Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
J Cardiovasc Pharmacol ; 83(5): 446-456, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38416872

ABSTRACT

ABSTRACT: Myocardial fibrosis, a common complication of myocardial infarction (MI), is characterized by excessive collagen deposition and can result in impaired cardiac function. The specific role of CD137 in the development of post-MI myocardial fibrosis remains unclear. Thus, this study aimed to elucidate the effects of CD137 signaling using CD137 knockout mice and in vitro experiments. CD137 expression levels progressively increased in the heart after MI, particularly in myofibroblast, which play a key role in fibrosis. Remarkably, CD137 knockout mice exhibited improved cardiac function and reduced fibrosis compared with wild-type mice at day 28 post-MI. The use of Masson's trichrome and picrosirius red staining demonstrated a reduction in the infarct area and collagen volume fraction in CD137 knockout mice. Furthermore, the expression of alpha-smooth muscle actin and collagen I, key markers of fibrosis, was decreased in heart tissues lacking CD137. In vitro experiments supported these findings because CD137 depletion attenuated cardiac fibroblast differentiation, and migration, and collagen I synthesis. In addition, the administration of CD137L recombinant protein further promoted alpha-smooth muscle actin expression and collagen I synthesis, suggesting a profibrotic effect. Notably, the application of an inhibitor targeting the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway attenuated the profibrotic effects of CD137L. To conclude, this study provides evidence that CD137 plays a significant role in promoting myocardial fibrosis after MI. Inhibition of CD137 signaling pathways may hold therapeutic potential for mitigating pathological cardiac remodeling and improving post-MI cardiac function.


Subject(s)
Disease Models, Animal , Fibrosis , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction , Tumor Necrosis Factor Receptor Superfamily, Member 9 , Ventricular Remodeling , Animals , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/enzymology , Myocardial Infarction/physiopathology , Ventricular Remodeling/drug effects , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Male , Collagen Type I/metabolism , Collagen Type I/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Myofibroblasts/enzymology , MAP Kinase Signaling System , Myocardium/pathology , Myocardium/metabolism , Myocardium/enzymology , 4-1BB Ligand/metabolism , 4-1BB Ligand/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Actins/metabolism , Cells, Cultured , Signal Transduction , Cell Movement , Mice , Ventricular Function, Left , Cell Differentiation , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/drug effects
2.
Circ Res ; 127(6): 827-846, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32611237

ABSTRACT

RATIONALE: Increased protein synthesis of profibrotic genes is a common feature in cardiac fibrosis and heart failure. Despite this observation, critical factors and molecular mechanisms for translational control of profibrotic genes during cardiac fibrosis remain unclear. OBJECTIVE: To investigate the role of a bifunctional ARS (aminoacyl-tRNA synthetase), EPRS (glutamyl-prolyl-tRNA synthetase) in translational control of cardiac fibrosis. METHODS AND RESULTS: Results from reanalyses of multiple publicly available data sets of human and mouse heart failure, demonstrated that EPRS acted as an integrated node among the ARSs in various cardiac pathogenic processes. We confirmed that EPRS was induced at mRNA and protein levels (≈1.5-2.5-fold increase) in failing hearts compared with nonfailing hearts using our cohort of human and mouse heart samples. Genetic knockout of one allele of Eprs globally (Eprs+/-) using CRISPR-Cas9 technology or in a Postn-Cre-dependent manner (Eprsflox/+; PostnMCM/+) strongly reduces cardiac fibrosis (≈50% reduction) in isoproterenol-, transverse aortic constriction-, and myocardial infarction (MI)-induced heart failure mouse models. Inhibition of EPRS using a PRS (prolyl-tRNA synthetase)-specific inhibitor, halofuginone, significantly decreases translation efficiency (TE) of proline-rich collagens in cardiac fibroblasts as well as TGF-ß (transforming growth factor-ß)-activated myofibroblasts. Overexpression of EPRS increases collagen protein expression in primary cardiac fibroblasts under TGF-ß stimulation. Using transcriptome-wide RNA-Seq and polysome profiling-Seq in halofuginone-treated fibroblasts, we identified multiple novel Pro-rich genes in addition to collagens, such as Ltbp2 (latent TGF-ß-binding protein 2) and Sulf1 (sulfatase 1), which are translationally regulated by EPRS. SULF1 is highly enriched in human and mouse myofibroblasts. In the primary cardiac fibroblast culture system, siRNA-mediated knockdown of SULF1 attenuates cardiac myofibroblast activation and collagen deposition. Overexpression of SULF1 promotes TGF-ß-induced myofibroblast activation and partially antagonizes anti-fibrotic effects of halofuginone treatment. CONCLUSIONS: Our results indicate that EPRS preferentially controls translational activation of proline codon rich profibrotic genes in cardiac fibroblasts and augments pathological cardiac remodeling. Graphical Abstract: A graphical abstract is available for this article.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Heart Failure/enzymology , Myocytes, Cardiac/enzymology , Myofibroblasts/enzymology , Protein Biosynthesis , Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Amino Acyl-tRNA Synthetases/genetics , Animals , Case-Control Studies , Collagen/biosynthesis , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Female , Fibrosis , Heart Failure/genetics , Heart Failure/pathology , Humans , Latent TGF-beta Binding Proteins/biosynthesis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myofibroblasts/drug effects , Myofibroblasts/pathology , NIH 3T3 Cells , Proline-Rich Protein Domains , Protein Biosynthesis/drug effects , Signal Transduction , Sulfotransferases/biosynthesis , Sulfotransferases/genetics
3.
Basic Res Cardiol ; 116(1): 10, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33564961

ABSTRACT

We have previously demonstrated that systemic AMP-activated protein kinase α1 (AMPKα1) invalidation enhanced adverse LV remodelling by increasing fibroblast proliferation, while myodifferentiation and scar maturation were impaired. We thus hypothesised that fibroblastic AMPKα1 was a key signalling element in regulating fibrosis in the infarcted myocardium and an attractive target for therapeutic intervention. The present study investigates the effects of myofibroblast (MF)-specific deletion of AMPKα1 on left ventricular (LV) adaptation following myocardial infarction (MI), and the underlying molecular mechanisms. MF-restricted AMPKα1 conditional knockout (cKO) mice were subjected to permanent ligation of the left anterior descending coronary artery. cKO hearts exhibit exacerbated post-MI adverse LV remodelling and are characterised by exaggerated fibrotic response, compared to wild-type (WT) hearts. Cardiac fibroblast proliferation and MF content significantly increase in cKO infarcted hearts, coincident with a significant reduction of connexin 43 (Cx43) expression in MFs. Mechanistically, AMPKα1 influences Cx43 expression by both a transcriptional and a post-transcriptional mechanism involving miR-125b-5p. Collectively, our data demonstrate that MF-AMPKα1 functions as a master regulator of cardiac fibrosis and remodelling and might constitute a novel potential target for pharmacological anti-fibrotic applications.


Subject(s)
AMP-Activated Protein Kinases/deficiency , Connexin 43/metabolism , Myocardial Infarction/enzymology , Myocardium/enzymology , Myofibroblasts/enzymology , Ventricular Function, Left , Ventricular Remodeling , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Cell Proliferation , Connexin 43/genetics , Disease Models, Animal , Female , Fibrosis , Gene Deletion , HEK293 Cells , Humans , Male , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Myofibroblasts/pathology , Signal Transduction
4.
J Vasc Res ; 58(2): 108-120, 2021.
Article in English | MEDLINE | ID: mdl-33494094

ABSTRACT

Remodeling of the arteries is one of the pathological bases of hypertension. We have previously shown that transient receptor potential melastatin 7 (TRPM7) aggravates the vascular adventitial remodeling caused by pressure overload in the transverse aortic constriction (TAC) model. In this study, we sought to explore the functional expression and downstream signaling of TRPM7 in vascular adventitial fibroblasts (AFs) stimulated by mechanical stretching stress (MSS). The expression of TRPM7 was upregulated with a concomitant translocation to the cytoplasm in the AFs stimulated with 20% MSS. Meanwhile, the expression of α-smooth muscle actin (α-SMA), a marker of transformation from AFs to myofibroblasts (MFs) was also increased. Moreover, AF-conditioned medium caused a significant migration of macrophages after treatment with MSS and contained high levels of monocyte chemotactic protein-1 (MCP-1), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α). Pharmacological and RNA interference approaches using the TRPM7 inhibitor 2-aminoethoxydiphenyl borate (2-APB) and specific anti-TRPM7 small interfering RNA (si-RNA-TRPM7) abrogated these changes significantly. Further exploration uncloaked that inhibition of TRPM7 reduced the phosphorylation of p38 MAP kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) in the AFs stimulated with MSS. Furthermore, inhibition of the phosphorylation of p38MAPK or JNK could also alleviate the MSS-induced expression of α-SMA and secretion of inflammatory factors. These observations indicate that activated TRPM7 participates in the phenotypic transformation and inflammatory action of AFs in response to MSS through the p38MAPK/JNK pathway and suggest that TRPM7 may be a potential therapeutic target for vascular remodeling caused by hemodynamic changes in hypertension.


Subject(s)
Adventitia/enzymology , Fibroblasts/enzymology , Inflammation Mediators/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Mechanotransduction, Cellular , TRPM Cation Channels/metabolism , Vascular Remodeling , p38 Mitogen-Activated Protein Kinases/metabolism , Adventitia/pathology , Animals , Aorta, Thoracic , Chemotaxis , Fibroblasts/pathology , Hypertension/enzymology , Hypertension/genetics , Hypertension/pathology , Macrophages/metabolism , Male , Mice , Myofibroblasts/enzymology , Myofibroblasts/pathology , Phenotype , Phosphorylation , Protein Transport , RAW 264.7 Cells , Rats, Sprague-Dawley , Stress, Mechanical , TRPM Cation Channels/genetics
5.
Am J Physiol Renal Physiol ; 318(2): F375-F387, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31813251

ABSTRACT

Protein arginine methyltransferase 1 (PRMT1), which primarily causes asymmetric arginine methylation of histone and nonhistone proteins, has been found to activate gene expression and mediate multiple pathological processes. Its role in renal fibrosis, however, remains unclear. In the present study, we observed that PRMT1 and its specific epigenetic marker, asymmetric di-methylated histone 4 arginine 3 (H4R3Me2a), were highly expressed in cultured renal interstitial fibroblasts. Treatment of PRMT1 with AMI-1, a selective inhibitor of PRMT1, or silencing PRMT1 with siRNA inhibited serum-induced and transforming growth factor (TGF)-ß1-induced expression of α-smooth muscle actin (α-SMA) and collagen type I, two hallmarks of renal fibroblast activation, in a dose-dependent and time-dependent manner. In a murine model of renal fibrosis induced by unilateral ureteral obstruction, PRMT1 expression and H4R3Me2a were also upregulated, which was coincident with increased expression of α-SMA, collagen type I, and fibronectin. Administration of AMI-1 reduced PRMT1 and H4R3Me2a expression, attenuated extracellular matrix protein deposition, and inhibited renal fibroblast activation and proliferation. Moreover, AMI-1 treatment inhibited Smad3 phosphorylation and TGF-ß receptor I expression but prevented Smad7 downregulation both in the kidney after unilateral ureteral obstruction injury and in cultured renal interstitial fibroblasts exposed to TGF-ß1. Collectively, these results demonstrate that PRMT1 may mediate renal fibroblast activation and renal fibrosis development through activation of the TGF-ß/Smad3 signaling pathway. They also suggest that PRMT1 inhibition may be a potential therapeutic approach for the treatment of fibrotic kidney disease.


Subject(s)
Cell Dedifferentiation , Fibroblasts/enzymology , Kidney Diseases/enzymology , Kidney/enzymology , Protein-Arginine N-Methyltransferases/metabolism , Smad3 Protein/metabolism , Animals , Cell Dedifferentiation/drug effects , Cell Line , Cell Proliferation , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Fibroblasts/pathology , Fibrosis , Kidney/drug effects , Kidney/pathology , Kidney Diseases/etiology , Kidney Diseases/pathology , Kidney Diseases/prevention & control , Male , Mice, Inbred C57BL , Myofibroblasts/enzymology , Myofibroblasts/pathology , Naphthalenesulfonates/pharmacology , Phosphorylation , Protein-Arginine N-Methyltransferases/genetics , Signal Transduction , Transforming Growth Factor beta1/pharmacology , Urea/analogs & derivatives , Urea/pharmacology , Ureteral Obstruction/complications
6.
Apoptosis ; 25(11-12): 853-863, 2020 12.
Article in English | MEDLINE | ID: mdl-33068199

ABSTRACT

Blockade of hypoxia-caused nonmyocytes apoptosis helps improve survival and mitigate ventricular remodeling and dysfunction during the chronic stage of myocardial infarction. But tools affecting nonmyocyte apoptosis are very rare. Sphingosylphosphorylcholine (SPC), a naturally occurring bioactive sphingolipid in plasma, was proved to protect cardiomyocyte against apoptosis in an ischemic model in our previous study. Here, we showed that SPC also inhibited hypoxia-induced apoptosis in myofibroblasts, an important type of nonmyocytes in the heart. Calmodulin (CaM) is an identified receptor of SPC. We clarified that SPC inhibited myofibroblast apoptosis through CaM as evidenced by decreased cleaved caspase 3, PARP1 and condensed nucleus. Furthermore, the employment of inhibitor and agonist of p38 and STAT3 suggests that SPC inhibits myofibroblast apoptosis by regulating the phosphorylation of p38 and STAT3, and they act as downstream of CaM. The present work may provide new evidence on the regulation of myofibroblasts apoptosis by SPC and a novel target for heart remodeling after hypoxia.


Subject(s)
Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Myofibroblasts/drug effects , Phosphorylcholine/analogs & derivatives , Sphingosine/analogs & derivatives , Animals , Calmodulin/metabolism , Calmodulin/physiology , Cell Hypoxia , Fibrosis , Mice, Inbred C57BL , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardium/cytology , Myofibroblasts/enzymology , Myofibroblasts/metabolism , Phosphorylcholine/pharmacology , Phosphorylcholine/therapeutic use , Rats, Wistar , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/physiology , Sphingosine/pharmacology , Sphingosine/therapeutic use , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/physiology
7.
Mod Pathol ; 33(4): 576-590, 2020 04.
Article in English | MEDLINE | ID: mdl-31690781

ABSTRACT

Inflammatory myofibroblastic tumors arising in infants are rare, poorly investigated and mostly reported as isolated cases or as a part of larger series thus, their clinicopathological and molecular features are essentially unknown. Archival files from two large pediatric institutions and a tumor registry were queried for pediatric inflammatory myofibroblastic tumors. Available material from patients ≤12 months of age was reviewed. Additional immunostains (ALK-1, D240, WT1) and ALK-FISH studies were performed as needed. Targeted anchored multiplex PCR with next-generation sequencing was done in all cases. A total of 12 of 131 infantile cases (mean 5.5 months) were identified (M:F of 2:1). Anatomic locations included intestinal/mesenteric (n = 6), head/neck (n = 3), and viscera (n = 3). Half of tumors showed a hypocellular myxoid pattern, perivascular condensation, and prominent vasculature with vague glomeruloid structures present in four of them. The remaining cases exhibited a more cellular pattern with minimal myxoid component. ALK-1 immunohistochemistry was positive in most cases (11/12) with cytoplasmic-diffuse (n = 6), cytoplasmic-granular (n = 2), and dot-like (n = 3) staining patterns. ALK fusion partners identified in five cases included EML4, TPM4, RANBP2, and a novel KLC1. Three inflammatory myofibroblastic tumors showed fusions with other kinases including TFG-ROS1 and novel FN1-ROS1 and RBPMS-NTRK3 rearrangements. Favorable outcome was documented in most cases (10/11) with available follow-up (median 17 months) while three patients were successfully treated with crizotinib. In summary, infantile inflammatory myofibroblastic tumors are rare and can exhibit paucicellular, extensively myxoid/vascular morphology with peculiar immunophenotype mimicking other mesenchymal or vascular lesions. All tumors harbored kinase fusions involving ALK, ROS1, and NTRK3 including three novel fusion partners (KLC1, FN1, and RBPMS, respectively). A favorable response to crizotinib seen in three cases supports its potential use in infants as seen in older patients. Awareness of these unusual morphologic, immunophenotypic, and molecular features is critical for appropriate diagnosis and optimized targeted therapy.


Subject(s)
Biomarkers, Tumor/genetics , Myofibroblasts/pathology , Neoplasms, Muscle Tissue/genetics , Neoplasms, Muscle Tissue/pathology , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/analysis , Crizotinib/therapeutic use , Female , Gene Fusion , Gene Rearrangement , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Italy , Kinesins , Male , Myofibroblasts/drug effects , Myofibroblasts/enzymology , Neoplasms, Muscle Tissue/drug therapy , Neoplasms, Muscle Tissue/enzymology , Phenotype , Philadelphia , Protein Kinase Inhibitors/therapeutic use , Registries , Soft Tissue Neoplasms/drug therapy , Soft Tissue Neoplasms/enzymology
8.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L175-L186, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30358439

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fibroproliferative lung disease, and fibroblast-myofibroblast differentiation (FMD) is thought to be a key event in the pathogenesis of IPF. Histone deacetylase-8 (HDAC8) has been shown to associate with α-smooth muscle actin (α-SMA; a marker of FMD) and regulates cell contractility in vascular smooth muscle cells. However, the role of HDAC8 in FMD or pulmonary fibrosis has never been reported. This study investigated the role of HDAC8 in pulmonary fibrosis with a focus on FMD. We observed that HDAC8 expression was increased in IPF lung tissue as well as transforming growth factor (TGF)ß1-treated normal human lung fibroblasts (NHLFs). Immunoprecipitation experiments revealed that HDAC8 was associated with α-SMA in TGFß1-treated NHLFs. HDAC8 inhibition with NCC170 (HDAC8-selective inhibitor) repressed TGFß1-induced fibroblast contraction and α-SMA protein expression in NHLFs cultured in collagen gels. HDAC8 inhibition with HDAC8 siRNA also repressed TGFß1-induced expression of profibrotic molecules such as fibronectin and increased expression of antifibrotic molecules such as peroxisome proliferator-activated receptor-γ (PPARγ). Chromatin immunoprecipitation quantitative PCR using an antibody against H3K27ac (histone H3 acetylated at lysine 27; a known HDAC8 substrate and a marker for active enhancers) suggested that HDAC8 inhibition with NCC170 ameliorated TGFß1-induced loss of H3K27ac at the PPARγ gene enhancer. Furthermore, NCC170 treatment significantly decreased fibrosis measured by Ashcroft score as well as expression of type 1 collagen and fibronectin in bleomycin-treated mouse lungs. These data suggest that HDAC8 contributes to pulmonary fibrosis and that there is a therapeutic potential for HDAC8 inhibitors to treat IPF as well as other fibrotic lung diseases.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Idiopathic Pulmonary Fibrosis/drug therapy , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Myofibroblasts/enzymology , Repressor Proteins/antagonists & inhibitors , Acetylation/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Histone Deacetylases/biosynthesis , Histones/metabolism , Humans , Idiopathic Pulmonary Fibrosis/enzymology , Idiopathic Pulmonary Fibrosis/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Myofibroblasts/pathology , PPAR gamma/metabolism , Repressor Proteins/biosynthesis , Transforming Growth Factor beta1/metabolism
9.
Int J Cancer ; 145(11): 3064-3077, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31032902

ABSTRACT

Myofibroblasts are a population of highly contractile fibroblasts that express and require the activity of the transcription factor Snail1. Cancer-associated fibroblasts (CAFs) correlate with low survival of cancer patients when present in the stroma of primary tumors. Remarkably, the presence of myofibroblastic CAFs (which express Snail1) creates mechanical properties in the tumor microenvironment that support metastasis. However, therapeutic blockage of fibroblast activity in patients with cancer is a double-edged sword, as normal fibroblast activities often restrict tumor cell invasion. We used fibroblasts depleted of Snail1 or protein arginine methyltransferases 1 and 4 (PRMT1/-4) to identify specific epigenetic modifications induced by TGFß/Snail1. Furthermore, we analyzed the in vivo efficiency of methyltransferase inhibitors using mouse models of wound healing and metastasis, as well as fibroblasts isolated from patients with idiopathic pulmonary fibrosis (IPF). Mechanistically, TGFß-induced Snail1 promotes the epigenetic mark of asymmetrically dimethylated arginine. Critically, we found that inhibitors of methyltransferases prevent myofibroblast activity (but not regular fibroblast activity) in the extracellular matrix, both in cell culture and in vivo. In a mouse breast cancer model, the inhibitor sinefungin reduces both the myofibroblast activity in the tumor stroma and the metastatic burden in the lung. Two distinct inhibitors effectively blocked the exacerbated myofibroblast activity of patient-derived IPF fibroblasts. Our data reveal epigenetic regulation of myofibroblast transdifferentiation in both wound healing and in disease (fibrosis and breast cancer). Thus, methyltransferase inhibitors are good candidates as therapeutic reagents for these diseases.


Subject(s)
Breast Neoplasms/drug therapy , Enzyme Inhibitors/administration & dosage , Idiopathic Pulmonary Fibrosis/drug therapy , Lung Neoplasms/secondary , Methyltransferases/antagonists & inhibitors , Myofibroblasts/drug effects , Snail Family Transcription Factors/genetics , Adenosine/administration & dosage , Adenosine/analogs & derivatives , Adenosine/pharmacology , Animals , Breast Neoplasms/enzymology , Cancer-Associated Fibroblasts/cytology , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Cell Transdifferentiation , Cells, Cultured , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic , Female , Gene Deletion , Humans , Idiopathic Pulmonary Fibrosis/enzymology , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Methyltransferases/genetics , Mice , Myofibroblasts/cytology , Myofibroblasts/enzymology , Snail Family Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Tumor Microenvironment , Xenograft Model Antitumor Assays
10.
Am J Physiol Heart Circ Physiol ; 316(6): H1281-H1296, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30901279

ABSTRACT

MK5 is a protein serine/threonine kinase activated by p38, ERK3, and ERK4 MAPKs. MK5 mRNA and immunoreactivity are detected in mouse cardiac fibroblasts, and MK5 haplodeficiency attenuates the increase in collagen 1-α1 mRNA evoked by pressure overload. The present study examined the effect of MK5 haplodeficiency on reparative fibrosis following myocardial infarction (MI). Twelve-week-old MK5+/- and wild-type littermate (MK5+/+) mice underwent ligation of the left anterior descending coronary artery (LADL). Surviving mice were euthanized 8 or 21 days post-MI. Survival rates did not differ significantly between MK5+/+ and MK5+/- mice, with rupture of the LV wall being the primary cause of death. Echocardiographic imaging revealed similar increases in LV end-diastolic diameter, myocardial performance index, and wall motion score index in LADL-MK5+/+ and LADL-MK5+/- mice. Area at risk did not differ between LADL-MK5+/+ and LADL-MK5+/- hearts. In contrast, infarct size, scar area, and scar collagen content were reduced in LADL-MK5+/- hearts. Immunohistochemical analysis of mice experiencing heart rupture revealed increased MMP-9 immunoreactivity in the infarct border zone of LADL-MK5+/- hearts compared with LADL-MK5+/+. Although inflammatory cell infiltration was similar in LADL-MK5+/+ and LADL-MK5+/- hearts, angiogenesis was more pronounced in the infarct border zone of LADL-MK5+/- mice. Characterization of ventricular fibroblasts revealed reduced motility and proliferation in fibroblasts isolated from MK5-/- mice compared with those from both wild-type and haplodeficient mice. siRNA-mediated knockdown of MK5 in fibroblasts from wild-type mice also impaired motility. Hence, reduced MK5 expression alters fibroblast function and scar morphology but not mortality post-MI. NEW & NOTEWORTHY MK5/PRAK is a protein serine/threonine kinase activated by p38 MAPK and/or atypical MAPKs ERK3/4. MK5 haplodeficiency reduced infarct size, scar area, and scar collagen content post-myocardial infarction. Motility and proliferation were reduced in cultured MK5-null cardiac myofibroblasts.


Subject(s)
Cicatrix/enzymology , Collagen/metabolism , Haploinsufficiency , Intracellular Signaling Peptides and Proteins/deficiency , Myocardial Infarction/enzymology , Myocardium/enzymology , Myofibroblasts/enzymology , Protein Serine-Threonine Kinases/deficiency , Wound Healing , Animals , Cell Movement , Cell Proliferation , Cells, Cultured , Cicatrix/pathology , Cicatrix/physiopathology , Disease Models, Animal , Intracellular Signaling Peptides and Proteins/genetics , Male , Matrix Metalloproteinase 9/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Myofibroblasts/pathology , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Ventricular Function, Left , Ventricular Remodeling
11.
Clin Sci (Lond) ; 133(2): 239-252, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30617188

ABSTRACT

Kidney fibrosis is the common pathophysiological mechanism in end-stage renal disease characterized by excessive accumulation of myofibroblast-derived extracellular matrix. Natriuretic peptides have been demonstrated to have cyclic guanosine monophosphate (cGMP)-dependent anti-fibrotic properties likely due to interference with pro-fibrotic tissue growth factor ß (TGF-ß) signaling. However, in vivo, natriuretic peptides are rapidly degraded by neutral endopeptidases (NEP). In a unilateral ureteral obstruction (UUO) mouse model for kidney fibrosis we assessed the anti-fibrotic effects of SOL1, an orally active compound that inhibits NEP and endothelin-converting enzyme (ECE). Mice (n=10 per group) subjected to UUO were treated for 1 week with either solvent, NEP-/ECE-inhibitor SOL1 (two doses), reference NEP-inhibitor candoxatril or the angiotensin II receptor type 1 (AT1)-antagonist losartan. While NEP-inhibitors had no significant effect on blood pressure, they did increase urinary cGMP levels as well as endothelin-1 (ET-1) levels. Immunohistochemical staining revealed a marked decrease in renal collagen (∼55% reduction, P<0.05) and α-smooth muscle actin (α-SMA; ∼40% reduction, P<0.05). Moreover, the number of α-SMA positive cells in the kidneys of SOL1-treated groups inversely correlated with cGMP levels consistent with a NEP-dependent anti-fibrotic effect. To dissect the molecular mechanisms associated with the anti-fibrotic effects of NEP inhibition, we performed a 'deep serial analysis of gene expression (Deep SAGE)' transcriptome and targeted metabolomics analysis of total kidneys of all treatment groups. Pathway analyses linked increased cGMP and ET-1 levels with decreased nuclear receptor signaling (peroxisome proliferator-activated receptor [PPAR] and liver X receptor/retinoid X receptor [LXR/RXR] signaling) and actin cytoskeleton organization. Taken together, although our transcriptome and metabolome data indicate metabolic dysregulation, our data support the therapeutic potential of NEP inhibition in the treatment of kidney fibrosis via cGMP elevation and reduced myofibroblast formation.


Subject(s)
Benzazepines/pharmacology , Kidney Diseases/prevention & control , Kidney/drug effects , Myofibroblasts/drug effects , Neprilysin/antagonists & inhibitors , Protease Inhibitors/pharmacology , Ureteral Obstruction/drug therapy , Animals , Cyclic GMP/metabolism , Disease Models, Animal , Fibrosis , Gene Expression Regulation/drug effects , Humans , Kidney/enzymology , Kidney/pathology , Kidney Diseases/enzymology , Kidney Diseases/genetics , Kidney Diseases/pathology , Mice , Mice, Inbred C57BL , Myofibroblasts/enzymology , Myofibroblasts/pathology , NIH 3T3 Cells , Neprilysin/metabolism , Signal Transduction/drug effects , Ureteral Obstruction/enzymology , Ureteral Obstruction/genetics , Ureteral Obstruction/pathology
12.
J Cardiovasc Pharmacol ; 73(4): 248-256, 2019 04.
Article in English | MEDLINE | ID: mdl-30801261

ABSTRACT

Pathological stimulus-triggered differentiation of cardiac fibroblasts plays a major role in the development of myocardial fibrosis. Aldehyde dehydrogenase 2 (ALDH2) was reported to exert a protective role in cardiovascular disease, and whether ALDH2 is involved in cardiac fibroblast differentiation remains unclear. In this study, we used transforming growth factor-ß1 (TGF-ß1) to induce the differentiation of human cardiac fibroblasts (HCFs) and adopted ALDH2 activator Alda-1 to verify the influence of ALDH2 on HCF differentiation. Results showed that ALDH2 activity was obviously impaired when treating HCFs with TGF-ß1. Activation of ALDH2 with Alda-1 inhibited the transformation of HCFs into myofibroblasts, demonstrated by the decreased smooth muscle actin (α-actin) and periostin expression, reduced HCF-derived myofibroblast proliferation, collagen production, and contractility. Moreover, application of Smad2/3 inhibitor alleviated TGF-ß1-induced HCF differentiation and improved ALDH2 activity, which was reversed by the application of ALDH2 inhibitor daidzin. Finally, Alda-1-induced HCF alterations alleviated neonatal rat cardiomyocyte hypertrophy, supported by the immunostaining of α-actin. To summarize, activation of ALDH2 enzymatic activity inhibited the differentiation of cardiac fibroblasts via the TGF-ß1/Smad signaling pathway, which might be a promising strategy to relieve myocardial fibrosis of various causes.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial/metabolism , Benzamides/pharmacology , Benzodioxoles/pharmacology , Cell Plasticity/drug effects , Enzyme Activators/pharmacology , Heart Ventricles/drug effects , Myofibroblasts/drug effects , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta1/pharmacology , Animals , Animals, Newborn , Cardiomegaly/enzymology , Cardiomegaly/pathology , Cardiomegaly/prevention & control , Cell Proliferation/drug effects , Cells, Cultured , Collagen/metabolism , Enzyme Activation , Fibrosis , Heart Ventricles/enzymology , Heart Ventricles/pathology , Humans , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Myofibroblasts/enzymology , Myofibroblasts/pathology , Paracrine Communication , Phenotype , Phosphorylation , Rats , Signal Transduction
13.
Am J Respir Cell Mol Biol ; 58(4): 471-481, 2018 04.
Article in English | MEDLINE | ID: mdl-29211497

ABSTRACT

Pulmonary fibrosis is thought to result from dysregulated wound repair after repetitive lung injury. Many cellular responses to injury involve rearrangements of the actin cytoskeleton mediated by the two isoforms of the Rho-associated coiled-coil-forming protein kinase (ROCK), ROCK1 and ROCK2. In addition, profibrotic mediators such as transforming growth factor-ß, thrombin, and lysophosphatidic acid act through receptors that activate ROCK. Inhibition of ROCK activation may be a potent therapeutic strategy for human pulmonary fibrosis. Pharmacological inhibition of ROCK using nonselective ROCK inhibitors has been shown to prevent fibrosis in animal models; however, the specific roles of each ROCK isoform are poorly understood. Furthermore, the pleiotropic effects of this kinase have raised concerns about on-target adverse effects of ROCK inhibition such as hypotension. Selective inhibition of one isoform might be a better-tolerated strategy. In the present study, we used a genetic approach to determine the roles of ROCK1 and ROCK2 in a mouse model of bleomycin-induced pulmonary fibrosis. Using ROCK1- or ROCK2-haploinsufficient mice, we found that reduced expression of either ROCK1 or ROCK2 was sufficient to protect them from bleomycin-induced pulmonary fibrosis. In addition, we found that both isoforms contribute to the profibrotic responses of epithelial cells, endothelial cells, and fibroblasts. Interestingly, ROCK1- and ROCK2-haploinsufficient mice exhibited similar protection from bleomycin-induced vascular leak, myofibroblast differentiation, and fibrosis; however, ROCK1-haploinsufficient mice demonstrated greater attenuation of epithelial cell apoptosis. These findings suggest that selective inhibition of either ROCK isoform has the potential to be an effective therapeutic strategy for pulmonary fibrosis.


Subject(s)
Fibroblasts/enzymology , Lung/enzymology , Pulmonary Fibrosis/prevention & control , rho-Associated Kinases/metabolism , Animals , Apoptosis , Bleomycin , Capillary Permeability , Cell Differentiation , Disease Models, Animal , Endothelial Cells/enzymology , Endothelial Cells/pathology , Epithelial Cells/enzymology , Epithelial Cells/pathology , Fibroblasts/pathology , Haploinsufficiency , Humans , Lung/pathology , Mice, Knockout , Myofibroblasts/enzymology , Myofibroblasts/pathology , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , rho-Associated Kinases/deficiency , rho-Associated Kinases/genetics
14.
J Cell Physiol ; 233(1): 447-462, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28295277

ABSTRACT

Lipopolysaccharide (LPS) is a pertinent deleterious factor in oral microenvironment for cells which are carriers of regenerative processes. The aim of this study was to investigate the emerging in vitro effects of LPS (Escherichia coli) on human periodontal ligament stem cell (PDLSC) functions and associated signaling pathways. We demonstrated that LPS did not affect immunophenotype, proliferation, viability, and cell cycle of PDLSCs. However, LPS modified lineage commitment of PDLSCs inhibiting osteogenesis by downregulating Runx2, ALP, and Ocn mRNA expression, while stimulating chondrogenesis and adipogenesis by upregulating Sox9 and PPARγ mRNA expression. LPS promoted myofibroblast-like phenotype of PDLSCs, since it significantly enhanced PDLSC contractility, as well as protein and/or gene expression of TGF-ß, fibronectin (FN), α-SMA, and NG2. LPS also increased protein and gene expression levels of anti-inflammatory COX-2 and pro-inflammatory IL-6 molecules in PDLSCs. Inhibition of peripheral blood mononuclear cells (MNCs) transendothelial migration in presence of LPS-treated PDLSCs was accompanied by the reduction of CD29 expression within MNCs. However, LPS treatment did not change the inhibitory effect of PDLSCs on mitogen-stimulated proliferation of CD4+ and the ratio of CD4+ CD25high /CD4+ CD25low lymphocytes. LPS-treated PDLSCs did not change the frequency of CD34+ and CD45+ cells, but decreased the frequency of CD33+ and CD14+ myeloid cells within MNCs. Moreover, LPS treatment attenuated the stimulatory effect of PDLSCs on CFC activity of MNCs, predominantly the CFU-GM number. The results indicated that LPS-activated ERK1,2 was at least partly involved in the observed effects on PDLSC differentiation capacity, acquisition of myofibroblastic attributes, and changes of their immunomodulatory features.


Subject(s)
Cell Differentiation/drug effects , Cell Lineage/drug effects , Lipopolysaccharides/pharmacology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Myofibroblasts/drug effects , Periodontal Ligament/drug effects , Stem Cells/drug effects , Adipogenesis/drug effects , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Cellular Microenvironment , Chondrogenesis/drug effects , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Myofibroblasts/enzymology , Myofibroblasts/immunology , Osteocalcin/genetics , Osteocalcin/metabolism , Osteogenesis/drug effects , PPAR gamma/genetics , PPAR gamma/metabolism , Periodontal Ligament/enzymology , Periodontal Ligament/immunology , Phenotype , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Signal Transduction/drug effects , Stem Cells/enzymology , Stem Cells/immunology , Time Factors , Transendothelial and Transepithelial Migration/drug effects
15.
Kidney Int ; 93(1): 81-94, 2018 01.
Article in English | MEDLINE | ID: mdl-28739141

ABSTRACT

Chronic kidney disease is a major cause of death, and renal fibrosis is a common pathway leading to the progression of this disease. Although activated fibroblasts are responsible for the production of the extracellular matrix and the development of renal fibrosis, the molecular mechanisms underlying fibroblast activation are not fully defined. Here we examined the functional role of AMP-activated protein kinase (AMPK) in the activation of fibroblasts and the development of renal fibrosis. AMPKα1 was induced in the kidney during the development of renal fibrosis. Mice with global or fibroblast-specific knockout of AMPKα1 exhibited fewer myofibroblasts, developed less fibrosis, and produced less extracellular matrix protein in the kidneys following unilateral ureteral obstruction or ischemia-reperfusion injury. Mechanistically, AMPKα1 directly phosphorylated cofilin leading to cytoskeleton remodeling and myocardin-related transcription factor-A nuclear translocation resulting in fibroblast activation and extracellular matrix protein production. Thus, AMPK may be a critical regulator of fibroblast activation through regulation of cytoskeleton dynamics and myocardin-related transcription factor-A nuclear translocation. Hence, AMPK signaling may represent a novel therapeutic target for fibrotic kidney disease.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Fibroblasts/enzymology , Kidney/enzymology , Myofibroblasts/enzymology , Renal Insufficiency, Chronic/enzymology , Reperfusion Injury/enzymology , Trans-Activators/metabolism , AMP-Activated Protein Kinases/deficiency , AMP-Activated Protein Kinases/genetics , Active Transport, Cell Nucleus , Animals , Cofilin 1/metabolism , Disease Models, Animal , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Fibroblasts/pathology , Fibrosis , HEK293 Cells , Humans , Kidney/pathology , Male , Mice, Knockout , Mutation , Myofibroblasts/pathology , Phosphorylation , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Reperfusion Injury/etiology , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Signal Transduction , Transcription Factors/metabolism , Ureteral Obstruction/complications
16.
Kidney Int ; 93(1): 173-187, 2018 01.
Article in English | MEDLINE | ID: mdl-29042082

ABSTRACT

Src activation has been associated with fibrogenesis after kidney injury. Macrophage-myofibroblast transition is a newly identified process to generate collagen-producing myofibroblasts locally in the kidney undergoing fibrosis in a TGF-ß/Smad3-dependent manner. The potential role of the macrophage-myofibroblast transition in Src-mediated renal fibrosis is unknown. In studying this by RNA sequencing at single-cell resolution, we uncovered a unique Src-centric regulatory gene network as a key underlying mechanism of macrophage-myofibroblast transition. A total of 501 differentially expressed genes associated with macrophage-myofibroblast transition were identified. However, Smad3-knockout largely reduced the transcriptome diversity. More importantly, inhibition of Src largely suppresses ureteral obstruction-induced macrophage-myofibroblast transition in the injured kidney in vivo along with transforming growth factor-ß1-induced elongated fibroblast-like morphology, α-smooth muscle actin expression and collagen production in bone marrow derived macrophages in vitro. Unexpectedly, we further uncovered that Src serves as a direct Smad3 target gene and also specifically up-regulated in macrophages during macrophage-myofibroblast transition. Thus, macrophage-myofibroblast transition contributes to Src-mediated tissue fibrosis. Hence, targeting Src may represent as a precision therapeutic strategy for macrophage-myofibroblast transition-driven fibrotic diseases.


Subject(s)
Cell Transdifferentiation , Cicatrix/enzymology , Kidney Diseases/enzymology , Kidney/enzymology , Macrophages/enzymology , Myofibroblasts/enzymology , src-Family Kinases/metabolism , Animals , Cell Transdifferentiation/drug effects , Cell Transdifferentiation/genetics , Cells, Cultured , Cicatrix/genetics , Cicatrix/pathology , Cicatrix/prevention & control , Disease Models, Animal , Fibrosis , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Kidney/drug effects , Kidney/pathology , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/prevention & control , Macrophages/drug effects , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Myofibroblasts/drug effects , Myofibroblasts/pathology , Protein Kinase Inhibitors/pharmacology , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis , Smad3 Protein/genetics , Smad3 Protein/metabolism , Ureteral Obstruction/drug therapy , Ureteral Obstruction/enzymology , Ureteral Obstruction/genetics , src-Family Kinases/genetics
17.
Gastroenterology ; 153(4): 1054-1067, 2017 10.
Article in English | MEDLINE | ID: mdl-28642198

ABSTRACT

BACKGROUND: Intestinal fibrosis resulting in (sub)obstruction is a common complication of Crohn's disease (CD). Rho kinases (ROCKs) play multiple roles in TGFß-induced myofibroblast activation that could be therapeutic targets. Because systemic ROCK inhibition causes cardiovascular side effects, we evaluated the effects of a locally acting ROCK inhibitor (AMA0825) on intestinal fibrosis. METHODS: Fibrosis was assessed in mouse models using dextran sulfate sodium (DSS) and adoptive T-cell transfer. The in vitro and ex vivo effects of AMA0825 were studied in different cell types and in CD biopsy cultures. RESULTS: ROCK is expressed in fibroblastic, epithelial, endothelial, and muscle cells of the human intestinal tract and is activated in inflamed and fibrotic tissue. Prophylactic treatment with AMA0825 inhibited myofibroblast accumulation, expression of pro-fibrotic factors, and accumulation of fibrotic tissue without affecting clinical disease activity and histologic inflammation in 2 models of fibrosis. ROCK inhibition reversed established fibrosis in a chronic DSS model and impeded ex vivo pro-fibrotic protein secretion from stenotic CD biopsies. AMA0825 reduced TGFß1-induced activation of myocardin-related transcription factor (MRTF) and p38 mitogen-activated protein kinase (MAPK), down-regulating matrix metalloproteinases, collagen, and IL6 secretion from fibroblasts. In these cells, ROCK inhibition potentiated autophagy, which was required for the observed reduction in collagen and IL6 production. AMA0825 did not affect pro-inflammatory cytokine secretion from other ROCK-positive cell types, corroborating the selective in vivo effect on fibrosis. CONCLUSIONS: Local ROCK inhibition prevents and reverses intestinal fibrosis by diminishing MRTF and p38 MAPK activation and increasing autophagy in fibroblasts. Overall, our results show that local ROCK inhibition is promising for counteracting fibrosis as an add-on therapy for CD.


Subject(s)
Ileum/drug effects , Inflammatory Bowel Diseases/prevention & control , Intestinal Obstruction/prevention & control , Myofibroblasts/drug effects , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Adoptive Transfer , Animals , Autophagy/drug effects , Case-Control Studies , Collagen/metabolism , Dextran Sulfate , Disease Models, Animal , Enzyme Activation , Fibrosis , Humans , Ileum/enzymology , Ileum/immunology , Ileum/pathology , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/enzymology , Inflammatory Bowel Diseases/pathology , Interleukin-6/metabolism , Intestinal Obstruction/chemically induced , Intestinal Obstruction/enzymology , Intestinal Obstruction/pathology , Male , Matrix Metalloproteinases/metabolism , Mice, Inbred C57BL , Myofibroblasts/enzymology , Myofibroblasts/immunology , Myofibroblasts/pathology , Signal Transduction/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Time Factors , Tissue Culture Techniques , p38 Mitogen-Activated Protein Kinases/metabolism , rho-Associated Kinases/metabolism
18.
Clin Sci (Lond) ; 132(6): 685-699, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29540538

ABSTRACT

T-cell infiltration and the subsequent increased intracardial chronic inflammation play crucial roles in the development of cardiac hypertrophy and heart failure (HF). A77 1726, the active metabolite of leflunomide, has been reported to have powerful anti-inflammatory and T cell-inhibiting properties. However, the effect of A77 1726 on cardiac hypertrophy remains completely unknown. Herein, we found that A77 1726 treatment attenuated pressure overload or angiotensin II (Ang II)-induced cardiac hypertrophy in vivo, as well as agonist-induced hypertrophic response of cardiomyocytes in vitro In addition, we showed that A77 1726 administration prevented induction of cardiac fibrosis by inhibiting cardiac fibroblast (CF) transformation into myofibroblast. Surprisingly, we found that the protective effect of A77 1726 was not dependent on its T lymphocyte-inhibiting property. A77 1726 suppressed the activation of protein kinase B (AKT) signaling pathway, and overexpression of constitutively active AKT completely abolished A77 1726-mediated cardioprotective effects in vivo and in vitro Pretreatment with siRNA targetting Fyn (si Fyn) blunted the protective effect elicited by A77 1726 in vitro More importantly, A77 1726 was capable of blocking pre-established cardiac hypertrophy in mice. In conclusion, A77 1726 attenuated cardiac hypertrophy and cardiac fibrosis via inhibiting FYN/AKT signaling pathway.


Subject(s)
Fibroblasts/drug effects , Heart Ventricles/drug effects , Hypertrophy, Left Ventricular/prevention & control , Leflunomide/pharmacology , Protein Kinase Inhibitors/pharmacology , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Animals , Cell Differentiation/drug effects , Cells, Cultured , Disease Models, Animal , Fibroblasts/enzymology , Fibroblasts/pathology , Fibrosis , Heart Ventricles/enzymology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hypertrophy, Left Ventricular/enzymology , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Mice, Inbred C57BL , Myofibroblasts/enzymology , Myofibroblasts/pathology , Phosphorylation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Rats , Signal Transduction/drug effects
19.
Arterioscler Thromb Vasc Biol ; 37(7): 1339-1351, 2017 07.
Article in English | MEDLINE | ID: mdl-28546218

ABSTRACT

OBJECTIVE: Extracellular matrix proteinases are implicated in the pathogenesis of calcific aortic valve disease. The ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) enzyme is secreted, matrix-associated metalloendopeptidase, capable of degrading extracellular matrix proteins, particularly matrilin 2. We sought to determine the role of the ADAMTS5/matrilin 2 axis in mediating the phenotype transition of valvular interstitial cells (VICs) associated with calcific aortic valve disease. APPROACH AND RESULTS: Levels of ADAMTS5, matrilin 2, and α-SMA (α-smooth muscle actin) were evaluated in calcified and normal human aortic valve tissues and VICs. Calcified aortic valves have reduced levels of ADAMTS5 and higher levels of matrilin 2 and α-SMA. Treatment of normal VICs with soluble matrilin 2 caused an increase in α-SMA level through Toll-like receptors 2 and 4, which was accompanied by upregulation of runt-related transcription factor 2 and alkaline phosphatase. In addition, ADAMTS5 knockdown in normal VICs enhanced the effect of matrilin 2. Matrilin 2 activated nuclear factor (NF) κB and NF of activated T cells complex 1 and induced the interaction of these 2 NFs. Inhibition of either NF-κB or NF of activated T cells complex 1 suppressed matrilin 2's effect on VIC phenotype change. Knockdown of α-SMA reduced and overexpression of α-SMA enhanced the expression of pro-osteogenic factors and calcium deposit formation in human VICs. CONCLUSIONS: Matrilin 2 induces myofibroblastic transition and elevates pro-osteogenic activity in human VICs via activation of NF-κB and NF of activated T cells complex 1. Myofibroblastic transition in human VICs is an important mechanism of elevating the pro-osteogenic activity. Matrilin 2 accumulation associated with relative ADAMTS5 deficiency may contribute to the mechanism underlying calcific aortic valve disease progression.


Subject(s)
ADAMTS5 Protein/deficiency , Aortic Valve Stenosis/enzymology , Aortic Valve/enzymology , Aortic Valve/pathology , Calcinosis/enzymology , Cell Transdifferentiation , Myofibroblasts/enzymology , Osteogenesis , ADAMTS5 Protein/genetics , Actins/genetics , Actins/metabolism , Adult , Aged , Alkaline Phosphatase/metabolism , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/pathology , Calcinosis/genetics , Calcinosis/pathology , Case-Control Studies , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Humans , Male , Matrilin Proteins/metabolism , Middle Aged , Myofibroblasts/pathology , NF-kappa B/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Phenotype , RNA Interference , Signal Transduction , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Transfection
20.
Arterioscler Thromb Vasc Biol ; 37(9): 1698-1709, 2017 09.
Article in English | MEDLINE | ID: mdl-28751569

ABSTRACT

OBJECTIVE: Transdifferentiation of adventitial fibroblasts (AFs) into myofibroblasts plays a critical role during the vascular remodeling that occurs during atherosclerosis, restenosis, and aortic aneurysm. The ubiquitination/deubiquitination regulatory system is essential for the quality control of proteins. The involvement of ubiquitination/deubiquitination during AF transdifferentiation remains largely unknown. In this study, we determined the role of cylindromatosis (CYLD), a deubiquitinase, in the process of AF differentiation and activation in vitro and in vivo. APPROACH AND RESULTS: Transforming growth factor-ß1 and homocysteine, 2 known inducers of AF transdifferentiation, greatly upregulated CYLD expression in a time- and dose-dependent manner. The silencing of CYLD significantly inhibited AF transdifferentiation and activation as evidenced by the expression of contractile proteins, the production of the proinflammatory cytokines MCP-1 (monocyte chemotactic protein 1) and IL-6 (interleukin-6), the deposition of extracellular matrix, and cell migration. We further asked whether CYLD mediates AF activation via the regulation of nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) as it is an essential factor during AF transdifferentiation. Indeed, the silencing of CYLD repressed transforming growth factor-ß1-induced and homocysteine-induced Nox4 upregulation and reactive oxygen species production, whereas Nox4 overexpression greatly rescued the inhibitory effect on AF activation by CYLD silencing. Most interestingly, transforming growth factor-ß1 and homocysteine repressed Nox4 ubiquitination and prolonged the half-life of Nox4. Moreover, Nox4 was deubiquitinated via a direct interaction with the ubiquitin-specific protease domain of CYLD. In accordance, hyperhomocysteinemia significantly increased adventitial CYLD and Nox4 expression, promoted AF transdifferentiation, and aggravated CaPO4-induced abdominal aortic aneurysm in mice. These effects were abolished in CYLD-/- mice. CONCLUSIONS: CYLD contributes to the transdifferentiation of AFs via deubiquitinating Nox4 and may play a role in vascular remodeling.


Subject(s)
Adventitia/enzymology , Aortic Aneurysm, Abdominal/enzymology , Cell Transdifferentiation , Cysteine Endopeptidases/metabolism , Myofibroblasts/enzymology , NADPH Oxidases/metabolism , Ubiquitin Thiolesterase/metabolism , Vascular Remodeling , Adventitia/drug effects , Adventitia/pathology , Animals , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , COS Cells , Calcium Phosphates , Cell Movement , Cell Transdifferentiation/drug effects , Chemokine CCL2/metabolism , Chlorocebus aethiops , Cysteine Endopeptidases/deficiency , Cysteine Endopeptidases/genetics , Deubiquitinating Enzyme CYLD , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Stability , Extracellular Matrix/metabolism , Genotype , HEK293 Cells , Half-Life , Homocysteine/pharmacology , Humans , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/enzymology , Hyperhomocysteinemia/genetics , Interleukin-6/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Myofibroblasts/drug effects , Myofibroblasts/pathology , NADPH Oxidase 4 , NADPH Oxidases/genetics , Phenotype , Proteolysis , RNA Interference , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction , Time Factors , Transfection , Transforming Growth Factor beta1/pharmacology , Ubiquitin Thiolesterase/genetics , Ubiquitination , Vascular Remodeling/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL