Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Arch Toxicol ; 97(1): 39-72, 2023 01.
Article in English | MEDLINE | ID: mdl-36335468

ABSTRACT

Organophosphorus compounds (OP) are a constant problem, both in the military and in the civilian field, not only in the form of acute poisoning but also for their long-lasting consequences. No antidote has been found that satisfactorily protects against the toxic effects of organophosphates. Likewise, there is no universal cure to avert damage after poisoning. The key mechanism of organophosphate toxicity is the inhibition of acetylcholinesterase. The overstimulation of nicotinic or muscarinic receptors by accumulated acetylcholine on a synaptic cleft leads to activation of the glutamatergic system and the development of seizures. Further consequences include generation of reactive oxygen species (ROS), neuroinflammation, and the formation of various other neuropathologists. In this review, we present neuroprotection strategies which can slow down the secondary nerve cell damage and alleviate neurological and neuropsychiatric disturbance. In our opinion, there is no unequivocal approach to ensure neuroprotection, however, sooner the neurotoxicity pathway is targeted, the better the results which can be expected. It seems crucial to target the key propagation pathways, i.e., to block cholinergic and, foremostly, glutamatergic cascades. Currently, the privileged approach oriented to stimulating GABAAR by benzodiazepines is of limited efficacy, so that antagonizing the hyperactivity of the glutamatergic system could provide an even more efficacious approach for terminating OP-induced seizures and protecting the brain from permanent damage. Encouraging results have been reported for tezampanel, an antagonist of GluK1 kainate and AMPA receptors, especially in combination with caramiphen, an anticholinergic and anti-glutamatergic agent. On the other hand, targeting ROS by antioxidants cannot or already developed neuroinflammation does not seem to be very productive as other processes are also involved.


Subject(s)
Neurotoxicity Syndromes , Organophosphate Poisoning , Humans , Acetylcholinesterase/metabolism , Reactive Oxygen Species , Organophosphates , Neuroinflammatory Diseases , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/prevention & control , Organophosphate Poisoning/drug therapy , Organophosphate Poisoning/prevention & control , Seizures , Cholinesterase Inhibitors/toxicity
2.
Toxicol Appl Pharmacol ; 415: 115443, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33548273

ABSTRACT

The brain is a critical target for the toxic action of organophosphorus (OP) inhibitors of acetylcholinesterase (AChE) such as the nerve agent sarin. However, the available oxime antidote 2-PAM only reactivates OP-inhibited AChE in peripheral tissues. Monoisonitrosoacetone (MINA), a tertiary oxime, reportedly reactivates AChE in the central nervous system (CNS). The current study investigated whether MINA would be beneficial as a supplemental oxime treatment in preventing lethality and reducing morbidity following lethal sarin exposure, MINA supplement would improve AChE recovery in the body, and MINA would be detectable in the CNS. Guinea pigs were exposed to sarin and treated with atropine sulfate and 2-PAM at one minute. Additional 2-PAM or MINA was administered at 3, 5, 15, or 30 min after sarin exposure. Survival and morbidity were assessed at 2 and 24 h. AChE activity in brain and peripheral tissues was evaluated one hour after MINA and 2-PAM treatment. An in vivo microdialysis technique was used to determine partitioning of MINA into the brain. A liquid chromatography-tandem mass spectrometry method was developed for the analysis of MINA in microdialysates. MINA-treated animals exhibited significantly higher survival and lower morbidity compared to 2-PAM-treated animals. 2-PAM was significantly more effective in reactivating AChE in peripheral tissues, but only MINA reactivated AChE in the CNS. MINA was found in guinea pig brain microdialysate samples beginning at ~10 min after administration in a dose-related manner. The data strongly suggest that a centrally penetrating oxime could provide significant benefit as an adjunct to atropine and 2-PAM therapy for OP intoxication.


Subject(s)
Acetylcholinesterase/metabolism , Antidotes/pharmacology , Brain/drug effects , Cholinesterase Reactivators/pharmacology , Organophosphate Poisoning/prevention & control , Oximes/pharmacology , Sarin , Animals , Antidotes/metabolism , Brain/enzymology , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Activation , Guinea Pigs , Male , Microdialysis , Organophosphate Poisoning/enzymology , Oximes/metabolism , Permeability , Pralidoxime Compounds/metabolism , Pralidoxime Compounds/pharmacology , Tissue Distribution
3.
Toxicol Appl Pharmacol ; 416: 115466, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33631229

ABSTRACT

Soman, an organophosphorus (OP) compound, disrupts nervous system function through inactivation of acetylcholinesterase (AChE), the enzyme that breaks down acetylcholine at synapses. Left untreated, a state of prolonged seizure activity (status epilepticus, SE) is induced, causing widespread neuronal damage and associated cognitive and behavioral impairments. Previous research demonstrated that therapeutic stimulation of A1 adenosine receptors (A1ARs) can prevent or terminate soman-induced seizure. This study examined the ability of three potent A1AR agonists to provide neuroprotection and, ultimately, prevent observable cognitive and behavioral deficits following exposure to soman. Sprague Dawley rats were challenged with a seizure-inducing dose of soman (1.2 x LD50) and treated 1 min later with one of the following A1AR agonists: (6)-Cyclopentyladenosine (CPA), 2-Chloro-N6-cyclopentyladenosine (CCPA) or N-bicyclo(2.2.1)hept-2-yl-5'-chloro-5'-deoxyadenosine (cdENBA). An active avoidance shuttle box task was used to evaluate locomotor responses to aversive stimuli at 3, 7 and 14 days post-exposure. Animals treated with CPA, CCPA or cdENBA demonstrated a higher number of avoidance responses and a faster reaction to the aversive stimulus than the soman/saline control group across all three sessions. Findings suggest that A1AR agonism is a promising neuroprotective countermeasure, capable of preventing the long-term deficits in learning and memory that are characteristic of soman intoxication.


Subject(s)
Adenosine A1 Receptor Agonists/pharmacology , Anticonvulsants/pharmacology , Brain/drug effects , Neuroprotective Agents/pharmacology , Organophosphate Poisoning/prevention & control , Receptor, Adenosine A1/drug effects , Seizures/prevention & control , Soman , Adenosine/analogs & derivatives , Adenosine/pharmacology , Animals , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Deoxyadenosines/pharmacology , Disease Models, Animal , Male , Organophosphate Poisoning/etiology , Organophosphate Poisoning/metabolism , Organophosphate Poisoning/physiopathology , Rats, Sprague-Dawley , Receptor, Adenosine A1/metabolism , Seizures/chemically induced , Seizures/metabolism , Seizures/pathology
4.
Annu Rev Pharmacol Toxicol ; 57: 309-327, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28061690

ABSTRACT

Originally, organophosphorus (OP) toxicology consisted of acetylcholinesterase inhibition by insecticides and chemical threat agents acting as phosphorylating agents for serine in the catalytic triad, but this is no longer the case. Other serine hydrolases can be secondary OP targets, depending on the OP structure, and include neuropathy target esterase, lipases, and endocannabinoid hydrolases. The major OP herbicides are glyphosate and glufosinate, which act in plants but not animals to block aromatic amino acid and glutamine biosynthesis, respectively, with safety for crops conferred by their expression of herbicide-tolerant targets and detoxifying enzymes from bacteria. OP fungicides, pharmaceuticals including calcium retention agents, industrial chemicals, and cytochrome P450 inhibitors act by multiple noncholinergic mechanisms, often with high potency and specificity. One type of OP-containing fire retardant forms a highly toxic bicyclophosphate γ-aminobutyric acid receptor antagonist upon combustion. Some OPs are teratogenic, mutagenic, or carcinogenic by known mechanisms that can be avoided as researchers expand knowledge of OP chemistry and toxicology for future developments in bioregulation.


Subject(s)
Insecticides/toxicity , Occupational Exposure/prevention & control , Organophosphate Poisoning/prevention & control , Xenobiotics/toxicity , Animals , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/therapeutic use , Herbicides/chemistry , Herbicides/metabolism , Herbicides/toxicity , Humans , Insecticides/chemistry , Insecticides/metabolism , Organophosphate Poisoning/metabolism , Xenobiotics/chemistry , Xenobiotics/metabolism
5.
J Pharmacol Exp Ther ; 375(1): 115-126, 2020 10.
Article in English | MEDLINE | ID: mdl-32759369

ABSTRACT

Earlier reports suggested that galantamine, a drug approved to treat mild-to-moderate Alzheimer's disease (AD), and other centrally acting reversible acetylcholinesterase (AChE) inhibitors can serve as adjunct pretreatments against poisoning by organophosphorus compounds, including the nerve agent soman. The present study was designed to determine whether pretreatment with a clinically relevant oral dose of galantamine HBr mitigates the acute toxicity of 4.0×LD50 soman (15.08 µg/kg) in Macaca fascicularis posttreated intramuscularly with the conventional antidotes atropine (0.4 mg/kg), 2-pyridine aldoxime methyl chloride (30 mg/kg), and midazolam (0.32 mg/kg). The pharmacokinetic profile and maximal degree of blood AChE inhibition (∼25%-40%) revealed that the oral doses of 1.5 and 3.0 mg/kg galantamine HBr in these nonhuman primates (NHPs) translate to human-equivalent doses that are within the range used for AD treatment. Subsequent experiments demonstrated that 100% of NHPs pretreated with either dose of galantamine, challenged with soman, and posttreated with conventional antidotes survived 24 hours. By contrast, given the same posttreatments, 0% and 40% of the NHPs pretreated, respectively, with vehicle and pyridostigmine bromide (1.2 mg/kg, oral), a peripherally acting reversible AChE inhibitor approved as pretreatment for military personnel at risk of exposure to soman, survived 24 hours after the challenge. In addition, soman caused extensive neurodegeneration in the hippocampi of saline- or pyridostigmine-pretreated NHPs, but not in the hippocampi of galantamine-pretreated animals. To our knowledge, this is the first study to demonstrate the effectiveness of clinically relevant oral doses of galantamine to prevent the acute toxicity of supralethal doses of soman in NHPs. SIGNIFICANCE STATEMENT: This is the first study to demonstrate that a clinically relevant oral dose of galantamine effectively prevents lethality and neuropathology induced by a supralethal dose of the nerve agent soman in Cynomolgus monkeys posttreated with conventional antidotes. These findings are of major significance for the continued development of galantamine as an adjunct pretreatment against nerve agent poisoning.


Subject(s)
Antidotes/therapeutic use , Chemical Warfare Agents/toxicity , Galantamine/therapeutic use , Hippocampus/drug effects , Organophosphate Poisoning/prevention & control , Soman/toxicity , Acetylcholinesterase/blood , Administration, Oral , Animals , Antidotes/administration & dosage , Area Under Curve , Galantamine/administration & dosage , Galantamine/blood , Hippocampus/pathology , Lethal Dose 50 , Macaca fascicularis , Male , Organophosphate Poisoning/enzymology
6.
J Appl Toxicol ; 39(1): 101-116, 2019 01.
Article in English | MEDLINE | ID: mdl-30027640

ABSTRACT

Organophosphorus compounds (OPCs), inhibitors of acetylcholinesterase (AChE), are useful agents as pesticides, but also represent a serious health hazard. Standard therapy with atropine and established oxime-type enzyme reactivators (pralidoxime, obidoxime) is unsatisfactory. Better therapeutic results are obtained, when reversible AChE inhibitors are administered before OPC exposure. This review summarizes the history of such a pretreatment approach and sums up a set of experiments undertaken in search of compounds that are efficacious when given before a broad range of OPCs. The prophylactic efficacy of 10 known AChE inhibitors, either already used clinically for different indications (physostigmine, pyridostigmine, ranitidine, tiapride, tacrine, amiloride, metoclopramide, methylene blue) or developed for possible therapeutic use in the future (7-methoxytacrine, K-27) was compared, when administered before exposure to six chemically diverse OPCs in the same experimental setting: ethyl-paraoxon, methyl-paraoxon, diisopropylfluorophosphate, terbufos sulfone, azinphos-methyl and dicrotophos. The experimental oxime K-27 was the most efficacious compound, affording best protection, when administered before terbufos sulfone, azinphos-methyl and dicrotophos, second best before ethyl- and methyl-paraoxon exposure and third best before diisopropylfluorophosphate administration. This ranking was similar to that of physostigmine, which was superior to the Food and Drug Administration-approved pretreatment for soman with pyridostigmine. Tiapride, amiloride, metoclopramide, methylene blue and 7-methoxytacrine did not achieve protection. No correlation was observed between the IC50 of the reversible AChE inhibitors and their protective efficacy. These studies indicate that K-27 can be considered a very promising broad-spectrum prophylactic agent in case of imminent organophosphate exposure, which may be related to its AChE reactivating activity rather than its AChE inhibition.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Organophosphate Poisoning/drug therapy , Organophosphate Poisoning/prevention & control , Organophosphates/toxicity , Pre-Exposure Prophylaxis/methods , Animals , Humans , Models, Animal
7.
J Pharmacol Exp Ther ; 367(2): 302-321, 2018 11.
Article in English | MEDLINE | ID: mdl-30115757

ABSTRACT

Organophosphates (OP) such as the pesticide diisopropylfluorophosphate (DFP) and the nerve agent sarin are lethal chemicals that induce seizures, status epilepticus (SE), and brain damage. Midazolam, a benzodiazepine modulator of synaptic GABA-A receptors, is currently considered as a new anticonvulsant for nerve agents. Here, we characterized the time course of protective efficacy of midazolam (0.2-5 mg/kg, i.m.) in rats exposed to DFP, a chemical threat agent and surrogate for nerve agents. Behavioral and electroencephalogram (EEG) seizures were monitored for 24 hours after DFP exposure. The extent of brain injury was determined 3 days after DFP exposure by unbiased stereologic analyses of valid markers of neurodegeneration and neuroinflammation. Seizures were elicited within ∼8 minutes after DFP exposure that progressively developed into persistent SE lasting for hours. DFP exposure resulted in massive neuronal injury or necrosis, neurodegeneration of principal cells and interneurons, and neuroinflammation as evident by extensive activation of microglia and astrocytes in the hippocampus, amygdala, and other brain regions. Midazolam controlled seizures, neurodegeneration, and neuroinflammation when given early (10 minutes) after DFP exposure, but it was less effective when given at 40 minutes or later. Delayed therapy (≥40 minutes), a simulation of the practical therapeutic window for first responders or hospital admission, was associated with reduced seizure protection and neuroprotection. These results strongly reaffirm that the DFP-induced seizures and brain damage are progressively resistant to delayed treatment with midazolam, confirming the benzodiazepine refractory SE after OP intoxication. Thus, novel anticonvulsants superior to midazolam or adjunct therapies that enhance its efficacy are needed for effective treatment of refractory SE.


Subject(s)
Brain Injuries/chemically induced , Brain Injuries/drug therapy , Isoflurophate/pharmacology , Midazolam/pharmacology , Pesticides/pharmacology , Seizures/chemically induced , Seizures/drug therapy , Animals , Anticonvulsants/pharmacology , Benzodiazepines/pharmacology , Brain/drug effects , Brain/metabolism , Brain Injuries/metabolism , Cholinesterase Inhibitors/pharmacology , Drug Resistance/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Interneurons/drug effects , Interneurons/metabolism , Male , Nerve Agents/pharmacology , Neurons/drug effects , Neurons/metabolism , Organophosphate Poisoning/prevention & control , Organophosphates/pharmacology , Organophosphorus Compounds/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, GABA-A/metabolism , Seizures/metabolism , Status Epilepticus/drug therapy , Status Epilepticus/metabolism
8.
Toxicol Ind Health ; 34(2): 69-82, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29141517

ABSTRACT

In this study, we aimed to study the possible preventive effect of docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, on toxicity caused by chlorpyrifos (CPF). Six groups of Sprague Dawley rats (200-250 g) consisting of equal numbers of males and females (n = 8) were assigned to study. The rats were orally given for 5 days. The control group was administered pure olive oil, which was the vehicle for CPF. The CPF challenge groups were administered oral physiological saline, pure olive oil, or DHA (50, 100 and 400 mg/kg dosages) for 5 days. The animals were weighed on the sixth day and then administered CPF (279 mg/kg, subcutaneously). The rats were weighed again 24 h following CPF administration. The body temperatures and locomotor activities of the rats were also measured. Blood samples, brain and liver tissues were collected for biochemical, histopathological and immunohistochemical examinations. A comparison with the control group demonstrated that CPF administration increased malondialdehyde (MDA) levels in blood, brain and liver, while it reduced catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) concentrations ( p < 0.05-0.001). Advanced oxidation protein products (AOPPs) increased only in the brain ( p < 0.001). DHA reduced these changes in MDA and AOPP values ( p < 0.05-0.001), while it increased CAT, SOD and GPx concentrations ( p < 0.05-0.001). Similarly, DHA prevented the decreases in body weight, body temperature and locomotor activities caused by CPF at 100 mg/kg and 400 mg/kg dosages ( p < 0.05-0.001). Similar to the physiological and biochemical changes, the histopathological damage scores, which increased with CPF ( p < 0.05-0.01), decreased at all three dosages of DHA ( p < 0.05-0.01). Our findings suggest that DHA, by supporting the antioxidant mechanism, reduces toxicity caused by CPF.


Subject(s)
Antioxidants/therapeutic use , Chlorpyrifos/toxicity , Dietary Supplements , Fatty Acids, Omega-3/therapeutic use , Insecticides/toxicity , Organophosphate Poisoning/prevention & control , Oxidative Stress/drug effects , Animals , Antioxidants/administration & dosage , Behavior, Animal/drug effects , Biomarkers/blood , Biomarkers/metabolism , Body Temperature Regulation/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Chlorpyrifos/administration & dosage , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/toxicity , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/therapeutic use , Fatty Acids, Omega-3/administration & dosage , Female , Injections, Subcutaneous , Insecticides/administration & dosage , Liver/drug effects , Liver/metabolism , Liver/pathology , Locomotion/drug effects , Male , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Organophosphate Poisoning/blood , Organophosphate Poisoning/metabolism , Organophosphate Poisoning/pathology , Rats, Sprague-Dawley , Weight Loss/drug effects
9.
Br J Clin Pharmacol ; 81(3): 462-70, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26366467

ABSTRACT

Despite being a major clinical and public health problem across the developing world, responsible for at least 5 million deaths over the last three decades, the clinical care of patients with organophosphorus (OP) insecticide poisoning has little improved over the last six decades. We are still using the same two antidotes - atropine and oximes - that first came into clinical use in the late 1950s. Clinical research in South Asia has shown how improved regimens of atropine can prevent deaths. However, we are still unsure about which patients are most likely to benefit from the use of oximes. Supplemental antidotes, such as magnesium, clonidine and sodium bicarbonate, have all been proposed and studied in small trials without production of definitive answers. Novel antidotes such as nicotinic receptor antagonists, beta-adrenergic agonists and lipid emulsions are being studied in large animal models and in pilot clinical trials. Hopefully, one or more of these affordable and already licensed antidotes will find their place in routine clinical care. However, the large number of chemically diverse OP insecticides, the varied poisoning they produce and their varied response to treatment might ultimately make it difficult to determine definitively whether these antidotes are truly effective. In addition, the toxicity of the varied solvents and surfactants formulated with the OP active ingredients complicates both treatment and studies. It is possible that the only effective way to reduce deaths from OP insecticide poisoning will be a steady reduction in their agricultural use worldwide.


Subject(s)
Antidotes/therapeutic use , Insecticides/poisoning , Organophosphate Poisoning/drug therapy , Atropine/therapeutic use , Humans , Organophosphate Poisoning/prevention & control , Oximes/therapeutic use , Solvents/poisoning , Surface-Active Agents/poisoning
10.
Toxicol Appl Pharmacol ; 287(3): 202-9, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26051873

ABSTRACT

PRX-105 is a plant-derived recombinant version of the human 'read-through' acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50nmol/kg PRX-105, 2min before being exposed to 1.33×LD50 and 1.5×LD50 of toxin and 10min after exposure to 1.5×LD50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t½) in mice was 994 (±173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t½ in humans was substantially longer than in mice (average 26.7h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation.


Subject(s)
Acetylcholinesterase/pharmacology , Antidotes/pharmacology , Organophosphate Poisoning/drug therapy , Organophosphate Poisoning/prevention & control , Polyethylene Glycols/chemistry , Acetylcholinesterase/administration & dosage , Acetylcholinesterase/adverse effects , Acetylcholinesterase/chemistry , Acetylcholinesterase/pharmacokinetics , Adult , Animals , Antidotes/administration & dosage , Antidotes/adverse effects , Antidotes/chemistry , Antidotes/pharmacokinetics , Chemistry, Pharmaceutical , Disease Models, Animal , Female , GPI-Linked Proteins/administration & dosage , GPI-Linked Proteins/adverse effects , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/pharmacokinetics , GPI-Linked Proteins/pharmacology , Half-Life , Humans , Injections, Intravenous , Israel , Male , Mice, Inbred BALB C , Middle Aged , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/adverse effects , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/pharmacology , Recombinant Proteins , Swine , Swine, Miniature , Young Adult
11.
Toxicol Appl Pharmacol ; 288(1): 114-20, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26212258

ABSTRACT

Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation.


Subject(s)
Cholinesterase Inhibitors/toxicity , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Insecticides/toxicity , Liver/drug effects , Organophosphate Poisoning/prevention & control , Parathion/toxicity , Vitamin K 3/pharmacology , Acetylcholinesterase/metabolism , Activation, Metabolic , Animals , Cholinesterase Inhibitors/metabolism , Cytochrome P-450 Enzyme Inhibitors/metabolism , Cytoprotection , Disease Models, Animal , Dose-Response Relationship, Drug , Female , GPI-Linked Proteins/metabolism , Humans , Insecticides/metabolism , Liver/enzymology , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , NADP/metabolism , Organophosphate Poisoning/enzymology , Organophosphate Poisoning/etiology , Oxidation-Reduction , Paraoxon/metabolism , Paraoxon/toxicity , Parathion/metabolism , Rats, Long-Evans , Recombinant Proteins/metabolism , Time Factors , Vitamin K 3/metabolism
12.
J Pharmacol Exp Ther ; 349(3): 549-58, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24706983

ABSTRACT

We investigated the ability of the engineered paraoxonase-1 variants G3C9, VII-D11, I-F11, and VII-D2 to afford protection against paraoxon intoxication. Paraoxon is the toxic metabolite of parathion, a common pesticide still in use in many developing countries. An in vitro investigation showed that VII-D11 is the most efficient variant at hydrolyzing paraoxon with a kcat/Km of 2.1 × 10(6) M(-1) min(-1) and 1.6 × 10(6) M(-1) min(-1) for the enzyme expressed via adenovirus infection of 293A cells and mice, respectively. Compared with the G3C9 parent scaffold, VII-D11 is 15- to 20-fold more efficacious at hydrolyzing paraoxon. Coinciding with these results, mice expressing VII-D11 in their blood survived and showed no symptoms against a cumulative 6.3 × LD50 dose of paraoxon, whereas mice expressing G3C9 experienced tremors and only 50% survival. We then determined whether VII-D11 can offer protection against paraoxon when present at substoichiometric concentrations. Mice containing varying concentrations of VII-D11 in their blood (0.2-4.1 mg/ml) were challenged with doses of paraoxon at fixed stoichiometric ratios that constitute up to a 10-fold molar excess of paraoxon to enzyme (1.4-27 × LD50 doses) and were assessed for tremors and mortality. Mice were afforded complete asymptomatic protection below a paraoxon-to-enzyme ratio of 8:1, whereas higher ratios produced tremors and/or mortality. VII-D11 in mouse blood coeluted with high-density lipoprotein, suggesting an association between the two entities. Collectively, these results demonstrate that VII-D11 is a promising candidate for development as a prophylactic catalytic bioscavenger against organophosphorous pesticide toxicity.


Subject(s)
Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , Gene Transfer Techniques , Genetic Variation , Organophosphate Poisoning/prevention & control , Pesticides/toxicity , Adenoviridae/genetics , Animals , Aryldialkylphosphatase/blood , Biocatalysis , Escherichia coli/genetics , Genetic Vectors , HEK293 Cells , Humans , Lethal Dose 50 , Male , Mice , Organophosphate Poisoning/enzymology , Pesticides/pharmacokinetics , Protein Engineering
13.
J Appl Toxicol ; 34(10): 1096-103, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24136594

ABSTRACT

Poisoning with organophosphorus compounds (OPCs) poses a serious threat worldwide. OPC-induced mortality can be significantly reduced by prophylactic administration of reversible acetylcholinesterase (AChE) inhibitors. The only American Food and Drug Administration (FDA)-approved substance for such pre-treatment (to soman exposure) is presently pyridostigmine, although its efficacy is controversial. In search for more efficacious and broad-spectrum alternatives, we have assessed in vivo the mortality-reducing efficacy of a group of five compounds with known AChE inhibitory activity (pyridostigmine, physostigmine, ranitidine, tacrine and K-27), when given in equitoxic dosage (25% of LD01 ) 30 min before exposure to the OPC terbufos sulfone. Protection was quantified in rats by determining the relative risk of death (RR) using Cox analysis, with RR = 1 for animals given only terbufos sulfone, but no pre-treatment. All tested AChE inhibitors reduced terbufos sulfone-induced mortality significantly (p ≤ 0.05) as compared with the non-treatment group (RR = 1: terbufos sulfone only). Best in vivo protection from terbufos sulfone-induced mortality was achieved, when K-27 was given before terbufos sulfone exposure (RR = 0.06), which was significantly (P ≤ 0.05) superior to the pre-treatment with all other tested compounds, for example tacrine (RR = 0.21), pyridostigmine (RR = 0.28), physostigmine (RR = 0.29) and ranitidine (RR = 0.33). The differences in efficacy between tacrine, pyridostigmine, physostigmine and ranitidine were not statistically significant. Prophylactic administration of an oxime (such as K-27) in case of imminent OPC exposure may be a viable option.


Subject(s)
Cholinesterase Inhibitors/therapeutic use , Organophosphate Poisoning/prevention & control , Organothiophosphorus Compounds/therapeutic use , Acute Disease , Animals , Lethal Dose 50 , Male , Organophosphates/toxicity , Rats , Rats, Wistar , Survival Analysis
14.
Fish Physiol Biochem ; 40(3): 787-96, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24197701

ABSTRACT

The objective of this study was to investigate the dietary effect of vitamin C in amelioration some of studied alterations induced by fenitrothion in Nile tilapia (Oreochromis niloticus). Nile tilapia was exposed to sub-lethal concentration of fenitrothion 0.04 mg/l (96 h LC50 value was 0.8 mg/l), and basal diet was supplemented with two different dose of vitamin C (500 and 1200 mg/kg B wt/day) for 30 days. Vitamin C supplemented groups showed significant decrease in plasma cortisol and glucose level, enzymes activity of liver and gills (catalase, glutathione-S-transferase and superoxide dismutase) and % of tail DNA damage compared to exposed group. Moreover, fish revealed significant increase in total plasma protein, albumin, globulin and A/G ratio. High dose of vitamin C dietary supplementation (1200 mg/kg B wt/day) returns these parameters to its normal levels with no significant difference compared to non exposed control group. These results indicated that incorporation of high dose of vitamin C (1200 mg) in aqua feed for 30 days could be potentially less expensive and effective in reducing the alterations induced by fenitrothion in Nile tilapia.


Subject(s)
Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , Fenitrothion/toxicity , Insecticides/toxicity , Organophosphate Poisoning/prevention & control , Animals , Cichlids , Dietary Supplements
15.
Br J Clin Pharmacol ; 75(5): 1175-88, 2013 May.
Article in English | MEDLINE | ID: mdl-22943579

ABSTRACT

Self-poisoning with pesticides or plants is a major clinical problem in rural Asia, killing several hundred thousand people every year. Over the last 17 years, our clinical toxicology and pharmacology group has carried out clinical studies in the North Central Province of Sri Lanka to improve treatment and reduce deaths. Studies have looked at the effectiveness of anti-digoxin Fab in cardiac glycoside plant poisoning, multiple dose activated charcoal in all poisoning, and pralidoxime in moderate toxicity organophosphorus insecticide poisoning. More recently, using a Haddon matrix as a guide, we have started conducting public health and animal studies to find strategies that may work outside of the hospital. Based on the 2009 GSK Research in Clinical Pharmacology prize lecture, this review shows the evolution of the group's research from a clinical pharmacology approach to one that studies possible interventions at multiple levels, including the patient, the community and government legislation.


Subject(s)
Antidotes/pharmacology , Nerium/poisoning , Organophosphate Poisoning/prevention & control , Pesticides/poisoning , Acetylcholine/pharmacology , Asia , Biomedical Research/methods , Charcoal/therapeutic use , Cholinergic Agonists/therapeutic use , Humans , Organophosphate Poisoning/drug therapy , Organophosphate Poisoning/mortality , Pharmacology, Clinical/methods , Pralidoxime Compounds/pharmacology , Randomized Controlled Trials as Topic , Rural Health , Sri Lanka
16.
J Appl Toxicol ; 33(9): 894-900, 2013 Sep.
Article in English | MEDLINE | ID: mdl-22611016

ABSTRACT

Reversible acetylcholinesterase (AChE) inhibitors can protect against the lethal effects of irreversible organophosphorus AChE inhibitors (OPCs), when administered before OPC exposure. We have assessed in vivo the mortality-reducing efficacy of a group of known AChE inhibitors, when given in equitoxic dosage before exposure to the OPC paraoxon. Protection was quantified in rats by determining the relative risk (RR) of death. Best in vivo protection from paraoxon-induced mortality was observed after prophylactic administration of physostigmine (RR = 0.30) or the oxime K-27 (RR = 0.34); both treatments were significantly superior to the pre-treatment with all other tested compounds, including the established substance pyridostigmine. Tacrine (RR = 0.67), ranitidine (RR = 0.72), pyridostigmine (RR = 0.76), tiapride (RR = 0.80) and 7-MEOTA (RR = 0.86) also significantly reduced the relative risk of paraoxon-induced death, but to a lesser degree. Methylene blue, amiloride and metoclopramide had an unfavorable effect (RR ≥ 1), significantly increasing mortality. When CNS penetration by prophylactic is undesirable K-27 is a promising alternative to pyridostigmine.


Subject(s)
Cholinesterase Inhibitors/administration & dosage , Organophosphate Poisoning/prevention & control , Paraoxon/administration & dosage , Animals , Dose-Response Relationship, Drug , Lethal Dose 50 , Male , Oximes/administration & dosage , Paraoxon/toxicity , Physostigmine/administration & dosage , Pyridostigmine Bromide/administration & dosage , Ranitidine/administration & dosage , Rats , Rats, Wistar , Tacrine/administration & dosage , Tiapride Hydrochloride/administration & dosage
17.
J Med Assoc Thai ; 96 Suppl 5: S82-91, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24851577

ABSTRACT

OBJECTIVE: To assess occupational exposure of malathion and bifenthrin concentrations by dermal contact and urinary 3-(2-chloro-3, 3, 3-trifluoro-1-propenyl)-2, 2-dimethyl-cyclopropanecarboxylic (TFP) acid, health symptoms developed and the relationship between bifenthrin concentrations and TFP acid in urine of the mosquito control sprayers. MATERIAL AND METHOD: The aerosols of these two pesticides were collected using 100 cm2 cotton patches attached on the skin of upper legs of 54 volunteer of mosquito control sprayers. Their urine samples were also collected before and after application. RESULTS: These subjects exposed to average malathion and bifenthrin concentrations of 0.18 and 0.32 microg/cm2, respectively After application, the average concentration of urinary TFP acid in the sprayers was 39.22 +/- 0.77 mg/g creatinine ranging from 0.58 to 261.19 mg/g creatinine. A significant difference was found between urinary TFP acid levels before and after application (p < 0.001) but the bifenthrin concentrations through dermal contact and urinary TFP acid levels were not significantly correlated (p > 0.05). CONCLUSION: The mosquito control sprayers had dermal contact with smoke of malathion and bifenthrin and some sprayers developed health symptoms after exposure. They should use protective clothing made ofplastic, nylon or polyester to protect sprayers from skin contact.


Subject(s)
Malathion , Mosquito Control , Occupational Exposure/adverse effects , Occupational Exposure/statistics & numerical data , Organophosphate Poisoning/epidemiology , Organophosphate Poisoning/prevention & control , Pyrethrins/poisoning , Skin Absorption , Adolescent , Adult , Aerosols , Cross-Sectional Studies , Gas Chromatography-Mass Spectrometry , Humans , Male , Middle Aged , Protective Clothing , Surveys and Questionnaires
18.
Enzyme Microb Technol ; 165: 110209, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36764031

ABSTRACT

Organophosphates (OPs) are highly neurotoxic compounds and certain OP-compounds are also exploited as a weapon of mass destruction and chemical warfare in terrorist attacks. Available prophylactic and post-exposure treatments are less effective and also have serious side-effects. Thus, there is a dire need to develop effective and safe prophylactic agent(s) against OP-poisoning. Human Paraoxonase 1 (hPON1) can hydrolyze a wide range of OP molecules and can be developed as an effective and safe prophylactic agent. Thus, there is a dire need in the art to develop variant(s) of rhPON1 that not only possess 'good' OP-hydrolyzing activity but also have improved pharmacokinetic properties. In this report, we describe the characterization of the fused hPON1 (FHP) variant that not only exhibit enhanced in vivo pharmacokinetic properties but also delay / prevent the symptoms of OP-poisoning and prevents OP-induced mortality in rats.


Subject(s)
Aryldialkylphosphatase , Organophosphate Poisoning , Animals , Humans , Rats , Organophosphate Poisoning/prevention & control , Organophosphates
19.
Sci Rep ; 10(1): 16611, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33024231

ABSTRACT

Organophosphorus (OP) compounds represent a serious health hazard worldwide. The dominant mechanism of their action results from covalent inhibition of acetylcholinesterase (AChE). Standard therapy of acute OP poisoning is partially effective. However, prophylactic administration of reversible or pseudo-irreversible AChE inhibitors before OP exposure increases the efficiency of standard therapy. The purpose of the study was to test the duration of the protective effect of a slow-binding reversible AChE inhibitor (C547) in a mouse model against acute exposure to paraoxon (POX). It was shown that the rate of inhibition of AChE by POX in vitro after pre-inhibition with C547 was several times lower than without C547. Ex vivo pre-incubation of mouse diaphragm with C547 significantly prevented the POX-induced muscle weakness. Then it was shown that pre-treatment of mice with C547 at the dose of 0.01 mg/kg significantly increased survival after poisoning by 2xLD50 POX. The duration of the pre-treatment was effective up to 96 h, whereas currently used drug for pre-exposure treatment, pyridostigmine at a dose of 0.15 mg/kg was effective less than 24 h. Thus, long-lasting slow-binding reversible AChE inhibitors can be considered as new potential drugs to increase the duration of pre-exposure treatment of OP poisoning.


Subject(s)
Benzylammonium Compounds/administration & dosage , Bromides/administration & dosage , Cholinesterase Inhibitors/administration & dosage , Organophosphate Poisoning/prevention & control , Organophosphorus Compounds/toxicity , Paraoxon/toxicity , Pyridostigmine Bromide/administration & dosage , Animals , Benzylammonium Compounds/pharmacology , Bromides/pharmacology , Cholinesterase Inhibitors/pharmacology , Delayed-Action Preparations , Disease Models, Animal , Mice , Pyridostigmine Bromide/pharmacology , Time Factors
20.
Neurotoxicology ; 75: 200-208, 2019 12.
Article in English | MEDLINE | ID: mdl-31560873

ABSTRACT

Organophosphates (OPs) are important toxic compounds commonly used for a variety of purposes in agriculture, industry and household settings. Consumption of these compounds affects several central nervous system functions. Some of the most recognised consequences of organophosphate pesticide exposure in humans include neonatal developmental abnormalities, endocrine disruption, neurodegeneration, neuroinflammation and cancer. In addition, neurobehavioral and emotional deficits following OP exposure have been reported. It would be of great value to discover a therapeutic strategy which produces a protective effect against these neurotoxic compounds. Moreover, a growing body of preclinical data suggests that the microbiota may affect metabolism and neurotoxic outcomes through exposure to OPs. The human gut is colonised by a broad variety of microorganisms. This huge number of bacteria and other microorganisms which survive by colonising the gastrointestinal tract is defined as "gut microbiota". The gut microbiome plays a profound role in metabolic processing, energy production, immune and cognitive development and homeostasis. The effects are not only localized in the gut, but also influence many other organs, such as the brain through the microbiome-gut-brain axis. Therefore, given the gut microbiota's key role in host homeostasis, this microbiota may be altered or modified temporarily by factors such as antibiotics, diet and toxins such as pesticides. The aim of this review is to examine scientific articles concerning the impact of microbiota in OP toxicity. Studies focussed on the possible contribution the microbiota has on variable host pharmacokinetic responses such as absorption and biotransformation of xenobiotics will be evaluated. Microbiome manipulation by antibiotic or probiotic administration and faecal transplantation are experimental approaches recently proposed as treatments for several diseases. Finally, microbiota manipulation as a possible therapeutic strategy in order to reduce OP toxicity will be discussed.


Subject(s)
Organophosphate Poisoning/microbiology , Animals , Gastrointestinal Microbiome/physiology , Humans , Organophosphate Poisoning/metabolism , Organophosphate Poisoning/prevention & control , Organophosphates/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL