Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493
Filter
1.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R79-R87, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38766774

ABSTRACT

Sulfur dioxide (SO2), a common environmental and industrial air pollutant, possesses a potent effect in eliciting cough reflex, but the primary type of airway sensory receptors involved in its tussive action has not been clearly identified. This study was carried out to determine the relative roles of three major types of vagal bronchopulmonary afferents [slowly adapting receptors (SARs), rapidly adapting receptors (RARs), and C-fibers] in regulating the cough response to inhaled SO2. Our results showed that inhalation of SO2 (300 or 600 ppm for 8 min) evoked an abrupt and intense stimulatory effect on bronchopulmonary C-fibers, which continued for the entire duration of inhalation challenge and returned toward the baseline in 1-2 min after resuming room air-breathing in anesthetized and mechanically ventilated mice. In stark contrast, the same SO2 inhalation challenge generated a distinct and consistent inhibitory effect on both SARs and phasic RARs; their phasic discharges synchronized with respiratory cycles during the baseline (breathing room air) began to decline progressively within 1-3 min after the onset of SO2 inhalation, ceased completely before termination of the 8-min inhalation challenge, and then slowly returned toward the baseline after >40 min. In a parallel study in awake mice, inhalation of SO2 at the same concentration and duration as that in the nerve recording experiments evoked cough responses in a pattern and time course similar to that observed in the C-fiber responses. Based on these results, we concluded that stimulation of vagal bronchopulmonary C-fibers is primarily responsible for triggering the cough response to inhaled SO2.NEW & NOTEWORTHY This study demonstrated that inhalation of a high concentration of sulfur dioxide, an irritant gas and common air pollutant, completely and reversibly inhibited the neural activities of both slowly adapting receptor and rapidly adapting receptor, two major types of mechanoreceptors in the lungs with their activities conducted by myelinated fibers. Furthermore, the results of this study suggested that stimulation of vagal bronchopulmonary C-fibers is primarily responsible for triggering the cough reflex responses to inhaled sulfur dioxide.


Subject(s)
Cough , Nerve Fibers, Unmyelinated , Sulfur Dioxide , Vagus Nerve , Animals , Sulfur Dioxide/administration & dosage , Cough/physiopathology , Cough/chemically induced , Vagus Nerve/drug effects , Vagus Nerve/physiology , Mice , Male , Nerve Fibers, Unmyelinated/drug effects , Mice, Inbred C57BL , Reflex/drug effects , Administration, Inhalation , Bronchi/innervation , Bronchi/drug effects , Lung/innervation , Lung/drug effects , Neurons, Afferent/drug effects
2.
J Neurophysiol ; 127(2): 463-473, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35020516

ABSTRACT

Unmyelinated tactile (C-tactile or CT) afferents are abundant in arm hairy skin and have been suggested to signal features of social affective touch. Here, we recorded from unmyelinated low-threshold mechanosensitive afferents in the peroneal and radial nerves. The most distal receptive fields were located on the proximal phalanx of the third finger for the superficial branch of the radial nerve and near the lateral malleolus for the peroneal nerve. We found that the physiological properties with regard to conduction velocity and mechanical threshold, as well as their tuning to brush velocity, were similar in CT units across the antebrachial (n = 27), radial (n = 8), and peroneal (n = 4) nerves. Moreover, we found that although CT afferents are readily found during microneurography of the arm nerves, they appear to be much more sparse in the lower leg compared with C-nociceptors. We continued to explore CT afferents with regard to their chemical sensitivity and found that they could not be activated by topical application to their receptive field of either the cooling agent menthol or the pruritogen histamine. In light of previous studies showing the combined effects that temperature and mechanical stimuli have on these neurons, these findings add to the growing body of research suggesting that CT afferents constitute a unique class of sensory afferents with highly specialized mechanisms for transducing gentle touch.NEW & NOTEWORHY Unmyelinated tactile (CT) afferents are abundant in arm hairy skin and are thought to signal features of social affective touch. We show that CTs are also present but are relatively sparse in the lower leg compared with C-nociceptors. CTs display similar physiological properties across the arm and leg nerves. Furthermore, CT afferents do not respond to the cooling agent menthol or the pruritogen histamine, and their mechanical response properties are not altered by these chemicals.


Subject(s)
Affect , Antipruritics/pharmacology , Histamine Agonists/pharmacology , Mechanoreceptors/physiology , Menthol/pharmacology , Nerve Fibers, Unmyelinated/physiology , Peroneal Nerve/physiology , Touch Perception/physiology , Adult , Afferent Pathways/drug effects , Afferent Pathways/physiology , Antipruritics/administration & dosage , Female , Histamine/pharmacology , Histamine Agonists/administration & dosage , Humans , Leg/innervation , Male , Mechanoreceptors/drug effects , Menthol/administration & dosage , Nerve Fibers, Unmyelinated/drug effects , Nociceptors/drug effects , Nociceptors/physiology , Peroneal Nerve/drug effects , Radial Nerve/drug effects , Radial Nerve/physiology , Touch Perception/drug effects , Young Adult
3.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G149-G156, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34160291

ABSTRACT

Bile acid reflux in the esophagus plays a role in the pathogenesis of certain esophageal disorders, where it can induce esophageal pain and heartburn. The present study aimed to determine whether bile acid, deoxycholic acid (DCA), directly activates and sensitizes esophageal vagal nociceptive afferent C-fiber subtypes. DCA-elicited effects on vagal nodose and jugular neurons were studied by calcium imaging. Its effects on esophageal-labeled nodose and jugular neurons were then determined by patch-clamp recording. At nodose and jugular C-fiber nerve endings in the esophagus, DCA-evoked action potentials (APs) were compared by extracellular single-unit recordings in ex vivo esophageal-vagal preparations. DCA application induced calcium influxes in nodose and jugular neurons and elicited inward currents in esophageal-labeled nodose and jugular neurons. In the presence of DCA, the current densities elicited by capsaicin were enhanced in those labeled neurons. Consistently, DCA perfusion at nerve terminals in the esophagus evoked APs in about 50% of esophageal nodose and jugular C-fibers. In DCA-sensitive C-fibers, DCA perfusion also sensitized the fibers such that the subsequent response to capsaicin was amplified. Collectively, these results provide new evidence that DCA directly activates and sensitizes nociceptive nodose and jugular C-fibers in the esophagus. Such activation and sensitization effects may contribute to bile acid-induced esophageal nociceptive symptoms that are refractory to proton-pump inhibitor therapy.NEW & NOTEWORTHY Bile acid reflux in the esophagus can induce pain and heartburn in certain esophageal disorders, but the underlying neuronal mechanism is still unclear. The present study demonstrated that bile acid, deoxycholic acid (DCA), directly activates esophageal vagal afferent nodose and jugular nociceptive C-fibers and sensitizes their response to capsaicin. Such effects may contribute to bile acid-induced esophageal nociceptive symptoms that refractory to proton-pump inhibitors (PPIs) therapy.


Subject(s)
Action Potentials , Cholagogues and Choleretics/pharmacology , Deoxycholic Acid/pharmacology , Esophagus/physiology , Nociceptors/physiology , Animals , Calcium Signaling , Cells, Cultured , Esophagus/innervation , Guinea Pigs , Nerve Fibers, Unmyelinated/drug effects , Nerve Fibers, Unmyelinated/physiology , Nociceptors/drug effects , Nociceptors/metabolism , Vagus Nerve/drug effects , Vagus Nerve/physiology
4.
Anesthesiology ; 134(1): 88-102, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33166389

ABSTRACT

BACKGROUND: Although the widely used single L-enantiomers of local anesthetics have less toxic effects on the cardiovascular and central nervous systems, the mechanisms mediating their antinociceptive actions are not well understood. The authors hypothesized that significant differences in the ion channel blocking abilities of the enantiomers of bupivacaine would be identified. METHODS: The authors performed electrophysiologic analysis on rat dorsal root ganglion neurons in vitro and on spinal transmissions in vivo. RESULTS: In the dorsal root ganglion, these anesthetics decreased the amplitudes of action potentials. The half-maximum inhibitory concentrations of D-enantiomer D-bupivacaine were almost equal for Aß (29.5 µM), Aδ (29.7µM), and C (29.8 µM) neurons. However, the half-maximum inhibitory concentrations of L-bupivacaine was lower for Aδ (19.35 µM) and C (19.5 µM) neurons than for A ß (79.4 µM) neurons. Moreover, D-bupivacaine almost equally inhibited tetrodotoxin-resistant (mean ± SD: 15.8 ± 10.9% of the control, n = 14, P < 0.001) and tetrodotoxin-sensitive (15.4 ± 15.6% of the control, n = 11, P = 0.004) sodium currents. In contrast, L-bupivacaine suppressed tetrodotoxin-resistant sodium currents (26.1 ± 19.5% of the control, n = 18, P < 0.001) but not tetrodotoxin-sensitive sodium currents (74.5 ± 18.2% of the control, n = 11, P = 0.477). In the spinal dorsal horn, L-bupivacaine decreased the area of pinch-evoked excitatory postsynaptic currents (39.4 ± 11.3% of the control, n = 7, P < 0.001) but not touch-evoked responses (84.2 ± 14.5% of the control, n = 6, P = 0.826). In contrast, D-bupivacaine equally decreased pinch- and touch-evoked responses (38.8 ± 9.5% of the control, n = 6, P = 0.001, 42.9 ± 11.8% of the control, n = 6, P = 0.013, respectively). CONCLUSIONS: These results suggest that the L-enantiomer of bupivacaine (L-bupivacaine) effectively inhibits noxious transmission to the spinal dorsal horn by blocking action potential conduction through C and Aδ afferent fibers.


Subject(s)
Anesthetics, Local/pharmacology , Bupivacaine/pharmacology , Neurons/drug effects , Nociception/drug effects , Peripheral Nerves/drug effects , Posterior Horn Cells/drug effects , Synaptic Transmission/drug effects , Animals , Excitatory Postsynaptic Potentials/drug effects , Male , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Unmyelinated/drug effects , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Sodium Channels/drug effects , Stereoisomerism , Tetrodotoxin/pharmacology
5.
FASEB J ; 33(10): 10731-10741, 2019 10.
Article in English | MEDLINE | ID: mdl-31251077

ABSTRACT

Prenatal nicotinic exposure (PNE) reportedly sensitizes bronchopulmonary C-fibers (PCFs) and prolongs PCF-mediated apnea in rat pups, contributing to the pathogenesis of sudden infant death syndrome. Serotonin, or 5-hydroxytryptamine (5-HT), induces apnea via acting on 5-HT receptor 3 (5-HT3R) in PCFs, and among the 5-HT3R subunits, 5-HT3B is responsible for shortening the decay time of 5-HT3R-mediated currents. We examined whether PNE would promote pulmonary 5-HT secretion and prolong the apnea mediated by 5-HT3Rs in PCFs via affecting the 5-HT3B subunit. To this end, the following variables were compared between the control and PNE rat pups: 1) the 5-HT content in bronchoalveolar lavage fluid, 2) the apneic response to the right atrial bolus injection of phenylbiguanide (a 5-HT3R agonist) before and after PCF inactivation, 3) 5-HT3R currents and the stimulus threshold of the action currents of vagal pulmonary C-neurons, and 4) the immunoreactivity (IR) and mRNA expression of 5-HT3A and 5-HT3B in these neurons. Our results showed that PNE up-regulated the pulmonary 5-HT concentration and strengthened the PCF 5-HT3R-mediated apnea. PNE significantly facilitated neural excitability by shortening the decay time of 5-HT3R currents, lowering the stimulus threshold, and increasing 5-HT3B IR. In summary, PNE prolongs the apnea mediated by 5-HT3Rs in PCFs, likely by increasing 5-HT3B subunits to enhance the excitability of 5-HT3 channels.-Zhao, L., Gao, X., Zhuang, J., Wallen, M., Leng, S., Xu, F. Prolongation of bronchopulmonary C-fiber-mediated apnea by prenatal nicotinic exposure in rat pups: role of 5-HT3 receptors.


Subject(s)
Apnea/etiology , Apnea/physiopathology , Lung/drug effects , Lung/innervation , Nerve Fibers, Unmyelinated/drug effects , Nerve Fibers, Unmyelinated/physiology , Nicotine/toxicity , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/physiopathology , Receptors, Serotonin, 5-HT3/physiology , Animals , Animals, Newborn , Apnea/genetics , Biguanides/administration & dosage , Bronchoalveolar Lavage Fluid/chemistry , Disease Models, Animal , Female , Humans , Infant, Newborn , Lung/physiopathology , Male , Nicotine/administration & dosage , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Serotonin, 5-HT3/genetics , Serotonin/metabolism , Serotonin 5-HT3 Receptor Agonists/administration & dosage , Sudden Infant Death/etiology
6.
J Neurophysiol ; 121(5): 1591-1608, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30625007

ABSTRACT

The monosynaptic stretch reflex (MSR) plays an important role in feedback control of movement and posture but can also lead to unstable oscillations associated with tremor and clonus, especially when increased with spinal cord injury (SCI). To control the MSR and clonus after SCI, we examined how serotonin regulates the MSR in the sacrocaudal spinal cord of rats with and without a chronic spinal transection. In chronic spinal rats, numerous 5-HT receptor agonists, including zolmitriptan, methylergonovine, and 5-HT, inhibited the MSR with a potency highly correlated to their binding affinity to 5-HT1D receptors and not other 5-HT receptors. Selective 5-HT1D receptor antagonists blocked this agonist-induced inhibition, although antagonists alone had no action, indicating a lack of endogenous or constitutive receptor activity. In normal uninjured rats, the MSR was likewise inhibited by 5-HT, but at much higher doses, indicating a supersensitivity after SCI. This supersensitivity resulted from the loss of the serotonin transporter SERT with spinal transection, because normal and injured rats were equally sensitive to 5-HT after SERT was blocked or to agonists not transported by SERT (zolmitriptan). Immunolabeling revealed that the 5-HT1D receptor was confined to superficial lamina of the dorsal horn, colocalized with CGRP-positive C-fibers, and eliminated by dorsal rhizotomy. 5-HT1D receptor labeling was not found on large proprioceptive afferents or α-motoneurons of the MSR. Thus serotonergic inhibition of the MSR acts indirectly by modulating C-fiber activity, opening up new possibilities for modulating reflex function and clonus via pain-related pathways. NEW & NOTEWORTHY Brain stem-derived serotonin potently inhibits afferent transmission in the monosynaptic stretch reflex. We show that serotonin produces this inhibition exclusively via 5-HT1D receptors, and yet these receptors are paradoxically mostly confined to C-fibers. This suggests that serotonin acts by gating of C-fiber activity, which in turn modulates afferent transmission to motoneurons. We also show that the classic supersensitivity to 5-HT after spinal cord injury results from a loss of SERT, and not 5-HT1D receptor plasticity.


Subject(s)
Nerve Fibers, Unmyelinated/metabolism , Receptor, Serotonin, 5-HT1D/metabolism , Reflex, Stretch , Spinal Cord Injuries/metabolism , Animals , Female , Nerve Fibers, Unmyelinated/drug effects , Nerve Fibers, Unmyelinated/physiology , Rats , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Serotonin Plasma Membrane Transport Proteins/metabolism , Spinal Cord Injuries/physiopathology
7.
Muscle Nerve ; 60(4): 367-375, 2019 10.
Article in English | MEDLINE | ID: mdl-31107560

ABSTRACT

INTRODUCTION: Topical application of lidocaine-and-prilocaine (LP) cream attenuates the functionality of small cutaneous nerve fibers. The aim of this human study was to measure the underlying excitability modulation of small cutaneous nerve fibers using a novel and fast perception threshold tracking (PTT) technique. METHODS: Small sensory fibers were selectively blocked by 120-minute topical application of LP and confirmed by quantitative sensory testing. Excitability changes of small (activated by a specially designed pin electrode) and large (patch electrode) nerve fibers were assessed as the strength-duration relation and threshold electrotonus. RESULTS: The excitability assessed by the strength-duration relation and threshold electrotonus was significantly modulated for the small afferents (P < 0.05, Wilcoxon's test) but not the large afferents. DISCUSSION: This novel PTT technique was able to assess inhibition of membrane properties of small cutaneous fibers, suggesting the usefulness of the technique as a diagnostic method for assessing impairment of small fibers, as seen in many types of polyneuropathies.


Subject(s)
Anesthetics, Local/pharmacology , Lidocaine, Prilocaine Drug Combination/pharmacology , Nerve Fibers, Myelinated/drug effects , Sensory Thresholds/drug effects , Small Fiber Neuropathy/diagnosis , Administration, Cutaneous , Adult , Cross-Over Studies , Double-Blind Method , Electric Stimulation , Electrodiagnosis , Female , Healthy Volunteers , Humans , Male , Nerve Fibers, Myelinated/physiology , Nerve Fibers, Unmyelinated/drug effects , Nerve Fibers, Unmyelinated/physiology , Sensory Thresholds/physiology , Young Adult
8.
Cephalalgia ; 39(11): 1358-1365, 2019 10.
Article in English | MEDLINE | ID: mdl-31475573

ABSTRACT

BACKGROUND: Botulinum neurotoxin type A, an FDA-approved prophylactic drug for chronic migraine, is thought to achieve its therapeutic effect through blocking activation of unmyelinated meningeal nociceptors and their downstream communications with myelinated nociceptors and potentially the vasculature and immune cells. Prior investigations to determine botulinum neurotoxin type A effects on meningeal nociceptors were carried out in male rats and tested with stimuli that act outside the blood brain barrier. Here, we sought to explore the effects of extracranial injections of botulinum neurotoxin type A on activation of meningeal nociceptors by cortical spreading depression, an event which occurs inside the blood brain barrier, in female rats. MATERIAL AND METHODS: Using single-unit recording, we studied myelinated C- and unmyelinated Aδ-meningeal nociceptors' responses to cortical spreading depression 7-14 days after injection of botulinum neurotoxin type A or saline along calvarial sutures. RESULTS: In female rats, responses to cortical spreading depression were typically more prolonged and, in some cases, began at relatively longer latencies post-cortical spreading depression, than had been observed in previous studies in male rats. Extracranial administration of botulinum neurotoxin type A reduced significantly the prolonged firing of the meningeal nociceptors, in the combined sample of Aδ- and C-fiber, but not their response probability. DISCUSSION: The findings suggest that the mechanism of action by which botulinum neurotoxin type A prevents migraine differ from the one by which calcitonin gene-related peptide monoclonal antibodies prevent migraine and that even when the origin of migraine is central (i.e. in the cortex), a peripherally acting drug can intercept/prevent the headache.


Subject(s)
Botulinum Toxins, Type A/pharmacology , Cortical Spreading Depression/drug effects , Meninges/drug effects , Neuromuscular Agents/pharmacology , Nociceptors/drug effects , Animals , Female , Nerve Fibers, Unmyelinated/drug effects , Rats , Rats, Sprague-Dawley
9.
Pulm Pharmacol Ther ; 56: 15-19, 2019 06.
Article in English | MEDLINE | ID: mdl-30872160

ABSTRACT

Activation of vagal C-fibers is likely involved in some types of pathological coughing, especially coughing that is associated with airway inflammation. This is because stimulation of vagal C-fibers leads to strong urge to cough sensations, and because C-fiber terminals can be strongly activated by mediators associated with airway inflammation. The most direct manner in which a given mediator can activate a C-fiber terminal is through interacting with its receptor expressed in the terminal membrane. The agonist-receptor interaction then must lead to the opening (or potentially closing) of ion channels that lead to a membrane depolarization. This depolarization is referred to as a generator potential. If, and only if, the generator potential reaches the voltage necessary to activate voltage-gated sodium channels, action potentials are initiated and conducted to the central terminals within the CNS. Therefore, there are three target areas to block the inflammatory mediator induced activation of C-fiber terminals. First, at the level of the mediator-receptor interaction, secondly at the level of the generator potential, and third at the level of the voltage-gated sodium channels. Here we provide a brief overview of each of these therapeutic strategies.


Subject(s)
Antitussive Agents/pharmacology , Cough/drug therapy , Nerve Fibers, Unmyelinated/drug effects , Action Potentials/drug effects , Animals , Cough/physiopathology , Humans , Nerve Fibers, Unmyelinated/metabolism , Vagus Nerve/metabolism , Voltage-Gated Sodium Channels/drug effects , Voltage-Gated Sodium Channels/metabolism
10.
Acta Derm Venereol ; 99(11): 1009-1015, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31289838

ABSTRACT

Central sensitization induces pain augmentation in chronic pain states. An analogous mechanism is speculated for chronic pruritus. This study compared patients with chronic pruritus (n = 79) of different origins (atopic dermatitis, chronic pruritus on non-lesional skin, chronic prurigo) and healthy controls (HC, n = 54) with regard to itch intensity and qualities of sensory symptoms after selective peripheral nerve fibre activation by electrical stimulation at 5 Hz (surrogate for C-fibre function) and 2,000 Hz (surrogate for Aß-fibre function) using a Neurometer®. Electrically-induced itch was more intense in patients with chronic pruritus than in HC, but patients with chronic pruritus did not report "itch" more often than HC at 5 Hz. Stimulation at 2,000 Hz induced more pricking and tingling, but less throbbing in patients with chronic pruritus compared with HC. Treatment with cooling compound reduced clinical and experimental itch, but did not alter the distribution of sensory symptoms. These data show hyperknesis in chronic pruritus of various origins, arguing for common central sensitization mechanisms.


Subject(s)
Central Nervous System Sensitization , Nerve Fibers, Myelinated , Nerve Fibers, Unmyelinated , Pruritus/physiopathology , Sensory Thresholds , Skin/innervation , Administration, Cutaneous , Adult , Aged , Antipruritics/administration & dosage , Case-Control Studies , Chronic Disease , Electric Stimulation , Female , Humans , Male , Middle Aged , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Unmyelinated/drug effects , Pruritus/diagnosis , Pruritus/drug therapy , Pruritus/etiology , Risk Factors , Sensory Thresholds/drug effects , Time Factors , Treatment Outcome
11.
J Neurosci ; 37(25): 6007-6020, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28559374

ABSTRACT

In the brain, transmembrane AMPAR regulatory proteins (TARPs) critically influence the distribution, gating, and pharmacology of AMPARs, but the contribution of these auxiliary subunits to AMPAR-mediated signaling in the spinal cord remains unclear. We found that the Type I TARP γ-2 (stargazin) is present in lamina II of the superficial dorsal horn, an area involved in nociception. Consistent with the notion that γ-2 is associated with surface AMPARs, CNQX, a partial agonist at AMPARs associated with Type I TARPs, evoked whole-cell currents in lamina II neurons, but such currents were severely attenuated in γ-2-lacking stargazer (stg/stg) mice. Examination of EPSCs revealed the targeting of γ-2 to be synapse-specific; the amplitude of spontaneously occurring miniature EPSCs (mEPSCs) was reduced in neurons from stg/stg mice, but the amplitude of capsaicin-induced mEPSCs from C-fiber synapses was unaltered. This suggests that γ-2 is associated with AMPARs at synapses in lamina II but excluded from those at C-fiber inputs, a view supported by our immunohistochemical colabeling data. Following induction of peripheral inflammation, a model of hyperalgesia, there was a switch in the current-voltage relationships of capsaicin-induced mEPSCs, from linear to inwardly rectifying, indicating an increased prevalence of calcium-permeable (CP) AMPARs. This effect was abolished in stg/stg mice. Our results establish that, although γ-2 is not typically associated with calcium-impermeable AMPARs at C-fiber synapses, it is required for the translocation of CP-AMPARs to these synapses following peripheral inflammation.SIGNIFICANCE STATEMENT In the brain, transmembrane AMPAR regulatory proteins (TARPs) critically determine the functional properties of AMPARs, but the contribution of these auxiliary subunits to AMPAR-mediated signaling in the spinal cord remains unclear. An increase in the excitability of neurons within the superficial dorsal horn (SDH) of the spinal cord is thought to underlie heighted pain sensitivity. One mechanism considered to contribute to such long-lived changes is the remodeling of the ionotropic AMPA-type glutamate receptors that underlie fast excitatory synaptic transmission in the SDH. Here we show that the TARP γ-2 (stargazin) is present in SDH neurons and is necessary in a form of inflammatory pain-induced plasticity, which involves an increase in the prevalence of synaptic calcium-permeable AMPARs.


Subject(s)
Calcium Channels/metabolism , Inflammation/metabolism , Neuronal Plasticity/physiology , Posterior Horn Cells/metabolism , Receptors, AMPA/physiology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Animals , Calcium Channels/genetics , Capsaicin/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Postsynaptic Potentials/physiology , Female , Male , Mice , Mice, Inbred C57BL , Nerve Fibers, Unmyelinated/drug effects , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/metabolism , Receptors, AMPA/agonists , Synaptic Transmission/genetics
12.
J Neurosci ; 37(44): 10587-10596, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28972120

ABSTRACT

Calcitonin gene-related peptide (CGRP), the most abundant neuropeptide in primary afferent sensory neurons, is strongly implicated in the pathophysiology of migraine headache, but its role in migraine is still equivocal. As a new approach to migraine treatment, humanized anti-CGRP monoclonal antibodies (CGRP-mAbs) were developed to reduce the availability of CGRP, and were found effective in reducing the frequency of chronic and episodic migraine. We recently tested the effect of fremanezumab (TEV-48125), a CGRP-mAb, on the activity of second-order trigeminovascular dorsal horn neurons that receive peripheral input from the cranial dura, and found a selective inhibition of high-threshold but not wide-dynamic range class of neurons. To investigate the basis for this selective inhibitory effect, and further explore the mechanism of action of CGRP-mAbs, we tested the effect of fremanezumab on the cortical spreading depression-evoked activation of mechanosensitive primary afferent meningeal nociceptors that innervate the cranial dura, using single-unit recording in the trigeminal ganglion of anesthetized male rats. Fremanezumab pretreatment selectively inhibited the responsiveness of Aδ neurons, but not C-fiber neurons, as reflected in a decrease in the percentage of neurons that showed activation by cortical spreading depression. These findings identify Aδ meningeal nociceptors as a likely site of action of fremanezumab in the prevention of headache. The selectivity in its peripheral inhibitory action may partly account for fremanezumab's selective inhibition of high-threshold, as a result of a predominant A-δ input to high-threshold neurons, but not wide dynamic-range dorsal horn neurons, and why it may not be effective in all migraine patients.SIGNIFICANCE STATEMENT Recently, we reported that humanized CGRP monoclonal antibodies (CGRP-mAbs) prevent activation and sensitization of high-threshold (HT) but not wide-dynamic range trigeminovascular neurons by cortical spreading depression (CSD). In the current paper, we report that CGRP-mAbs prevent the activation of Aδ but not C-type meningeal nociceptors by CSD. This is the first identification of an anti-migraine drug that appears to be selective for Aδ-fibers (peripherally) and HT neurons (centrally). As the main CGRP-mAb site of action appears to be situated outside the brain, we conclude that the initiation of the headache phase of migraine depends on activation of meningeal nociceptors, and that for selected patients, activation of the Aδ-HT pain pathway may be sufficient for the generation of headache perception.


Subject(s)
Antibodies, Monoclonal/pharmacology , Calcitonin Gene-Related Peptide/antagonists & inhibitors , Myelin Sheath/drug effects , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Unmyelinated/drug effects , Nociceptors/drug effects , Animals , Calcitonin Gene-Related Peptide/physiology , Humans , Male , Myelin Sheath/physiology , Nerve Fibers, Myelinated/physiology , Nerve Fibers, Unmyelinated/physiology , Nociceptors/physiology , Rats , Rats, Sprague-Dawley
13.
Mol Pharmacol ; 94(3): 1047-1056, 2018 09.
Article in English | MEDLINE | ID: mdl-29941667

ABSTRACT

We evaluated the effect of voltage-gated sodium channel 1 (NaV1) blockers in three nonoverlapping C-fiber subtypes in the mouse skin: chloroquine (CQ)-sensitive C-fibers with high mechanical thresholds-itch C-fibers; second, CQ-insensitive, capsaicin-sensitive C-fibers with high mechanical thresholds-nociceptors; and CQ and capsaicin-insensitive C-fibers with a very low mechanical threshold-C-LTMs. NaV1-blocking drugs were applied to the nerve terminal receptive fields using an innervated isolated dorsal mouse skin-nerve preparation where the drugs are delivered into the skin intra-arterially. We combined these studies with an analysis of the mRNA expression of the α-subunits of NaV1 in individual dorsal root ganglia neurons labeled from the same region of the skin. Our results show that virtually all nociceptors and itch C-fibers expressed the tetrodotoxin (TTX)-resistant channels NaV1.8 and NaV1.9. However, TTX applied selectively into the skin abolished the action potential firing in response to mechanical stimulation in 75% of the itch C-fibers, 100% of the nociceptors, and 100% of C-LTMs. NaV1.7 was the most commonly expressed TTX-sensitive NaV1 in all three C-fiber subtypes innervating the dorsal skin. Selectively blocking NaV1.7 abolished responses in about 40% of itch C-fibers, 65% of nociceptors, but only 20% of C-LTMs. Blocking NaV1.8 alone had no affect on the firing sensitivity of the C-fibers. However, in itch and nociceptive C-fibers where the activation was not inhibited with a NaV1.7 blocker, adding the NaV1.8 blocker silenced action potential discharge.


Subject(s)
Action Potentials/physiology , Mechanoreceptors/physiology , Nerve Fibers, Unmyelinated/physiology , Nociception/physiology , Pruritus/physiopathology , Voltage-Gated Sodium Channels/physiology , Action Potentials/drug effects , Animals , Male , Mechanoreceptors/drug effects , Mice , Mice, Inbred C57BL , Nerve Fibers, Unmyelinated/drug effects , Nociception/drug effects , Organ Culture Techniques , Physical Stimulation/methods , Skin/drug effects , Skin/innervation , Sodium Channel Blockers/pharmacology
14.
Am J Physiol Lung Cell Mol Physiol ; 315(4): L467-L475, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29847989

ABSTRACT

The electronic cigarette (e-cig) has been suggested as a safer alternative to tobacco cigarettes. However, the health effects of e-cigs on the airways have not been fully investigated. Nicotine, the primary chemical constituent of the e-cig aerosol, has been shown to stimulate vagal bronchopulmonary C-fiber sensory nerves, which upon activation can elicit vigorous pulmonary defense reflexes, including airway constriction. In this study, we investigated the bronchomotor response to e-cig inhalation challenge in anesthetized guinea pigs and the mechanisms involved in regulating these responses. Our results showed that delivery of a single puff of e-cig aerosol into the lung triggered immediately a transient bronchoconstriction that sustained for >2 min. The increase in airway resistance was almost completely abolished by a pretreatment with either intravenous injection of atropine or inhalation of aerosolized lidocaine, suggesting that the bronchoconstriction was elicited by cholinergic reflex mechanism and stimulation of airway sensory nerves was probably involved. Indeed, electrophysiological recording further confirmed that inhalation of e-cig aerosol exerted a pronounced stimulatory effect on vagal bronchopulmonary C-fibers. These effects on airway resistance and bronchopulmonary C-fiber activity were absent when the e-cig aerosol containing zero nicotine was inhaled, indicating a critical role of nicotine. Furthermore, a pretreatment with nicotinic acetylcholine receptor antagonists by inhalation completely prevented the airway constriction evoked by e-cig aerosol inhalation. In conclusion, inhalation of a single puff of e-cig aerosol caused a transient bronchoconstriction that was mediated through cholinergic reflex and triggered by a stimulatory effect of nicotine on vagal bronchopulmonary C-fiber afferents.


Subject(s)
Bronchi/pathology , Bronchoconstriction/drug effects , Electronic Nicotine Delivery Systems , Nerve Fibers, Unmyelinated/pathology , Nicotine/administration & dosage , Vagus Nerve/pathology , Administration, Inhalation , Aerosols , Airway Resistance , Animals , Bronchi/drug effects , Bronchi/metabolism , Guinea Pigs , Male , Nerve Fibers, Unmyelinated/drug effects , Reflex , Respiratory Mechanics , Vagus Nerve/drug effects
15.
J Neurophysiol ; 119(5): 1993-2000, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29465329

ABSTRACT

Local nerve inflammation (neuritis) leads to ongoing activity and axonal mechanical sensitivity (AMS) along intact nociceptor axons and disrupts axonal transport. This phenomenon forms the most feasible cause of radiating pain, such as sciatica. We have previously shown that axonal transport disruption without inflammation or degeneration also leads to AMS but does not cause ongoing activity at the time point when AMS occurs, despite causing cutaneous hypersensitivity. However, there have been no systematic studies of ongoing activity during neuritis or noninflammatory axonal transport disruption. In this study, we present the time course of ongoing activity from primary sensory neurons following neuritis and vinblastine-induced axonal transport disruption. Whereas 24% of C/slow Aδ-fiber neurons had ongoing activity during neuritis, few (<10%) A- and C-fiber neurons showed ongoing activity 1-15 days following vinblastine treatment. In contrast, AMS increased transiently at the vinblastine treatment site, peaking on days 4-5 (28% of C/slow Aδ-fiber neurons) and resolved by day 15. Conduction velocities were slowed in all groups. In summary, the disruption of axonal transport without inflammation does not lead to ongoing activity in sensory neurons, including nociceptors, but does cause a rapid and transient development of AMS. Because it is proposed that AMS underlies mechanically induced radiating pain, and a transient disruption of axonal transport (as previously reported) leads to transient AMS, it follows that processes that disrupt axonal transport, such as neuritis, must persist to maintain AMS and the associated symptoms. NEW & NOTEWORTHY Many patients with radiating pain lack signs of nerve injury on clinical examination but may have neuritis, which disrupts axonal transport. We have shown that axonal transport disruption does not induce ongoing activity in primary sensory neurons but does cause transient axonal mechanical sensitivity. The present data complete a profile of key axonal sensitivities following axonal transport disruption. Collectively, this profile supports that an active peripheral process is necessary for maintained axonal sensitivities.


Subject(s)
Axonal Transport/physiology , Hyperalgesia/physiopathology , Nerve Fibers, Myelinated/physiology , Nerve Fibers, Unmyelinated/physiology , Neuralgia/physiopathology , Neuritis/physiopathology , Sciatic Nerve/physiopathology , Sensory Receptor Cells/physiology , Animals , Axonal Transport/drug effects , Disease Models, Animal , Male , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Unmyelinated/drug effects , Nociceptors/drug effects , Nociceptors/physiology , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/drug effects , Time Factors , Tubulin Modulators/pharmacology , Vinblastine/pharmacology
16.
Am J Physiol Regul Integr Comp Physiol ; 314(3): R489-R498, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29187382

ABSTRACT

We have addressed the hypothesis that the opposing effects of bronchopulmonary C-fiber activation on cough are attributable to the activation of C-fiber subtypes. Coughing was evoked in anesthetized guinea pigs by citric acid (0.001-2 M) applied topically in 100-µl aliquots to the tracheal mucosa. In control preparations, citric acid evoked 10 ± 1 coughs cumulatively. Selective activation of the pulmonary C fibers arising from the nodose ganglia with either aerosols or continuous intravenous infusion of adenosine or the 5-HT3 receptor-selective agonist 2-methyl-5-HT nearly abolished coughing evoked subsequently by topical citric acid challenge. Delivering adenosine or 2-methyl-5-HT directly to the tracheal mucosa (where few if any nodose C fibers terminate) was without effect on citric acid-evoked cough. These actions of pulmonary administration of adenosine and 2-methyl-5-HT were accompanied by an increase in respiratory rate, but it is unlikely that the change in respiratory pattern caused the decrease in coughing, as the rapidly adapting receptor stimulant histamine also produced a marked tachypnea but was without effect on cough. In awake guinea pigs, adenosine failed to evoke coughing but reduced coughing induced by the nonselective C-fiber stimulant capsaicin. We conclude that bronchopulmonary C-fiber subtypes in guinea pigs have opposing effects on cough, with airway C fibers arising from the jugular ganglia initiating and/or sensitizing the cough reflex and the intrapulmonary C fibers arising from the nodose ganglia actively inhibiting cough upon activation.


Subject(s)
Cough/physiopathology , Nerve Fibers, Unmyelinated/classification , Nodose Ganglion/physiopathology , Trachea/innervation , Action Potentials , Adenosine/administration & dosage , Animals , Bradykinin/administration & dosage , Citric Acid , Cough/chemically induced , Cough/prevention & control , Disease Models, Animal , Guinea Pigs , Histamine/administration & dosage , Male , Nerve Fibers, Unmyelinated/drug effects , Nodose Ganglion/drug effects , Purinergic P1 Receptor Agonists/administration & dosage , Reflex , Respiratory Rate , Serotonin/administration & dosage , Serotonin/analogs & derivatives , Serotonin 5-HT3 Receptor Agonists/administration & dosage
17.
Neurochem Res ; 43(8): 1660-1670, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29959648

ABSTRACT

It is well known that remifentanil, a widely used intravenous anesthesia drug, can paradoxically induce hyperalgesia. The underlying mechanisms are still not clear despite the wide investigations. The present study demonstrated that withdrawal from spinal application of remifentanil could dose-dependently induce long term potentiation (LTP) of C-fiber evoked field potentials. Remifentanil withdrawal could activate Src family kinases (SFKs) in microglia, and upregulate the expression of tumor necrosis factor alpha (TNFα) in spinal dorsal horn. Furthermore, pretreatment with either microglia inhibitor Minocycline, SFKs inhibitor PP2 or TNF αneutralization antibody could block remifentanil withdrawal induced spinal LTP, whereas supplement of recombinant rat TNFα to the spinal cord could reverse the inhibitory effect of Minocycline or PP2 on remifentanil withdrawal induced LTP. Our results suggested that TNFαrelease following SFKs activation in microglia is involved in the induction of LTP induced by remifentanil withdrawal.


Subject(s)
Long-Term Potentiation/physiology , Microglia/enzymology , Nerve Fibers, Unmyelinated/physiology , Piperidines/administration & dosage , Posterior Horn Cells/enzymology , src-Family Kinases/metabolism , Analgesics, Opioid/administration & dosage , Animals , Dose-Response Relationship, Drug , Long-Term Potentiation/drug effects , Male , Microglia/drug effects , Nerve Fibers, Unmyelinated/drug effects , Posterior Horn Cells/drug effects , Rats , Rats, Sprague-Dawley , Remifentanil , Spinal Cord/drug effects , Spinal Cord/enzymology
18.
Exp Brain Res ; 236(8): 2231-2244, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29845449

ABSTRACT

Topically applied high-concentration capsaicin induces reversible dermo-epidermal denervation and depletion of capsaicin-sensitive nociceptors. This causes desensitization of distinct sensory modalities and is used to treat peripheral neuropathic pain and itch. For high-concentration capsaicin, the selectivity of loss of function and functional recovery rates of various afferent fibers subpopulations are unknown. This study used comprehensive quantitative sensory testing and vasomotor imaging to assess effectiveness, duration and sensory selectivity of high-concentration 8% capsaicin-ablation. Skin areas in 14 healthy volunteers were randomized to treatment with 8% capsaicin/vehicle patches for 1 and 24 h and underwent comprehensive sensory and vasomotor testing at 1, 7 and 21 days postpatch removal. Tests consisted of thermal detection and pain thresholds, tactile and vibration detection thresholds, mechanical pain threshold and mechanical pain sensitivity as well as micro-vascular and itch reactivity to histamine provocations. The 24 h capsaicin drastically inhibited warmth detection (P < 0.001), heat pain (P < 0.001) as well as histamine-induced itch (P < 0.05) and neurogenic flare (P < 0.001), but had no impact on tactile sensitivity, cold detection and cold pain. A marginal decrease in mechanical pain sensitivity was observed (P < 0.05). Capsaicin for 1 h had limited and transient sensory effects only affecting warmth and heat sensations. Time-dependent functional recovery was almost complete 21 days after the 24 h capsaicin exposure, while recovery of neurogenic inflammatory responsiveness remained partial. The psychophysically assessed sensory deficiencies induced by the used 8% capsaicin-ablation correspond well with a predominant effect on TRPV1+-cutaneous fibers. The method is easy to apply, well tolerated, and utilizable for studies on, e.g., interactions between skin barrier, inflammation and capsaicin-sensitive afferents.


Subject(s)
Capsaicin/pharmacology , Nerve Fibers, Unmyelinated/drug effects , Nociception/drug effects , Nociceptors/drug effects , Pain Threshold/drug effects , Pruritus/drug therapy , Sensory System Agents/pharmacology , Skin , Thermosensing/drug effects , Touch Perception/drug effects , Adolescent , Adult , Capsaicin/administration & dosage , Histamine/pharmacology , Histamine Agonists/pharmacology , Humans , Male , Perfusion Imaging , Pruritus/chemically induced , Sensory System Agents/administration & dosage , Skin/diagnostic imaging , Skin/drug effects , Skin/physiopathology , Time Factors , Young Adult
19.
Neurourol Urodyn ; 37(5): 1633-1640, 2018 06.
Article in English | MEDLINE | ID: mdl-29464762

ABSTRACT

AIMS: Transient receptor potential melastatin 8 (TRPM8) is proposed to be a promising therapeutic target for hypersensitive bladder disorders. We examined the effects of KPR-2579, a novel selective TRPM8 antagonist, on body temperature and on mechanosensitive bladder single-unit afferent activities (SAAs) provoked by intravesical acetic acid (AA) instillation in rats. METHODS: Female Sprague-Dawley rats were used. Effects of cumulative intravenous (i.v.) administrations of KPR-2579 (0.03-1 mg/kg) on deep body temperature were investigated (N = 18). In separate animals, effects of bolus administration of KPR-2579 (0.03 or 0.3 mg/kg, i.v.) on bladder hyperactivity induced by intravesical instillation of 0.1% AA were investigated using cystometry (N = 57) in a conscious free-moving condition or urethane-anesthetized condition, and SAA measurements (N = 41) were performed in a urethane-anesthetized condition. RESULTS: KPR-2579 at any doses tested did not affect body temperature. In cystometry measurements, a high dose (0.3 mg/kg) of KPR-2579 counteracted the shortened intercontraction interval provoked by AA instillation. In SAA measurements, 48 single afferent fibers (n = 24 in each fiber) were isolated. AA instillations significantly increased the SAAs of C fibers, but not of Aδ fibers, in the presence of KPR-2579's vehicle and a low dose (0.03 mg/kg) of KPR-2579. Pretreatment with a high dose (0.3 mg/kg) of KPR-2579 significantly inhibited the AA-induced activation of C-fiber SAAs. CONCLUSION: The present results suggest that TRPM8 channels play a role in the AA-induced pathological activation of mechanosensitive bladder C fibers in rats. KRP-2579 may be a promising drug for hypersensitive bladder disorders.


Subject(s)
Nerve Fibers, Unmyelinated/drug effects , TRPM Cation Channels/antagonists & inhibitors , Urinary Bladder, Overactive/drug therapy , Acetic Acid , Animals , Female , Nerve Fibers, Unmyelinated/physiology , Neurons, Afferent/physiology , Rats , Rats, Sprague-Dawley , Urinary Bladder, Overactive/chemically induced
20.
Neurourol Urodyn ; 37(6): 1897-1903, 2018 08.
Article in English | MEDLINE | ID: mdl-29508437

ABSTRACT

AIMS: We investigated the effects of silodosin, an α1A-adrenoceptor (AR) antagonist, on bladder function, especially on non-voiding contractions (NVCs), in a male rat model of bladder outlet obstruction (BOO) by evaluating cystometry (CMG) findings and bladder mechanosensitive single-unit afferent activities (SAAs), related with microcontractions, which may be similar with NVCs and to be of myogenic origin, in the rat model. METHODS: BOO was created by partial ligation of the posterior urethra. At 4 days after surgery for BOO, an osmotic pump filled with silodosin (0.12 mg/kg/day) or its vehicle was subcutaneously implanted. At 10 days after surgery, CMG and SAAs measurements were taken under conscious and urethane-anesthetized conditions, respectively. The SAAs of Aδ- and C-fibers, which were identified by electrical stimulation of the pelvic nerve and by bladder distention, and intravesical pressure were recorded during constant bladder-filling with saline. Microcontractions were divided into three phases: "ascending," "descending," and "stationary." RESULTS: The silodosin-treated group showed a smaller number of NVCs in CMG measurements and lower SAAs of both Aδ- and C-fibers than the vehicle-treated group during bladder-filling. Moreover, in the vehicle-treated groups, the SAAs of both fibers for the ascending phase of microcontractions were significantly higher than those for the other two phases. On the contrary, no significant change was found between any of these three phases in the silodosin-treated group. CONCLUSION: The present results suggest that silodosin inhibits the SAAs of mechanosensitive Aδ- and C-fibers at least partly due to suppressing myogenic bladder contractions in male BOO rats.


Subject(s)
Adrenergic alpha-1 Receptor Antagonists/pharmacology , Indoles/pharmacology , Mechanoreceptors/drug effects , Neurons, Afferent/drug effects , Urinary Bladder Neck Obstruction/physiopathology , Urinary Bladder/drug effects , Urinary Bladder/innervation , Urological Agents/pharmacology , Adrenergic alpha-1 Receptor Antagonists/administration & dosage , Animals , Drug Implants , Electric Stimulation , Indoles/administration & dosage , Male , Muscle Contraction/drug effects , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Unmyelinated/drug effects , Rats , Rats, Wistar , Urological Agents/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL