Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892226

ABSTRACT

Diarrhoea remains an important public health concern, particularly in developing countries, and has become difficult to treat because of antibacterial resistance. The development of synergistic antimicrobial agents appears to be a promising alternative treatment against diarrhoeic infections. In this study, the combined effect of tetracycline together with either nitroxoline, sanguinarine, or zinc pyrithione (representing various classes of plant-based compounds) was evaluated in vitro against selected diarrhoeic bacteria (Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Shigella flexneri, Vibrio parahaemolyticus, and Yersinia enterocolitica). The chequerboard method in 96-well microtiter plates was used to determine the sum of the fractional inhibitory concentration indices (FICIs). Three independent experiments were performed per combination, each in triplicate. It was observed that the combination of tetracycline with either nitroxoline, sanguinarine, or zinc pyrithione produced synergistic effects against most of the pathogenic bacteria tested, with FICI values ranging from 0.086 to 0.5. Tetracycline-nitroxoline combinations produced the greatest synergistic action against S. flexneri at a FICI value of 0.086. The combinations of the agents tested in this study can thus be used for the development of new anti-diarrhoeic medications. However, studies focusing on their in vivo anti-diarrhoeic activity and safety are required before any consideration for utilization in human medicine.


Subject(s)
Anti-Bacterial Agents , Drug Synergism , Microbial Sensitivity Tests , Tetracycline , Tetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Alkaloids/pharmacology , Bacteria/drug effects , Diarrhea/microbiology , Diarrhea/drug therapy , Humans , Pyridines/pharmacology , Nitroquinolines/pharmacology , Organometallic Compounds
2.
J Med Virol ; 95(3): e28652, 2023 03.
Article in English | MEDLINE | ID: mdl-36897017

ABSTRACT

The antiviral drugs tecovirimat, brincidofovir, and cidofovir are considered for mpox (monkeypox) treatment despite a lack of clinical evidence. Moreover, their use is affected by toxic side-effects (brincidofovir, cidofovir), limited availability (tecovirimat), and potentially by resistance formation. Hence, additional, readily available drugs are needed. Here, therapeutic concentrations of nitroxoline, a hydroxyquinoline antibiotic with a favourable safety profile in humans, inhibited the replication of 12 mpox virus isolates from the current outbreak in primary cultures of human keratinocytes and fibroblasts and a skin explant model by interference with host cell signalling. Tecovirimat, but not nitroxoline, treatment resulted in rapid resistance development. Nitroxoline remained effective against the tecovirimat-resistant strain and increased the anti-mpox virus activity of tecovirimat and brincidofovir. Moreover, nitroxoline inhibited bacterial and viral pathogens that are often co-transmitted with mpox. In conclusion, nitroxoline is a repurposing candidate for the treatment of mpox due to both antiviral and antimicrobial activity.


Subject(s)
Drug Repositioning , Mpox (monkeypox) , Nitroquinolines , Humans , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Cidofovir , Mpox (monkeypox)/drug therapy , Nitroquinolines/pharmacology
3.
Proc Natl Acad Sci U S A ; 117(46): 28918-28921, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33168727

ABSTRACT

REV1/POLζ-dependent mutagenic translesion synthesis (TLS) promotes cell survival after DNA damage but is responsible for most of the resulting mutations. A novel inhibitor of this pathway, JH-RE-06, promotes cisplatin efficacy in cancer cells and mouse xenograft models, but the mechanism underlying this combinatorial effect is not known. We report that, unexpectedly, in two different mouse xenograft models and four human and mouse cell lines we examined in vitro cisplatin/JH-RE-06 treatment does not increase apoptosis. Rather, it increases hallmarks of senescence such as senescence-associated ß-galactosidase, increased p21 expression, micronuclei formation, reduced Lamin B1, and increased expression of the immune regulators IL6 and IL8 followed by cell death. Moreover, although p-γ-H2AX foci formation was elevated and ATR expression was low in single agent cisplatin-treated cells, the opposite was true in cells treated with cisplatin/JH-RE-06. These observations suggest that targeting REV1 with JH-RE-06 profoundly affects the nature of the persistent genomic damage after cisplatin treatment and also the resulting physiological responses. These data highlight the potential of REV1/POLζ inhibitors to alter the biological response to DNA-damaging chemotherapy and enhance the efficacy of chemotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Nitroquinolines/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Aging/drug effects , Aging/pathology , Aging/physiology , Animals , Cell Line, Tumor , Cisplatin/administration & dosage , Cisplatin/pharmacology , DNA/biosynthesis , DNA Damage/physiology , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Drug Resistance, Neoplasm , Drug Synergism , Enzyme Inhibitors/administration & dosage , Humans , Mad2 Proteins/metabolism , Mice , Mutagenesis , Neoplasms/enzymology , Neoplasms/pathology , Nuclear Proteins/metabolism , Nucleotidyltransferases/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays/methods
4.
Arch Microbiol ; 204(8): 535, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35907036

ABSTRACT

Clioquinol and nitroxoline, two drugs with numerous pharmacological properties fallen into disuse for many decades. The first was considered dangerous due to contraindications and the second mainly because was taken as ineffective, despite its known antibacterial activity. In the last decades, the advances in pharmaceutical chemistry, molecular biology, toxicology and genetics allowed to better understand the cellular action of these compounds, some toxicological issues and/or activity scopes. Thus, a new opportunity for these drugs to be considered as potential antimicrobial agents has arisen. This review contemplates the trajectory of clioquinol and nitroxoline from their emergence to the present day, emphasizing the new studies that indicate the possibility of reintroduction for specific cases.


Subject(s)
Anti-Infective Agents , Clioquinol , Nitroquinolines , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Clioquinol/pharmacology , Nitroquinolines/pharmacology
5.
Acta Pharmacol Sin ; 43(3): 681-691, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33931764

ABSTRACT

The PTEN/AKT/mTOR signaling pathway is frequently dysregulated in non-small cell lung cancer (NSCLC), but the mechanisms are not well-understood. The present study found that the ubiquitin ligase TRIM25 is highly expressed in NSCLC tissues and promotes NSCLC cell survival and tumor growth. Mechanistic studies revealed that TRIM25 binds to PTEN and mediates its K63-linked ubiquitination at K266. This modification prevents the plasma membrane translocation of PTEN and reduces its phosphatase activity therefore accumulating PI(3,4,5)P3. TRIM25 thus activates the AKT/mTOR signaling. Moreover, we found that the antibacterial nitroxoline can activate PTEN by reducing its K63-linked polyubiquitination and sensitizes NSCLC to cisplatin-induced apoptosis. This study thus identified a novel modulation on the PTEN signaling pathway by TRIM25 and provides a potential target for NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , DNA-Binding Proteins/metabolism , Lung Neoplasms/pathology , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Humans , Nitroquinolines/pharmacology , Phosphoric Monoester Hydrolases/physiology , RNA, Small Interfering/metabolism , Ubiquitination/physiology
6.
J Antimicrob Chemother ; 75(2): 300-308, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31633764

ABSTRACT

OBJECTIVES: To determine the mechanism of resistance to the antibiotic nitroxoline in Escherichia coli. METHODS: Spontaneous nitroxoline-resistant mutants were selected at different concentrations of nitroxoline. WGS and strain reconstruction were used to define the genetic basis for the resistance. The mechanistic basis of resistance was determined by quantitative PCR (qPCR) and by overexpression of target genes. Fitness costs of the resistance mutations and cross-resistance to other antibiotics were also determined. RESULTS: Mutations in the transcriptional repressor emrR conferred low-level resistance to nitroxoline [nitroxoline MIC (MICNOX)=16 mg/L] by increasing the expression of the emrA and emrB genes of the EmrAB-TolC efflux pump. These resistant mutants showed no fitness reduction and displayed cross-resistance to nalidixic acid. Second-step mutants with higher-level resistance (MICNOX=32-64 mg/L) had mutations in the emrR gene, together with either a 50 kb amplification, a mutation in the gene marA, or an IS upstream of the lon gene. The latter mutations resulted in higher-level nitroxoline resistance due to increased expression of the tolC gene, which was confirmed by overexpressing tolC from an inducible plasmid in a low-level resistance mutant. Furthermore, the emrR mutations conferred a small increase in resistance to nitrofurantoin only when combined with an nfsAB double-knockout mutation. However, nitrofurantoin-resistant nfsAB mutants showed no cross-resistance to nitroxoline. CONCLUSIONS: Mutations in different genes causing increased expression of the EmrAB-TolC pump lead to an increased resistance to nitroxoline. The structurally similar antibiotics nitroxoline and nitrofurantoin appear to have different modes of action and resistance mechanisms.


Subject(s)
Drug Resistance, Bacterial/genetics , Escherichia coli Proteins , Escherichia coli/genetics , Nitroquinolines , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Mutation , Nitroquinolines/pharmacology
7.
J Enzyme Inhib Med Chem ; 35(1): 1331-1344, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32588672

ABSTRACT

Pancreatic cancer (PC) is one of the deadliest carcinomas and in most cases, which are diagnosed with locally advanced or metastatic disease, current therapeutic options are highly unsatisfactory. Based on the anti-proliferative effects shown by nitroxoline, an old urinary antibacterial agent, we explored a large library of newly synthesised derivatives to unravel the importance of the OH moiety and pyridine ring of the parent compound. The new derivatives showed a valuable anti-proliferative effect and some displayed a greater effect as compared to nitroxoline against three pancreatic cancer cell lines with different genetic profiles. In particular, in silico pharmacokinetic data, clonogenicity assays and selectivity indexes of the most promising compounds showed several advantages for such derivatives, as compared to nitroxoline. Moreover, some of these novel compounds had stronger effects on cell viability and/or clonogenic capacity in PC cells as compared to erlotinib, a targeted agent approved for PC treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Nitroquinolines/chemical synthesis , Nitroquinolines/pharmacology , Pancreatic Neoplasms/pathology , Carbon-13 Magnetic Resonance Spectroscopy , Cell Line, Tumor , Humans , Nitroquinolines/chemistry , Proton Magnetic Resonance Spectroscopy , Structure-Activity Relationship
8.
J Antimicrob Chemother ; 74(10): 2934-2937, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31292653

ABSTRACT

BACKGROUND: Infections caused by carbapenemase-producing Enterobacterales (CPE) constitute a major global health concern and are associated with increased morbidity and mortality. Nitroxoline is an old antibiotic, which has recently been re-launched for the treatment of uncomplicated urinary tract infection. Because of low resistance rates it could be an interesting option for treatment of MDR isolates, yet data on CPE susceptibility are scarce. OBJECTIVES: To analyse the in vitro activity of nitroxoline against CPE. METHODS: MICs of nitroxoline were determined by agar dilution for a collection of well-characterized carbapenemase producers (n = 105), producing OXA-48-like (n = 36), VIM (n = 21), IMI (n = 9), IMP (n = 6), NDM (n = 22), KPC (n = 11), OXA-58 (n = 2) and GES (n = 2). For comparison, MICs of ertapenem, imipenem and meropenem were determined by agar gradient diffusion. RESULTS: For all 105 isolates, the MIC50/90 of nitroxoline was 8/16 mg/L. All Escherichia coli isolates (30/30, 100%) showed low MICs of 2-8 mg/L and were susceptible to nitroxoline. MICs of 32 mg/L were recorded for five isolates of VIM- and IMI-producing Enterobacter cloacae (n = 3) and OXA- and VIM-producing Klebsiella pneumoniae (n = 2). CONCLUSIONS: Nitroxoline exhibited excellent in vitro activity against most isolates producing common and rare carbapenemases. If the current EUCAST susceptibility breakpoint of ≤16 mg/L for E. coli in uncomplicated urinary tract infections was applied, 95.2% (100/105) of isolates would be classified as susceptible. Nitroxoline could therefore be an alternative oral option for treatment of uncomplicated urinary tract infections caused by CPE.


Subject(s)
Anti-Infective Agents, Urinary/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Enterobacter cloacae/drug effects , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Nitroquinolines/pharmacology , Humans , Imipenem/pharmacology , Meropenem/pharmacology , Microbial Sensitivity Tests
9.
Chem Res Toxicol ; 32(11): 2182-2191, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31638783

ABSTRACT

Oxidative stress has been documented as one of the significant causes of neurodegenerative diseases. Therefore, antioxidant therapy for the prevention of neurodegenerative diseases seems to be an interesting strategy in drug discovery. The quinoline-based compound, namely 5-nitro-8-quinolinol (NQ), has shown excellent antimicrobial, anticancer, and anti-inflammatory activities. However, its neuroprotective effects and precise molecular mechanisms in human neuronal cells have not been elucidated. In this work, the effects of NQ on cell viability and morphology were evaluated by the MTT assay and microscopic observation. Moreover, the underlying mechanisms of this compound, inducing the survival rate of neuronal cells under oxidative stress, were investigated by reactive oxygen species (ROS) assay, flow cytometry, Western blotting, and immunofluorescence techniques. In addition, the molecular interaction of sirtuin1 (SIRT1) with NQ was constructed using the AutoDock 4.2 program. Interestingly, NQ protected SH-SY5Y cells against H2O2-induced neurotoxicity through scavenging ROS, upregulating the levels of SIRT1 and FOXO3a, increasing the levels of antioxidant enzymes (catalase and superoxide dismutase), promoting antiapoptotic BCL-2 protein expression, and reducing apoptosis. Besides, molecular docking also revealed that NQ interacted satisfactorily with the active site of SIRT1 similar to the resveratrol, which is the SIRT1 activator and strong antioxidant. These findings suggest that NQ prevents oxidative-stress-induced neurodegeneration because of its antioxidant capacity as well as antiapoptotic property through SIRT1-FOXO3a signaling pathway. Thus, NQ might be a drug that could be repurposed for prevention of neurodegeneration.


Subject(s)
Drug Repositioning , Neurodegenerative Diseases/prevention & control , Neurons/drug effects , Nitroquinolines/pharmacology , Protective Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Forkhead Box Protein O3/metabolism , Humans , Hydrogen Peroxide/toxicity , Molecular Docking Simulation , Neurons/metabolism , Neurons/pathology , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism
10.
Inorg Chem ; 58(18): 12334-12347, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31464130

ABSTRACT

Lysosomal cysteine peptidase cathepsin B (catB) is an important tumor-promoting factor involved in tumor progression and metastasis representing a relevant target for the development of new antitumor agents. In the present study, we synthesized 11 ruthenium compounds bearing either the clinical agent nitroxoline that was previously identified as potent selective reversible inhibitor of catB activity or its derivatives. We demonstrated that organoruthenation is a viable strategy for obtaining highly effective and specific inhibitors of catB endo- and exopeptidase activity, as shown using enzyme kinetics and microscale thermophoresis. Furthermore, we showed that the novel metallodrugs by catB inhibition significantly impair processes of tumor progression in in vitro cell based functional assays at low noncytotoxic concentrations. Generally, by using metallodrugs we observed an improvement in catB inhibition, a reduction of extracellular matrix degradation and tumor cell invasion in comparison to free ligands, and a correlation with the reactivity of the monodentate halide leaving ligand.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cathepsin B/antagonists & inhibitors , Neoplasm Invasiveness/prevention & control , Nitroquinolines/pharmacology , Ruthenium/pharmacology , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Cathepsin B/metabolism , Cell Line, Tumor , Female , Humans , Models, Molecular , Neoplasm Invasiveness/pathology , Nitroquinolines/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Ruthenium/chemistry
11.
Bioorg Med Chem Lett ; 28(7): 1239-1247, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29503024

ABSTRACT

Human cathepsin B is a cysteine protease with many house-keeping functions, such as intracellular proteolysis within lysosomes. Its increased activity and expression have been strongly associated with many pathological processes, including cancers. We present here the design and synthesis of novel derivatives of nitroxoline as inhibitors of cathepsin B. These were prepared either by omitting the pyridine part, or by modifying positions 2, 7, and 8 of nitroxoline. All compounds were evaluated for their ability to inhibit endopeptidase and exopeptidase activities of cathepsin B. For the most promising inhibitors, the ability to reduce extracellular and intracellular collagen IV degradation was determined, followed by their evaluation in cell-based in vitro models of tumor invasion. The presented data show that we have further defined the structural requirements for cathepsin B inhibition by nitroxoline derivatives and provided additional knowledge that could lead to non-peptidic compounds with usefulness against tumor progression.


Subject(s)
Antineoplastic Agents/pharmacology , Cathepsin B/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Nitroquinolines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cathepsin B/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Nitroquinolines/chemical synthesis , Nitroquinolines/chemistry , Structure-Activity Relationship
12.
Anticancer Drugs ; 28(4): 376-383, 2017 04.
Article in English | MEDLINE | ID: mdl-28301380

ABSTRACT

The aim of this study was to identify the most potent quinoline-based anti-infectives for the treatment of multiple myeloma (MM) and to understand the molecular mechanisms. A small-scale screen against a panel of marketed quinoline-based drugs was performed in MM cell lines. Cell apoptosis was examined by flow cytometry. Anti-MM activity was also evaluated in nude mice. Western blotting was performed to investigate mechanisms. Nitroxoline (NXQ) was the most effective in suppressing MM cell proliferation. NXQ induced more than 40% MM cell apoptosis within 24 h and potentiated anti-MM activities of current major drugs including doxorubicin and lenalidomide. This finding was shown by activation of caspase-3, a major executive apoptotic enzyme, and by inactivation of PARP, a major enzyme in DNA damage repair. NXQ also suppressed prosurvival proteins Bcl-xL and Mcl-1. Moreover, NXQ suppressed the growth of myeloma xenografts in nude mice models. In the mechanistic study, NXQ was found to downregulate TRIM25, a highly expressed ubiquitin ligase in MM. Notably, NXQ upregulated tumor suppressor p53, but not PTEN. Furthermore, overexpression of TRIM25 decreased p53 protein. This study indicated that the long-term use of anti-infective NXQ has potential for MM treatment by targeting the TRIM25/p53 axle.


Subject(s)
Multiple Myeloma/drug therapy , Nitroquinolines/pharmacology , Transcription Factors/metabolism , Tripartite Motif Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism , A549 Cells , Animals , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Humans , Mice , Mice, Nude , Molecular Targeted Therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Off-Label Use , Random Allocation , Transcription Factors/biosynthesis , Transcription Factors/genetics , Tripartite Motif Proteins/biosynthesis , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/biosynthesis , Ubiquitin-Protein Ligases/genetics , Xenograft Model Antitumor Assays
13.
Bioorg Med Chem Lett ; 27(7): 1538-1546, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28262524

ABSTRACT

A new class of pyrazolo[4,3-c]quinoline (5a-i, 7a-b) and pyrano[3,2-c]quinoline (9a-i) derivatives were designed and synthesized in moderate to good yields by microwave conditions. To enhance the yield of pyrano[3,2-c]quinoline derivatives, multicomponent one-pot synthesis has been developed. The synthesized compounds were identified by spectral and elemental analyses. Compounds 9a and 9i showed good antibacterial activity against Gram-positive and Gram-negative bacterial strains. All of the new compounds exhibited weak to moderate antioxidant activity, compound 9d exerted significant antioxidant power. The cytotoxicity of these compounds were also evaluated against MCF-7 (breast) and A549 (Lung) cancer cell lines. Most of the compounds displayed moderate to good cytotoxic activity against these cell lines. Compound 9i was found to be significantly active in this assay and also induced cell death by apoptosis. Molecular docking studies were carried out using EGFR inhibitor in order to determine the molecular interactions.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Free Radical Scavengers/pharmacology , Nitroquinolines/pharmacology , A549 Cells , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biphenyl Compounds/chemistry , Catalytic Domain , ErbB Receptors/chemistry , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Green Chemistry Technology , Humans , MCF-7 Cells , Molecular Docking Simulation , Nitroquinolines/chemical synthesis , Nitroquinolines/chemistry , Picrates/chemistry , Pyrans/chemical synthesis , Pyrans/chemistry , Pyrans/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Structure-Activity Relationship
14.
Org Biomol Chem ; 15(44): 9352-9361, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29087414

ABSTRACT

The BET family of bromodomain-containing proteins (BRDs) is believed to be a promising drug target for therapeutic intervention in a number of diseases including cancer, inflammation and cardiovascular diseases. Hence, there is a great demand for novel chemotypes of BET inhibitors. The drug repurposing strategy offers great benefits to find inhibitors with known safety and pharmacokinetic profiles, thus increasing medicinal chemists' interest in recent years. Using the drug repurposing strategy, a BRD4-specific score based virtual screening campaign on an in-house drug library was conducted followed by the ALPHA screen assay test. Nitroxoline, an FDA-approved antibiotic, was identified to effectively disrupt the interaction between the first bromodomain of BRD4 (bromodomain-containing protein 4) and acetylated H4 peptide with IC50 of 0.98 µM. Nitroxoline inhibited all BET family members with good selectivity against non-BET bromodomain-containing proteins, thus it is defined as a selective BET inhibitor. Based on the crystal structure of the nitroxoline-BRD4_BD1 complex, the mechanism of action as well as BET specificity of nitroxoline were determined. Since the anticancer activity of nitroxoline against MLL leukemia, one of the BET related diseases, has not been studied before, we tested whether nitroxoline might serve as a potential repurposing drug candidate for MLL leukemia. Nitroxoline effectively inhibited the proliferation of MLL leukemia cells by inducing cell cycle arrest and apoptosis. The profound efficacy is, at least in part, due to the inhibition of BET and downregulation of target gene transcription. Our discovery of nitroxoline as a BET inhibitor suggests potential application of nitroxoline and its derivatives for clinical translation in BET family related diseases.


Subject(s)
Drug Design , Nitroquinolines/chemistry , Nitroquinolines/pharmacology , Nuclear Proteins/antagonists & inhibitors , Apoptosis/drug effects , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Models, Molecular , Nuclear Proteins/chemistry , Protein Domains
15.
Biol Chem ; 397(2): 165-74, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26565553

ABSTRACT

Cathepsin B is a lysosomal cysteine protease that is implicated in a number of physiological processes, including protein turnover in lysosomes. Changes in its expression are associated with a variety of pathological processes, including cancer. Due to the structural feature, termed the occluding loop, cathepsin B differs from other cysteine proteases in possessing both, endopeptidase and exopeptidase activity. Here we investigated the impact of both cathepsin B activities on intracellular and extracellular collagen IV degradation and tumour cell invasion using new selective synthetic inhibitors, 2-{[(8-hydroxy-5-nitroquinoline-7-yl)methyl]amino}-acetonitrile (1), 8-(4-methylpiperidin-1-yl)-5-nitroquinoline (2) and 7-[(4-methylpiperidin-1yl)methyl]-5-nitroquinolin-8-ol (3). All three compounds (5 µM) reduced extracellular degradation of collagen IV by MCF-10A neoT cells by 45-70% as determined by spectrofluorimetry and they (50 µM) attenuated intracellular collagen IV degradation by 40-60% as measured with flow cytometry. Furthermore, all three compounds (5 µM) impaired MCF-10A neoT cell invasion by 40-80% as assessed by measuring electrical impedance in real time. Compounds 1 and 3 (5 µM), but not compound 2, significantly reduced the growth of MMTV-PyMT multicellular tumour spheroids. Collectively, these data suggest that the efficient strategy to impair harmful cathepsin B activity in tumour progression may include simultaneous and potent inhibition of cathepsin B endopeptidase and exopeptidase activities.


Subject(s)
Aminoacetonitrile/analogs & derivatives , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Neoplasm Invasiveness/prevention & control , Nitroquinolines/pharmacology , Piperidines/pharmacology , Protease Inhibitors/pharmacology , Aminoacetonitrile/chemical synthesis , Aminoacetonitrile/chemistry , Aminoacetonitrile/pharmacology , Breast Neoplasms/enzymology , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , Humans , Molecular Structure , Nitroquinolines/chemical synthesis , Nitroquinolines/chemistry , Piperidines/chemical synthesis , Piperidines/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
16.
Bioorg Med Chem ; 23(10): 2377-86, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25846065

ABSTRACT

An antileishmanial pharmacomodulation at position 4 of 8-nitroquinolin-2(1H)-one was conducted by using the Sonogashira and Suzuki-Miyaura coupling reactions. A series of 25 derivatives was tested in vitro on the promastigote stage of Leishmania donovani along with an in vitro cytotoxicity evaluation on the human HepG2 cell line. Only the derivatives bearing a phenyl moiety at position 4 of the quinoline ring displayed interesting biologic profile, when the phenyl moiety was substituted at the para position by a Br or Cl atom, or by a CF3 group. Among them, molecules 17 and 19 were the most selective and were then tested in vitro on the intracellular amastigote stage of both L. donovani and Leishmania infantum, in parallel with complementary in vitro cytotoxicity assays on the macrophage cell lines THP-1 and J774A.1. Molecule 19 showed no activity on the amastigote stages of the parasites and some cytotoxicity on the J774A.1 cell line while molecule 17, less cytotoxic than 19, showed anti-amastigote activity in L. infantum, being 3 times less active than miltefosine but more active and selective than pentamidine. Nevertheless, hit-molecule 17 did not appear as selective as the parent compound.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Leishmania donovani/drug effects , Leishmania infantum/drug effects , Life Cycle Stages/drug effects , Nitroquinolines/chemical synthesis , Antiprotozoal Agents/pharmacology , Drug Design , Hep G2 Cells , Humans , Leishmania donovani/growth & development , Leishmania infantum/growth & development , Macrophages/drug effects , Macrophages/parasitology , Nitroquinolines/pharmacology , Parasitic Sensitivity Tests , Pentamidine/pharmacology , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Structure-Activity Relationship
17.
Bioorg Chem ; 58: 1-10, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25462621

ABSTRACT

Design, microwave-assisted synthesis of novel 4-aryl (alkyl)amino-3-nitroquinoline (1a-1l) and 2,4-diaryl (dialkyl)amino-3-nitroquinolines (2a-2k and 3a) via regioselective and complete nucleophilic substitution of 2,4-dichloro-3-nitroquinoline, respectively in water are presented. The newly synthesized compounds were evaluated for the first time for antiproliferative activity against EGFR overexpressing human lung (A-549 and H-460) and colon (HCT-116-wild type and HCT-116-p53 null) cancer cell lines. Some notions about structure-activity relationships (SAR) are presented. Compounds 2e, 2f, 2j and 3a overall exhibited excellent anticancer activity comparable to erlotinib which was used as a positive control. Molecular modeling studies disclosed the recognition pattern of the compounds and also supported the observed SAR.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Microwaves , Nitroquinolines/chemical synthesis , Nitroquinolines/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Nitroquinolines/chemistry , Spectrum Analysis/methods , Structure-Activity Relationship
18.
Emerg Microbes Infect ; 13(1): 2294854, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38085067

ABSTRACT

ABSTRACTNew Delhi metallo-ß-lactamase-1 (NDM-1) has rapidly disseminated worldwide, leading to multidrug resistance and worse clinical prognosis. Designing and developing effective NDM-1 inhibitors is a critical and urgent challenge. In this study, we constructed a library of long-lasting nitroxoline derivatives and identified ASN-1733 as a promising dual-functional antibiotic. ASN-1733 can effectively compete for Ca2+ on the bacterial surface, causing the detachment of lipopolysaccharides (LPS), thereby compromising the outer membrane integrity and permeability and exhibiting broad-spectrum bactericidal activity. Moreover, ASN-1733 demonstrated wider therapeutic applications than nitroxoline in mouse sepsis, thigh and mild abdominal infections. Furthermore, ASN-1733 can effectively inhibit the hydrolytic capability of NDM-1 and exhibits synergistic killing effects in combination with meropenem against NDM-1 positive bacteria. Mechanistic studies using enzymatic experiments and computer simulations revealed that ASN-1733 can bind to key residues on Loop10 of NDM-1, hindering substrate entry into the enzyme's active site and achieving potent inhibitory activity (Ki = 0.22 µM), even in the presence of excessive Zn2+. These findings elucidate the antibacterial mechanism of nitroxoline and its derivatives, expand their potential application in the field of antibacterial agents and provide new insights into the development of novel NDM-1 inhibitors.


Subject(s)
Bacterial Infections , Nitroquinolines , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Meropenem/pharmacology , Nitroquinolines/pharmacology , beta-Lactamases/metabolism , Bacteria , Microbial Sensitivity Tests
19.
Antimicrob Agents Chemother ; 56(11): 6021-5, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22926564

ABSTRACT

Since cations have been reported as essential regulators of biofilm, we investigated the potential of the broad-spectrum antimicrobial and cation-chelator nitroxoline as an antibiofilm agent. Biofilm mass synthesis was reduced by up to 80% at sub-MIC nitroxoline concentrations in Pseudomonas aeruginosa, and structures formed were reticulate rather than compact. In preformed biofilms, viable cell counts were reduced by 4 logs at therapeutic concentrations. Complexation of iron and zinc was demonstrated to underlie nitroxoline's potent antibiofilm activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Chelating Agents/pharmacology , Iron/metabolism , Nitroquinolines/pharmacology , Pseudomonas aeruginosa/drug effects , Zinc/metabolism , Anti-Bacterial Agents/metabolism , Biofilms/growth & development , Cations, Divalent , Chelating Agents/metabolism , Ciprofloxacin/pharmacology , Colistin/pharmacology , Microbial Sensitivity Tests , Nitroquinolines/metabolism , Plankton/drug effects , Plankton/growth & development , Pseudomonas aeruginosa/growth & development
20.
Org Biomol Chem ; 10(15): 2979-92, 2012 Apr 21.
Article in English | MEDLINE | ID: mdl-22391578

ABSTRACT

Two substituted oxines, nitroxoline (5) and 5-chloroquinolin-8-yl phenylcarbamate (22), were identified as hits in a high-throughput screen aimed at finding new anti-angiogenic agents. In a previous study, we have elucidated the molecular mechanism of antiproliferative activity of nitroxoline in endothelial cells, which comprises of a dual inhibition of type 2 human methionine aminopeptidase (MetAP2) and sirtuin 1 (SIRT1). Structure-activity relationship study (SAR) of nitroxoline offered many surprises where minor modifications yielded oxine derivatives with increased potency against human umbilical vein endothelial cells (HUVEC), but with entirely different as yet unknown mechanisms. For example, 5-nitrosoquinolin-8-ol (33) inhibited HUVEC growth with sub-micromolar IC(50), but did not affect MetAP2 or MetAP1, and it only showed weak inhibition against SIRT1. Other sub-micromolar inhibitors were derivatives of 5-aminoquinolin-8-ol (34) and 8-sulfonamidoquinoline (32). A sulfamate derivative of nitroxoline (48) was found to be more potent than nitroxoline with the retention of activities against MetAP2 and SIRT1. The bioactivity of the second hit, micromolar HUVEC and MetAP2 inhibitor carbamate 22 was improved further with an SAR study culminating in carbamate 24 which is a nanomolar inhibitor of HUVEC and MetAP2.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Human Umbilical Vein Endothelial Cells/drug effects , Hydroxyquinolines/chemical synthesis , Nitroquinolines/chemical synthesis , Phenylcarbamates/chemical synthesis , Aminopeptidases/antagonists & inhibitors , Aminopeptidases/metabolism , Angiogenesis Inhibitors/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Enzyme Inhibitors/pharmacology , Glycoproteins/antagonists & inhibitors , Glycoproteins/metabolism , High-Throughput Screening Assays , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Hydroxyquinolines/pharmacology , Methionyl Aminopeptidases , Nitroquinolines/pharmacology , Phenylcarbamates/pharmacology , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL