Fetal Growth Retardation , Melatonin , Neuroprotective Agents , Placental Insufficiency , Melatonin/administration & dosage , Melatonin/pharmacology , Animals , Fetal Growth Retardation/prevention & control , Fetal Growth Retardation/drug therapy , Female , Pregnancy , Neuroprotective Agents/administration & dosage , Sheep , Placental Insufficiency/drug therapy , Brain/drug effects , Brain/pathology , Disease Models, Animal , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Microglia/drug effects , Microglia/metabolism
10.
Cell Biol Int ; 48(9): 1326-1342, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38890788

ABSTRACT

Chronic stress is a universal condition commonly associated with many psychiatric diseases. An extensive body of evidence discussed hippocampal affection upon chronic stress exposure, however, the underlying molecular pathways still need to be identified. We investigated the impact of chronic stress on miR200/BMP/Olig-2 signaling and hippocampal myelination. We also compared the effects of chronic administration of amitriptyline and cholecalciferol on chronically stressed hippocampi. Both amitriptyline and cholecalciferol significantly decreased serum cortisol levels, reduced immobility time in the forced swim test, increased the number of crossed squares in open field test, decreased the hippocampal expression of bone morphogenetic protein 4 (BMP4) and its messenger RNA (mRNA) levels, reduced miR200 expression as compared to untreated chronically stressed rats. Also, both drugs amended the hippocampal neuronal damage, enhanced the surviving cell count, and increased the pyramidal layer thickness of Cornu Ammonis subregion 1 (CA1) and granule cell layer of the dentate gyrus. Cholecalciferol was more effective in increasing the area percentage of myelin basic protein (MBP) and Olig-2 positive cells count in hippocampi of chronic stress-exposed rats than amitriptyline, thus enhancing myelination. We also found a negative correlation between the expression of BMP4, its mRNA, miR200, and the immunoexpression of MBP and Olig-2 proteins. This work underscores the amelioration of the stress-induced behavioral changes, inhibition of miR200/BMP4 signaling, and enhancement of hippocampal myelination following chronic administration of either amitriptyline or cholecalciferol, though cholecalciferol seemed more effective in brain remyelination.


Subject(s)
Amitriptyline , Bone Morphogenetic Protein 4 , Cholecalciferol , Hippocampus , MicroRNAs , Signal Transduction , Animals , Male , Rats , Amitriptyline/pharmacology , Bone Morphogenetic Protein 4/metabolism , Cholecalciferol/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , MicroRNAs/metabolism , MicroRNAs/genetics , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Rats, Wistar , Signal Transduction/drug effects , Stress, Psychological/metabolism
11.
Dev Psychobiol ; 66(7): e22554, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39378309

ABSTRACT

The postnatal environment is challenging for the preterm neonate with exposure to hypoxic and excitotoxic events, amplified by premature loss of placentally derived neurosteroids. Between preterm birth and term equivalent age (TEA), cerebellar development continues despite these challenges. We hypothesize that neurosteroid replacement therapy during this time will support optimal cerebellar development. Guinea pig sows delivered at term (∼69 days gestation) or were induced to deliver preterm (∼62 days), with preterm pups receiving ganaxolone or vehicle until TEA. Postnatal assessments comprised salivary cortisol (corrected postnatal age [CPA] 0, 7, 38), behavioral analysis (CPA7, 38), and tissue collection (CPA0 and CPA40). Neurodevelopmental markers (MBP, Olig2, and NeuN) were assessed in the cerebellum by immunohistochemistry, whereas RT-PCR was utilized to investigate key inhibitory/excitatory pathways and oligodendrocyte lineage markers. Following preterm birth, there was evidence of a hyperactive phenotype, increased salivary cortisol concentrations, and impaired myelination and oligodendrocyte maturation at the protein level. mRNA expressions of key inhibitory/excitatory pathways and myelin stability were also altered following preterm birth. Importantly, we showed that neurosteroid replacement therapy returns cerebellar development and behavior toward a term-like phenotype. Therefore, ganaxolone may reduce the vulnerability of the cerebellum to postnatal challenges arising from preterm birth.


Subject(s)
Cerebellum , Myelin Sheath , Oligodendroglia , Animals , Guinea Pigs , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Cerebellum/drug effects , Cerebellum/metabolism , Female , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Pregnanolone/pharmacology , Pregnanolone/analogs & derivatives , Pregnanolone/metabolism , Premature Birth/drug therapy , Animals, Newborn , Pregnancy , Hydrocortisone/metabolism
12.
Ecotoxicol Environ Saf ; 278: 116393, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38714083

ABSTRACT

Micro(nano)plastic, as a new type of environmental pollutant, have become a potential threat to the life and health of various stages of biology. However, it is not yet clear whether they will affect brain development in the fetal stage. Therefore, this study aims to explore the potential effects of nanoplastics on the development of fetal rat brains. To assess the allocation of NPs (25 nm and 50 nm) in various regions of the fetal brain, pregnant rats were exposed to concentrations (50, 10, 2.5, and 0.5 mg/kg) of PS-NPs. Our results provided evidence of the transplacental transfer of PS-NPs to the fetal brain, with a prominent presence observed in several cerebral regions, notably the cerebellum, hippocampus, striatum, and prefrontal cortex. This distribution bias might be linked to the developmental sequence of each brain region. Additionally, we explored the influence of prenatal exposure on the myelin development of the cerebellum, given its the highest PS-NP accumulation in offspring. Compared with control rats, PS-NPs exposure caused a significant reduction in myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) expression, a decrease in myelin thickness, an increase in cell apoptosis, and a decline in the oligodendrocyte population. These effects gave rise to motor deficits. In conclusion, our results identified the specific distribution of NPs in the fetal brain following prenatal exposure and revealed that prenatal exposure to PS-NPs can suppress myelin formation in the cerebellum of the fetus.


Subject(s)
Brain , Myelin Sheath , Polystyrenes , Animals , Female , Pregnancy , Brain/drug effects , Brain/embryology , Brain/metabolism , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Rats , Polystyrenes/toxicity , Environmental Pollutants/toxicity , Myelin Basic Protein/metabolism , Maternal Exposure , Nanoparticles/toxicity , Apoptosis/drug effects , Microplastics/toxicity , Rats, Sprague-Dawley , Maternal-Fetal Exchange , Fetus/drug effects
13.
Int J Mol Sci ; 25(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39000003

ABSTRACT

Peripheral nerve injuries (PNIs) represent a significant clinical challenge, particularly in elderly populations where axonal remyelination and regeneration are impaired. Developing therapies to enhance these processes is crucial for improving PNI repair outcomes. Glutamate carboxypeptidase II (GCPII) is a neuropeptidase that plays a pivotal role in modulating glutamate signaling through its enzymatic cleavage of the abundant neuropeptide N-acetyl aspartyl glutamate (NAAG) to liberate glutamate. Within the PNS, GCPII is expressed in Schwann cells and activated macrophages, and its expression is amplified with aging. In this study, we explored the therapeutic potential of inhibiting GCPII activity following PNI. We report significant GCPII protein and activity upregulation following PNI, which was normalized by the potent and selective GCPII inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In vitro, 2-PMPA robustly enhanced myelination in dorsal root ganglion (DRG) explants. In vivo, using a sciatic nerve crush injury model in aged mice, 2-PMPA accelerated remyelination, as evidenced by increased myelin sheath thickness and higher numbers of remyelinated axons. These findings suggest that GCPII inhibition may be a promising therapeutic strategy to enhance remyelination and potentially improve functional recovery after PNI, which is especially relevant in elderly PNI patients where this process is compromised.


Subject(s)
Glutamate Carboxypeptidase II , Peripheral Nerve Injuries , Remyelination , Animals , Mice , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/metabolism , Remyelination/drug effects , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamate Carboxypeptidase II/metabolism , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Aging/drug effects , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Mice, Inbred C57BL , Nerve Regeneration/drug effects , Sciatic Nerve/injuries , Sciatic Nerve/drug effects , Male , Axons/drug effects , Axons/metabolism
14.
Med Princ Pract ; 33(3): 198-214, 2024.
Article in English | MEDLINE | ID: mdl-38350432

ABSTRACT

Myelin plays a pivotal role in the efficient transmission of nerve impulses. Disruptions in myelin integrity are associated with numerous neurological disorders, including multiple sclerosis. In the central nervous system (CNS), myelin is formed by oligodendrocytes. Remyelination refers to the re-formation of the damaged myelin sheath by newly formed oligodendrocytes. Steroids have gained attention for their potential modulatory effects on myelin in both health and disease. Steroids are traditionally associated with endocrine functions, but their local synthesis within the nervous system has generated significant interest. The term "neuroactive steroids" refers to steroids that can act on cells of the nervous system. In the healthy state, neuroactive steroids promote myelin formation, maintenance, and repair by enhancing oligodendrocyte differentiation and maturation. In pathological conditions, such as demyelination injury, multiple neuroactive steroids have shown promise in promoting remyelination. Understanding the effects of neuroactive steroids on myelin could lead to novel therapeutic approaches for demyelinating diseases and neurodegenerative disorders. This review highlights the potential therapeutic significance of neuroactive steroids in myelin-related health and diseases. We review the synthesis of steroids by neurons and glial cells and discuss the roles of neuroactive steroids on myelin structure and function in health and disease. We emphasize the potential promyelinating effects of the varying levels of neuroactive steroids during different female physiological states such as the menstrual cycle, pregnancy, lactation, and postmenopause.


Subject(s)
Myelin Sheath , Humans , Myelin Sheath/drug effects , Oligodendroglia/drug effects , Demyelinating Diseases/drug therapy , Neurosteroids , Multiple Sclerosis/drug therapy , Female , Pregnancy , Animals
15.
Bull Exp Biol Med ; 176(5): 631-635, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38733477

ABSTRACT

We studied the influence of DMSO administered ad libitum with drinking water in concentrations of 0.01, 0.1, and 1% for 4 and 6 weeks on pain sensitivity, motor coordination, and myelin content in the corpus callosum of C57BL/6 mice. After 6-week administration, DMSO in all studied concentrations decreased myelin content in the corpus callosum. Moreover, 4-week administration of 0.1% DMSO and 6-week administration of 1% DMSO increased the latency to fall in the rotarod test by 3.1 (p<0.05) and 5.1 (p<0.001) times, respectively. After 4-week administration of DMSO in concentrations of 0.01 and 0.1%, the latency of the tail flick response increased by 2.1 (p<0.05) and 1.8 times (p<0.001), respectively. Administration of DMSO in concentrations of 0.01 and 1% for 6 weeks led to a decrease of this parameter by 2.7 (p<0.05) and 3.8 times (p<0.01), respectively. Thus, DMSO in all studied concentrations decreased myelin content in the corpus callosum of C57BL/6 mice and modified motor coordination and pain sensitivity of animals.


Subject(s)
Corpus Callosum , Dimethyl Sulfoxide , Mice, Inbred C57BL , Myelin Sheath , Animals , Dimethyl Sulfoxide/administration & dosage , Dimethyl Sulfoxide/toxicity , Corpus Callosum/drug effects , Corpus Callosum/pathology , Mice , Myelin Sheath/drug effects , Myelin Sheath/pathology , Myelin Sheath/metabolism , Male , Rotarod Performance Test , Pain Threshold/drug effects
16.
Proc Natl Acad Sci U S A ; 117(16): 9082-9093, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32253301

ABSTRACT

Current multiple sclerosis (MS) medications are mainly immunomodulatory, having little or no effect on neuroregeneration of damaged central nervous system (CNS) tissue; they are thus primarily effective at the acute stage of disease, but much less so at the chronic stage. An MS therapy that has both immunomodulatory and neuroregenerative effects would be highly beneficial. Using multiple in vivo and in vitro strategies, in the present study we demonstrate that ursolic acid (UA), an antiinflammatory natural triterpenoid, also directly promotes oligodendrocyte maturation and CNS myelin repair. Oral treatment with UA significantly decreased disease severity and CNS inflammation and demyelination in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Importantly, remyelination and neural repair in the CNS were observed even after UA treatment was started on day 60 post immunization when EAE mice had full-blown demyelination and axonal damage. UA treatment also enhanced remyelination in a cuprizone-induced demyelination model in vivo and brain organotypic slice cultures ex vivo and promoted oligodendrocyte maturation in vitro, indicating a direct myelinating capacity. Mechanistically, UA induced promyelinating neurotrophic factor CNTF in astrocytes by peroxisome proliferator-activated receptor γ(PPARγ)/CREB signaling, as well as by up-regulation of myelin-related gene expression during oligodendrocyte maturation via PPARγ activation. Together, our findings demonstrate that UA has significant potential as an oral antiinflammatory and neural repair agent for MS, especially at the chronic-progressive stage.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Immunomodulation/drug effects , Multiple Sclerosis/drug therapy , Remyelination/drug effects , Triterpenes/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Cell Differentiation/drug effects , Corpus Callosum/drug effects , Corpus Callosum/pathology , Cuprizone/toxicity , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Gene Expression Regulation/drug effects , Humans , Male , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Myelin Sheath/drug effects , Myelin Sheath/pathology , Oligodendroglia/drug effects , Oligodendroglia/immunology , Oligodendroglia/pathology , PPAR gamma/metabolism , Triterpenes/therapeutic use , Ursolic Acid
17.
Development ; 146(9)2019 05 02.
Article in English | MEDLINE | ID: mdl-31048318

ABSTRACT

Myelination leads to the formation of myelin sheaths surrounding neuronal axons and is crucial for function, plasticity and repair of the central nervous system (CNS). It relies on the interaction of the axons and the oligodendrocytes: the glial cells producing CNS myelin. Here, we have investigated the role of a crucial component of the Sonic hedgehog (Shh) signalling pathway, the co-receptor Boc, in developmental and repairing myelination. During development, Boc mutant mice display a transient decrease in oligodendroglial cell density together with delayed myelination. Despite recovery of oligodendroglial cells at later stages, adult mutants still exhibit a lower production of myelin basic protein correlated with a significant decrease in the calibre of callosal axons and a reduced amount of the neurofilament NF-M. During myelin repair, the altered OPC differentiation observed in the mutant is reminiscent of the phenotype observed after blockade of Shh signalling. In addition, Boc mutant microglia/macrophages unexpectedly exhibit the apparent inability to transition from a highly to a faintly ramified morphology in vivo Altogether, these results identify Boc as an important component of myelin formation and repair.


Subject(s)
Immunoglobulin G/metabolism , Myelin Sheath/metabolism , Receptors, Cell Surface/metabolism , Animals , Blotting, Western , Cell Differentiation/drug effects , Cells, Cultured , Cuprizone/pharmacology , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Immunoglobulin G/genetics , Intermediate Filaments/drug effects , Intermediate Filaments/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Microglia/metabolism , Myelin Sheath/drug effects , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Receptors, Cell Surface/genetics
18.
Ann Neurol ; 90(4): 558-567, 2021 10.
Article in English | MEDLINE | ID: mdl-34402546

ABSTRACT

Central nervous system demyelination in multiple sclerosis (MS) and subsequent axonal degeneration represent a major cause of clinical morbidity. Learning, salient experiences, and stimulation of neuronal activity induce new myelin formation in rodents, and in animal models of demyelination, remyelination can be enhanced via experience- and activity-dependent mechanisms. Furthermore, preliminary studies in MS patients support the use of neuromodulation and rehabilitation exercises for symptomatic improvement, suggesting that these interventions may represent nonpharmacological strategies for promoting remyelination. Here, we review the literature on myelin plasticity processes and assess the potential to leverage these mechanisms to develop remyelinating therapies. ANN NEUROL 2021;90:558-567.


Subject(s)
Multiple Sclerosis/drug therapy , Myelin Sheath/metabolism , Neuronal Plasticity/physiology , Remyelination/physiology , Animals , Humans , Myelin Sheath/drug effects , Neurons/cytology , Oligodendroglia/cytology , Remyelination/drug effects
19.
FASEB J ; 35(3): e21431, 2021 03.
Article in English | MEDLINE | ID: mdl-33595155

ABSTRACT

Current strategies for the treatment of demyelinating diseases such as multiple sclerosis (MS) are based on anti-inflammatory or immunomodulatory drugs. Those drugs have the potential to reduce the frequency of new lesions but do not directly promote remyelination in the damaged central nervous system (CNS). Targeting CXCR7 (ACKR3) has been postulated as a potential therapeutic approach in demyelinating diseases, leading to both immunomodulation by reducing leukocyte infiltrates and promyelination by enhancing myelin repair. ACT-1004-1239 is a potent, selective, insurmountable, and orally available first-in-class CXCR7 receptor antagonist. The effect of ACT-1004-1239 was evaluated in the myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) and the cuprizone-induced demyelination mouse models. In addition, ACT-1004-1239 was assessed in a rat oligodendrocyte precursor cell (OPC) differentiation assay in vitro. In the MOG-induced EAE model, ACT-1004-1239 treatment (10-100 mg/kg, twice daily, orally) showed a significant dose-dependent reduction in disease clinical scores, resulting in increased survival. At the highest dose tested (100 mg/kg, twice daily), ACT-1004-1239 delayed disease onset and significantly reduced immune cell infiltrates into the CNS and plasma neurofilament light chain concentration. Treatment with ACT-1004-1239 dose-dependently increased plasma CXCL12 concentration, which correlated with a reduction of the cumulative disease score. Furthermore, in the cuprizone model, ACT-1004-1239 treatment significantly increased the number of mature myelinating oligodendrocytes and enhanced myelination in vivo. In vitro, ACT-1004-1239 promoted the maturation of OPCs into myelinating oligodendrocytes. These results provide evidence that ACT-1004-1239 both reduces neuroinflammation and enhances myelin repair substantiating the rationale to explore its therapeutic potential in a clinical setting.


Subject(s)
Cuprizone/pharmacology , Immunomodulation/drug effects , Myelin Sheath/drug effects , Receptors, CXCR/antagonists & inhibitors , Animals , Cell Differentiation/drug effects , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Immunomodulation/immunology , Inflammation/drug therapy , Male , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Myelin Sheath/pathology , Myelin-Oligodendrocyte Glycoprotein/metabolism , Oligodendroglia/cytology , Oligodendroglia/drug effects , Stem Cells/cytology
20.
Alcohol Clin Exp Res ; 46(1): 77-86, 2022 01.
Article in English | MEDLINE | ID: mdl-34825395

ABSTRACT

BACKGROUND: Abnormal diffusion within white matter (WM) tracts has been linked to cognitive impairment in children with fetal alcohol spectrum disorder. Whether changes to myelin organization and structure underlie the observed abnormal diffusion patterns remains unknown. Using a third trimester-equivalent mouse model of alcohol exposure, we previously demonstrated acute loss of oligodendrocyte lineage cells with persistent loss of myelin basic protein and lower fractional anisotropy (FA) in the corpus callosum (CC). Here, we tested whether these WM deficits are accompanied by changes in: (i) axial diffusion (AD) and radial diffusion (RD), (ii) myelin ultrastructure, or (iii) structural components of the node of Ranvier. METHODS: Mouse pups were exposed to alcohol or air vapor for 4 h daily from postnatal day (P)3 to P15 (BEC: 160.4 ± 12.0 mg/dl; range = 128.2 to 185.6 mg/dl). Diffusion tensor imaging (DTI) and histological analyses were performed on brain tissue isolated at P50. Diffusion parameters were measured with Paravision™ 5.1 software (Bruker) following ex vivo scanning in a 7.0 T MRI. Nodes of Ranvier were identified using high-resolution confocal imaging of immunofluorescence for Nav 1.6 (nodes) and Caspr (paranodes) and measured using Imaris™ imaging software (Bitplane). Myelin ultrastructure was evaluated by calculating the G-ratio (axonal diameter/myelinated fiber diameter) on images acquired using transmission electron microscopy. RESULTS: Consistent with our previous study, high resolution DTI at P50 showed lower FA in the CC of alcohol-exposed mice (p = 0.0014). Here, we show that while AD (diffusion parallel to CC axons) was similar between treatment groups (p = 0.30), RD (diffusion perpendicular to CC axons) in alcohol-exposed subjects was significantly higher than in controls (p = 0.0087). In the posterior CC, where we identified the highest degree of abnormal diffusion, node of Ranvier length did not differ between treatment groups (p = 0.41); however, the G-ratio of myelinated axons was significantly higher in alcohol-exposed animals than controls (p = 0.023). CONCLUSIONS: High resolution DTI revealed higher RD at P50 in the CC of alcohol-exposed animals, suggesting less myelination of axons, particularly in the posterior regions. In agreement with these findings, ultrastructural analysis of myelinated axons in the posterior CC showed reduced myelin thickness in alcohol-exposed animals, evidenced by a higher G-ratio.


Subject(s)
Ethanol/administration & dosage , Fetal Alcohol Spectrum Disorders/pathology , Myelin Sheath/ultrastructure , Animals , Diffusion Magnetic Resonance Imaging , Disease Models, Animal , Female , Fetal Alcohol Spectrum Disorders/physiopathology , Gestational Age , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Myelin Sheath/drug effects , Myelin Sheath/physiology , Pregnancy , White Matter/drug effects , White Matter/pathology , White Matter/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL