Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.415
Filter
Add more filters

Publication year range
1.
Cell ; 184(2): 545-559.e22, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33357446

ABSTRACT

Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other 'omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology.


Subject(s)
Escherichia coli Proteins/metabolism , Imaging, Three-Dimensional , Proteome/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Allosteric Regulation , Amino Acid Sequence , Escherichia coli/enzymology , Escherichia coli/metabolism , Mass Spectrometry , Molecular Dynamics Simulation , Osmotic Pressure , Phosphorylation , Proteolysis , Reproducibility of Results , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Stress, Physiological
2.
Cell ; 184(26): 6313-6325.e18, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34942099

ABSTRACT

How tissues acquire complex shapes is a fundamental question in biology and regenerative medicine. Zebrafish semicircular canals form from invaginations in the otic epithelium (buds) that extend and fuse to form the hubs of each canal. We find that conventional actomyosin-driven behaviors are not required. Instead, local secretion of hyaluronan, made by the enzymes uridine 5'-diphosphate dehydrogenase (ugdh) and hyaluronan synthase 3 (has3), drives canal morphogenesis. Charged hyaluronate polymers osmotically swell with water and generate isotropic extracellular pressure to deform the overlying epithelium into buds. The mechanical anisotropy needed to shape buds into tubes is conferred by a polarized distribution of actomyosin and E-cadherin-rich membrane tethers, which we term cytocinches. Most work on tissue morphogenesis ascribes actomyosin contractility as the driving force, while the extracellular matrix shapes tissues through differential stiffness. Our work inverts this expectation. Hyaluronate pressure shaped by anisotropic tissue stiffness may be a widespread mechanism for powering morphological change in organogenesis and tissue engineering.


Subject(s)
Extracellular Space/chemistry , Hyaluronic Acid/pharmacology , Morphogenesis , Organ Specificity , Pressure , Semicircular Canals/cytology , Semicircular Canals/embryology , Actomyosin/metabolism , Animals , Anisotropy , Behavior, Animal , Extracellular Matrix/metabolism , Hyaluronic Acid/biosynthesis , Models, Biological , Morphogenesis/drug effects , Organ Specificity/drug effects , Osmotic Pressure , Semicircular Canals/diagnostic imaging , Stereotyped Behavior , Zebrafish/embryology , Zebrafish Proteins/metabolism
3.
Cell ; 167(2): 313-324, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27716505

ABSTRACT

As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Crops, Agricultural/physiology , Protein Serine-Threonine Kinases/metabolism , Stress, Physiological/physiology , AMP-Activated Protein Kinases/genetics , Chloroplasts/enzymology , Cold-Shock Response , Crops, Agricultural/enzymology , Crops, Agricultural/genetics , Droughts , Endoplasmic Reticulum Stress , Energy Metabolism , Food Supply , Gene Expression Regulation, Plant , Heat-Shock Response , Mitochondria/enzymology , Osmotic Pressure , Peroxisomes/enzymology , Protein Serine-Threonine Kinases/genetics , Salinity , Signal Transduction , Stress, Physiological/genetics
4.
Mol Cell ; 81(3): 502-513.e4, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33400923

ABSTRACT

Stress-induced readthrough transcription results in the synthesis of downstream-of-gene (DoG)-containing transcripts. The mechanisms underlying DoG formation during cellular stress remain unknown. Nascent transcription profiles during DoG induction in human cell lines using TT-TimeLapse sequencing revealed widespread transcriptional repression upon hyperosmotic stress. Yet, DoGs are produced regardless of the transcriptional level of their upstream genes. ChIP sequencing confirmed that stress-induced redistribution of RNA polymerase (Pol) II correlates with the transcriptional output of genes. Stress-induced alterations in the Pol II interactome are observed by mass spectrometry. While certain cleavage and polyadenylation factors remain Pol II associated, Integrator complex subunits dissociate from Pol II under stress leading to a genome-wide loss of Integrator on DNA. Depleting the catalytic subunit of Integrator using siRNAs induces hundreds of readthrough transcripts, whose parental genes partially overlap those of stress-induced DoGs. Our results provide insights into the mechanisms underlying DoG production and how Integrator activity influences DoG transcription.


Subject(s)
Endoribonucleases/metabolism , Osmotic Pressure , RNA Polymerase II/metabolism , RNA/biosynthesis , Salt Stress , Transcription, Genetic , Transcriptional Activation , Down-Regulation , Endoribonucleases/genetics , HEK293 Cells , Humans , RNA/genetics , RNA Polymerase II/genetics , Time Factors
5.
Mol Cell ; 81(20): 4191-4208.e8, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34686314

ABSTRACT

To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.


Subject(s)
Cell Proliferation , Fibroblasts/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/biosynthesis , Osmotic Pressure , Protein Biosynthesis , Ribosomes/metabolism , Adaptation, Physiological , Adenosine Triphosphate/metabolism , Animals , Codon, Initiator , Fibroblasts/pathology , HEK293 Cells , Humans , Kinetics , Mice , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Proteins/genetics , Ribosomes/genetics , Signal Transduction
6.
Trends Biochem Sci ; 49(6): 480-493, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38514274

ABSTRACT

Osmotic stress conditions occur at multiple stages of plant life. Changes in water availability caused by osmotic stress induce alterations in the mechanical properties of the plasma membrane, its interaction with the cell wall, and the concentration of macromolecules in the cytoplasm. We summarize the reported players involved in the sensing mechanisms of osmotic stress in plants. We discuss how changes in macromolecular crowding are perceived intracellularly by intrinsically disordered regions (IDRs) in proteins. Finally, we review methods for dynamically monitoring macromolecular crowding in living cells and discuss why their implementation is required for the discovery of new plant osmosensors. Elucidating the osmosensing mechanisms will be essential for designing strategies to improve plant productivity in the face of climate change.


Subject(s)
Osmotic Pressure , Plants , Plants/metabolism , Macromolecular Substances/metabolism , Plant Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry
7.
Nature ; 602(7897): 468-474, 2022 02.
Article in English | MEDLINE | ID: mdl-35082448

ABSTRACT

Ingested food and water stimulate sensory systems in the oropharyngeal and gastrointestinal areas before absorption1,2. These sensory signals modulate brain appetite circuits in a feed-forward manner3-5. Emerging evidence suggests that osmolality sensing in the gut rapidly inhibits thirst neurons upon water intake. Nevertheless, it remains unclear how peripheral sensory neurons detect visceral osmolality changes, and how they modulate thirst. Here we use optical and electrical recording combined with genetic approaches to visualize osmolality responses from sensory ganglion neurons. Gut hypotonic stimuli activate a dedicated vagal population distinct from mechanical-, hypertonic- or nutrient-sensitive neurons. We demonstrate that hypotonic responses are mediated by vagal afferents innervating the hepatic portal area (HPA), through which most water and nutrients are absorbed. Eliminating sensory inputs from this area selectively abolished hypotonic but not mechanical responses in vagal neurons. Recording from forebrain thirst neurons and behavioural analyses show that HPA-derived osmolality signals are required for feed-forward thirst satiation and drinking termination. Notably, HPA-innervating vagal afferents do not sense osmolality itself. Instead, these responses are mediated partly by vasoactive intestinal peptide secreted after water ingestion. Together, our results reveal visceral hypoosmolality as an important vagal sensory modality, and that intestinal osmolality change is translated into hormonal signals to regulate thirst circuit activity through the HPA pathway.


Subject(s)
Intestines , Satiation , Sensory Receptor Cells , Thirst , Ganglia, Sensory/cytology , Intestines/cytology , Intestines/innervation , Osmolar Concentration , Osmotic Pressure , Satiation/physiology , Sensory Receptor Cells/cytology , Thirst/physiology , Vagus Nerve/cytology , Vagus Nerve/physiology , Water/metabolism
8.
Mol Cell ; 79(6): 876-877, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32946761

ABSTRACT

In this issue of Molecular Cell, Jalihal et al. (2020) show that cell volume changes upon osmotic stress result in rapid and reversible condensation of numerous multivalent proteins.


Subject(s)
Proteins , Cell Size , Osmotic Pressure
9.
Mol Cell ; 79(6): 978-990.e5, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32857953

ABSTRACT

Processing bodies (PBs) and stress granules (SGs) are prominent examples of subcellular, membraneless compartments that are observed under physiological and stress conditions, respectively. We observe that the trimeric PB protein DCP1A rapidly (within ∼10 s) phase-separates in mammalian cells during hyperosmotic stress and dissolves upon isosmotic rescue (over ∼100 s) with minimal effect on cell viability even after multiple cycles of osmotic perturbation. Strikingly, this rapid intracellular hyperosmotic phase separation (HOPS) correlates with the degree of cell volume compression, distinct from SG assembly, and is exhibited broadly by homo-multimeric (valency ≥ 2) proteins across several cell types. Notably, HOPS sequesters pre-mRNA cleavage factor components from actively transcribing genomic loci, providing a mechanism for hyperosmolarity-induced global impairment of transcription termination. Our data suggest that the multimeric proteome rapidly responds to changes in hydration and molecular crowding, revealing an unexpected mode of globally programmed phase separation and sequestration.


Subject(s)
Endoribonucleases/genetics , RNA Precursors/genetics , Stress, Physiological/genetics , Trans-Activators/genetics , Transcription Termination, Genetic , Animals , Cell Size , Cell Survival/genetics , Humans , Osmotic Pressure/physiology , Proteome/genetics
10.
Genes Dev ; 34(7-8): 511-525, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32115406

ABSTRACT

The Hippo pathway is a master regulator of tissue homeostasis and organ size. NF2 is a well-established tumor suppressor, and loss of NF2 severely compromises Hippo pathway activity. However, the precise mechanism of how NF2 mediates upstream signals to regulate the Hippo pathway is not clear. Here we report that, in mammalian cells, NF2's lipid-binding ability is critical for its function in activating the Hippo pathway in response to osmotic stress. Mechanistically, osmotic stress induces PI(4,5)P2 plasma membrane enrichment by activating the PIP5K family, allowing for NF2 plasma membrane recruitment and subsequent downstream Hippo pathway activation. An NF2 mutant deficient in lipid binding is unable to activate the Hippo pathway in response to osmotic stress, as measured by LATS and YAP phosphorylation. Our findings identify the PIP5K family as novel regulators upstream of Hippo signaling, and uncover the importance of phosphoinositide dynamics, specifically PI(4,5)P2, in Hippo pathway regulation.


Subject(s)
Homeostasis/physiology , Neurofibromin 2/metabolism , Phosphatidylinositols/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Line , Hippo Signaling Pathway , Humans , Mice , Neurofibromin 2/genetics , Osmotic Pressure/physiology , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , YAP-Signaling Proteins
11.
Development ; 151(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38421307

ABSTRACT

Interactions between notochord and sclerotome are required for normal embryonic spine patterning, but whether the postnatal derivatives of these tissues also require interactions for postnatal intervertebral disc (IVD) growth and maintenance is less established. We report here the comparative analysis of four conditional knockout mice deficient for TonEBP, a transcription factor known to allow cells to adapt to changes in extracellular osmotic pressure, in specific compartments of the IVD. We show that TonEBP deletion in nucleus pulposus (NP) cells does not affect their survival or aggrecan expression, but promoted cell proliferation in the NP and in adjacent vertebral growth plates (GPs). In cartilage end plates/GPs, TonEBP deletion induced cell death, but also structural alterations in the adjacent NP cells and vertebral bodies. Embryonic or postnatal TonEBP loss generated similar IVD changes. In addition to demonstrating the requirement of TonEBP in the different compartments of the IVD, this comparative analysis uncovers the in vivo interdependency of the different IVD compartments during the growth of the postnatal IVD-vertebral units.


Subject(s)
Intervertebral Disc , NFATC Transcription Factors , Animals , Mice , Gene Expression Regulation , Intervertebral Disc/metabolism , Mice, Knockout , Osmotic Pressure , Transcription Factors/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism
12.
Mol Cell ; 73(5): 959-970.e5, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30686592

ABSTRACT

Ribosomes undergo substantial conformational changes during translation elongation to accommodate incoming aminoacyl-tRNAs and translocate along the mRNA template. We used multiple elongation inhibitors and chemical probing to define ribosome conformational states corresponding to differently sized ribosome-protected mRNA fragments (RPFs) generated by ribosome profiling. We show, using various genetic and environmental perturbations, that short 20-22 or classical 27-29 nucleotide RPFs correspond to ribosomes with open or occupied ribosomal A sites, respectively. These distinct states of translation elongation are readily discerned by ribosome profiling in all eukaryotes we tested, including fungi, worms, and mammals. This high-resolution ribosome profiling approach reveals mechanisms of translation-elongation arrest during distinct stress conditions. Hyperosmotic stress inhibits translocation through Rck2-dependent eEF2 phosphorylation, whereas oxidative stress traps ribosomes in a pre-translocation state, independent of Rck2-driven eEF2 phosphorylation. These results provide insights and approaches for defining the molecular events that impact translation elongation throughout biology.


Subject(s)
Gene Expression Profiling/methods , Peptide Chain Elongation, Translational , Ribosomal Proteins/genetics , Ribosomes/genetics , Stress, Physiological , Transcriptome , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Codon , HeLa Cells , Humans , Nucleic Acid Conformation , Osmotic Pressure , Oxidative Stress , Peptide Elongation Factor 2/genetics , Peptide Elongation Factor 2/metabolism , Phosphorylation , Protein Conformation , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomes/chemistry , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Structure-Activity Relationship , Transfer RNA Aminoacylation
13.
Proc Natl Acad Sci U S A ; 121(22): e2318412121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781205

ABSTRACT

Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that low concentrations of GPN rupture a small fraction of lysosomes, but surprisingly trigger Ca2+ release from nearly all. Chelating cytoplasmic Ca2+ makes lysosomes more sensitive to GPN-induced rupture, suggesting a role for Ca2+ in lysosomal membrane resilience. GPN-elicited Ca2+ release causes the Ca2+-sensor Apoptosis Linked Gene-2 (ALG-2), along with Endosomal Sorting Complex Required for Transport (ESCRT) proteins it interacts with, to redistribute onto lysosomes. Functionally, ALG-2, but not its ESCRT binding-disabled ΔGF122 splice variant, increases lysosomal resilience to osmotic stress. Importantly, elevating juxta-lysosomal Ca2+ without membrane damage by activating TRPML1 also recruits ALG-2 and ESCRTs, protecting lysosomes from subsequent osmotic rupture. These findings reveal that Ca2+, through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress.


Subject(s)
Calcium , Endosomal Sorting Complexes Required for Transport , Lysosomes , Osmotic Pressure , Lysosomes/metabolism , Humans , Calcium/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Intracellular Membranes/metabolism , HeLa Cells , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/genetics , Calcium-Binding Proteins , Apoptosis Regulatory Proteins
14.
J Cell Sci ; 137(16)2024 08 15.
Article in English | MEDLINE | ID: mdl-39056167

ABSTRACT

The primary cilium is a small organelle protruding from the cell surface that receives signals from the extracellular milieu. Although dozens of studies have reported that several genetic factors can impair the structure of primary cilia, evidence for environmental stimuli affecting primary cilia structures is limited. Here, we investigated an extracellular stress that affected primary cilia morphology and its underlying mechanisms. Hyperosmotic shock induced reversible shortening and disassembly of the primary cilia of murine intramedullary collecting duct cells. The shortening of primary cilia caused by hyperosmotic shock followed delocalization of the pericentriolar material (PCM). Excessive microtubule and F-actin formation in the cytoplasm coincided with the hyperosmotic shock-induced changes to primary cilia and the PCM. Treatment with a microtubule-disrupting agent, nocodazole, partially prevented the hyperosmotic shock-induced disassembly of primary cilia and almost completely prevented delocalization of the PCM. An actin polymerization inhibitor, latrunculin A, also partially prevented the hyperosmotic shock-induced shortening and disassembly of primary cilia and almost completely prevented delocalization of the PCM. We demonstrate that hyperosmotic shock induces reversible morphological changes in primary cilia and the PCM in a manner dependent on excessive formation of microtubule and F-actin.


Subject(s)
Actins , Cilia , Microtubules , Osmotic Pressure , Cilia/metabolism , Cilia/drug effects , Animals , Microtubules/metabolism , Microtubules/drug effects , Actins/metabolism , Mice , Nocodazole/pharmacology , Thiazolidines/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Kidney Tubules, Collecting/metabolism , Kidney Tubules, Collecting/cytology
15.
Plant Cell ; 35(10): 3870-3888, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37338064

ABSTRACT

Calcium (Ca2+)-dependent protein kinases (CPKs) are essential regulators of plant responses to diverse environmental stressors, including osmotic stress. CPKs are activated by an increase in intracellular Ca2+ levels triggered by osmotic stress. However, how the levels of active CPK protein are dynamically and precisely regulated has yet to be determined. Here, we demonstrate that NaCl/mannitol-induced osmotic stress promoted the accumulation of CPK4 protein by disrupting its 26S proteasome-mediated CPK4 degradation in Arabidopsis (Arabidopsis thaliana). We isolated PLANT U-BOX44 (PUB44), a U-box type E3 ubiquitin ligase that ubiquitinates CPK4 and triggers its degradation. A calcium-free or kinase-inactive CPK4 variant was preferentially degraded compared to the Ca2+-bound active form of CPK4. Furthermore, PUB44 exhibited a CPK4-dependent negative role in the response of plants to osmotic stress. Osmotic stress induced the accumulation of CPK4 protein by inhibiting PUB44-mediated CPK4 degradation. The present findings reveal a mechanism for regulating CPK protein levels and establish the relevance of PUB44-dependent CPK4 regulation in modulating plant osmotic stress responses, providing insights into osmotic stress signal transduction mechanisms.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium/metabolism , Osmotic Pressure , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Gene Expression Regulation, Plant
16.
Plant Cell ; 35(11): 4173-4189, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37506254

ABSTRACT

Drought, which can induce osmotic stress, is the leading environmental constraint on crop productivity. Plants in both agricultural and natural settings have developed various mechanisms to cope with drought stress. The identification of genes associated with drought stress tolerance and understanding the underlying regulatory mechanisms are prerequisites for developing molecular manipulation strategies to address this issue. Here, we reported that the G-BOX FACTOR 14-3-3f (14-3-3 protein OsGF14f) positively modulates osmotic stress tolerance in rice (Oryza sativa). OsGF14f transgenic lines had no obvious change in crucial agronomic traits including yield and plant height. OsGF14f is transcriptionally induced by PEG treatment, and in rice, overexpression or knockout of this gene leads to enhanced or weakened osmotic stress tolerance, respectively. Furthermore, OsGF14f positively regulates abscisic acid (ABA) responses by interacting with the core ABA-responsive transcription factor BASIC LEUCINE ZIPPER 23 (OsbZIP23) to enhance its transcriptional regulation activity toward downstream target genes. Further genetic analysis showed that OsGF14f is required for the full function of OsbZIP23 in rice osmotic response, and OsGF14f-mediated osmotic stress tolerance partially depends on OsbZIP23. Interestingly, OsGF14f is a direct target gene of OsbZIP23. Taken together, our findings reveal a genetic and molecular framework by which the OsGF14f-OsbZIP23 complex modulates rice osmotic response, providing targets for developing drought-tolerant crops.


Subject(s)
Oryza , Oryza/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Stress, Physiological/genetics , Osmotic Pressure , Plant Proteins/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Droughts , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism
17.
Plant Cell ; 35(10): 3782-3808, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37462269

ABSTRACT

Plant genomes encode many receptor-like kinases (RLKs) that localize to the cell surface and perceive a wide variety of environmental cues to initiate downstream signaling cascades. Whether these RLKs participate in dehydration stress signaling in plants is largely unknown. DROOPY LEAF1 (DPY1), a leucine-rich repeat (LRR)-RLK, was recently shown to regulate plant architecture by orchestrating early brassinosteroid signaling in foxtail millet (Setaria italica). Here, we show that DPY1 is essential for the acclimation of foxtail millet to drought stress. DPY1 can be phosphorylated and activated in response to osmotic stress and is required for more than half of osmotic stress-induced global phosphorylation events, including the phosphorylation of sucrose nonfermenting kinase 2s (SnRK2s), the central kinases involved in osmotic stress. DPY1 acts upstream of STRESS-ACTIVATED PROTEIN KINASE 6 (SAPK6, a subclass I SnRK2) and is required for full SAPK6 activation, thereby allowing regulation of downstream genes to mount a response against drought stress. These signaling events are largely independent of DPY1-mediated brassinosteroid signaling. The DPY1-SAPK6 module is specific to seed plants and is absent in ancestral nonseed plants. Our findings reveal a dehydration stress-activated RLK that plays an indispensable role in osmotic stress signaling and mediates SnRK2 activation at the cell surface.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Setaria Plant , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Osmotic Pressure/physiology , Setaria Plant/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Drought Resistance , Brassinosteroids/metabolism , Dehydration , Abscisic Acid/metabolism , Plants/metabolism , Gene Expression Regulation, Plant
18.
J Immunol ; 212(12): 1877-1890, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38700398

ABSTRACT

Despite the advances in study on osmotic physiology in bony fish, the mechanism by which the immune system, especially T-cell immunity, adapts and responds to osmotic stress remains unknown. In the current study, we investigated the response of T cells to hyperosmotic stress in the bony fish Nile tilapia (Oreochromis niloticus). As a euryhaline fish, tilapia was able to adapt to a wide range of salinities; however, hypertonic stress caused inflammation and excessive T-cell activation. Furthermore, hypertonic stress increased the expression of IL-17A in T cells, upregulated the transcription factor RORα, and activated STAT3 signaling, along with IL-6- and TGF-ß1-mediated pathways, revealing an enhanced Th17 response in this early vertebrate. These hypertonic stress-induced events collectively resulted in an impaired antibacterial immune response in tilapia. Hypertonic stress elevated the intracellular ROS level, which in turn activated the p38-MK2 signaling pathway to promote IL-17A production by T cells. Both ROS elimination and the p38-MK2 axis blockade diminished the increased IL-17A production in T cells under hypertonic conditions. Moreover, the produced proinflammatory cytokines further amplified the hypertonic stress signaling via the MKK6-p38-MK2 axis-mediated positive feedback loop. To our knowledge, these findings represent the first description of the mechanism by which T-cell immunity responds to hypertonic stress in early vertebrates, thus providing a novel perspective for understanding the adaptive evolution of T cells under environmental stress.


Subject(s)
Inflammation , Osmotic Pressure , Th17 Cells , Tilapia , Animals , Th17 Cells/immunology , Inflammation/immunology , Tilapia/immunology , Signal Transduction/immunology , Lymphocyte Activation/immunology , Interleukin-17/metabolism , Interleukin-17/immunology
19.
Cell ; 147(4): 922-33, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-22078887

ABSTRACT

C. elegans is widely used to dissect how neural circuits and genes generate behavior. During locomotion, worms initiate backward movement to change locomotion direction spontaneously or in response to sensory cues; however, the underlying neural circuits are not well defined. We applied a multidisciplinary approach to map neural circuits in freely behaving worms by integrating functional imaging, optogenetic interrogation, genetic manipulation, laser ablation, and electrophysiology. We found that a disinhibitory circuit and a stimulatory circuit together promote initiation of backward movement and that circuitry dynamics is differentially regulated by sensory cues. Both circuits require glutamatergic transmission but depend on distinct glutamate receptors. This dual mode of motor initiation control is found in mammals, suggesting that distantly related organisms with anatomically distinct nervous systems may adopt similar strategies for motor control. Additionally, our studies illustrate how a multidisciplinary approach facilitates dissection of circuit and synaptic mechanisms underlying behavior in a genetic model organism.


Subject(s)
Caenorhabditis elegans/physiology , Motor Activity , Neural Pathways , Synapses/physiology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Electrophysiology , Interneurons/physiology , Mutation , Osmotic Pressure , Receptors, Glutamate/genetics , Receptors, Glutamate/physiology
20.
Nature ; 578(7794): 296-300, 2020 02.
Article in English | MEDLINE | ID: mdl-32025036

ABSTRACT

The proteasome is a major proteolytic machine that regulates cellular proteostasis through selective degradation of ubiquitylated proteins1,2. A number of ubiquitin-related molecules have recently been found to be involved in the regulation of biomolecular condensates or membraneless organelles, which arise by liquid-liquid phase separation of specific biomolecules, including stress granules, nuclear speckles and autophagosomes3-8, but it remains unclear whether the proteasome also participates in such regulation. Here we reveal that proteasome-containing nuclear foci form under acute hyperosmotic stress. These foci are transient structures that contain ubiquitylated proteins, p97 (also known as valosin-containing protein (VCP)) and multiple proteasome-interacting proteins, which collectively constitute a proteolytic centre. The major substrates for degradation by these foci were ribosomal proteins that failed to properly assemble. Notably, the proteasome foci exhibited properties of liquid droplets. RAD23B, a substrate-shuttling factor for the proteasome, and ubiquitylated proteins were necessary for formation of proteasome foci. In mechanistic terms, a liquid-liquid phase separation was triggered by multivalent interactions of two ubiquitin-associated domains of RAD23B and ubiquitin chains consisting of four or more ubiquitin molecules. Collectively, our results suggest that ubiquitin-chain-dependent phase separation induces the formation of a nuclear proteolytic compartment that promotes proteasomal degradation.


Subject(s)
Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Stress, Physiological , Ubiquitination , Cell Line , Cell Nucleus/metabolism , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Humans , Osmotic Pressure , Polyubiquitin/metabolism , Proteolysis , Proteostasis , Ribosomal Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Valosin Containing Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL