Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 781
Filter
1.
Cell ; 179(4): 880-894.e10, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31668804

ABSTRACT

Current approaches to reducing the latent HIV reservoir entail first reactivating virus-containing cells to become visible to the immune system. A critical second step is killing these cells to reduce reservoir size. Endogenous cytotoxic T-lymphocytes (CTLs) may not be adequate because of cellular exhaustion and the evolution of CTL-resistant viruses. We have designed a universal CAR-T cell platform based on CTLs engineered to bind a variety of broadly neutralizing anti-HIV antibodies. We show that this platform, convertibleCAR-T cells, effectively kills HIV-infected, but not uninfected, CD4 T cells from blood, tonsil, or spleen and only when armed with anti-HIV antibodies. convertibleCAR-T cells also kill within 48 h more than half of the inducible reservoir found in blood of HIV-infected individuals on antiretroviral therapy. The modularity of convertibleCAR-T cell system, which allows multiplexing with several anti-HIV antibodies yielding greater breadth and control, makes it a promising tool for attacking the latent HIV reservoir.


Subject(s)
Antibodies, Anti-Idiotypic/pharmacology , HIV Infections/therapy , Immunotherapy, Adoptive , Virus Replication/genetics , Animals , Antibodies, Anti-Idiotypic/immunology , HEK293 Cells , HIV Infections/genetics , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , HIV-1/pathogenicity , Humans , Mice , Palatine Tonsil/immunology , Palatine Tonsil/metabolism , Primary Cell Culture , Spleen/immunology , Spleen/metabolism , T-Lymphocytes, Cytotoxic/immunology , Virus Latency/immunology , Virus Replication/immunology
2.
Nature ; 625(7993): 101-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093010

ABSTRACT

Recent technological innovations have enabled the high-throughput quantification of gene expression and epigenetic regulation within individual cells, transforming our understanding of how complex tissues are constructed1-6. However, missing from these measurements is the ability to routinely and easily spatially localize these profiled cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue section are tagged with spatial barcode oligonucleotides derived from DNA-barcoded beads with known positions. These tagged nuclei can then be used as an input into a wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse hippocampus positioned nuclei at less than 10 µm spatial resolution and delivered whole-transcriptome data that are indistinguishable in quality from ordinary single-nucleus RNA-sequencing data. To demonstrate that Slide-tags can be applied to a wide variety of human tissues, we performed the assay on brain, tonsil and melanoma. We revealed cell-type-specific spatially varying gene expression across cortical layers and spatially contextualized receptor-ligand interactions driving B cell maturation in lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to almost any single-cell measurement technology. As a proof of principle, we performed multiomic measurements of open chromatin, RNA and T cell receptor (TCR) sequences in the same cells from metastatic melanoma, identifying transcription factor motifs driving cancer cell state transitions in spatially distinct microenvironments. Slide-tags offers a universal platform for importing the compendium of established single-cell measurements into the spatial genomics repertoire.


Subject(s)
DNA Barcoding, Taxonomic , Genomics , Animals , Humans , Mice , Brain/cytology , Brain/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA Barcoding, Taxonomic/methods , Epigenesis, Genetic , Gene Expression Profiling , Genomics/methods , Melanoma/genetics , Melanoma/pathology , Palatine Tonsil/cytology , Palatine Tonsil/metabolism , Receptors, Antigen, T-Cell/genetics , RNA/genetics , Single-Cell Analysis/methods , Transcriptome/genetics , Tumor Microenvironment , Hippocampus/cytology , Hippocampus/metabolism , Single-Cell Gene Expression Analysis , Organ Specificity , Ligands , Response Elements/genetics , Transcription Factors/metabolism
3.
Mol Cell Proteomics ; 23(5): 100750, 2024 May.
Article in English | MEDLINE | ID: mdl-38513891

ABSTRACT

Spatial tissue proteomics integrating whole-slide imaging, laser microdissection, and ultrasensitive mass spectrometry is a powerful approach to link cellular phenotypes to functional proteome states in (patho)physiology. To be applicable to large patient cohorts and low sample input amounts, including single-cell applications, loss-minimized and streamlined end-to-end workflows are key. We here introduce an automated sample preparation protocol for laser microdissected samples utilizing the cellenONE robotic system, which has the capacity to process 192 samples in 3 h. Following laser microdissection collection directly into the proteoCHIP LF 48 or EVO 96 chip, our optimized protocol facilitates lysis, formalin de-crosslinking, and tryptic digest of low-input archival tissue samples. The seamless integration with the Evosep ONE LC system by centrifugation allows 'on-the-fly' sample clean-up, particularly pertinent for laser microdissection workflows. We validate our method in human tonsil archival tissue, where we profile proteomes of spatially-defined B-cell, T-cell, and epithelial microregions of 4000 µm2 to a depth of ∼2000 proteins and with high cell type specificity. We finally provide detailed equipment templates and experimental guidelines for broad accessibility.


Subject(s)
Laser Capture Microdissection , Proteomics , Workflow , Humans , Proteomics/methods , Laser Capture Microdissection/methods , Palatine Tonsil/cytology , Palatine Tonsil/metabolism , Automation , Proteome , B-Lymphocytes/metabolism , B-Lymphocytes/cytology , Mass Spectrometry/methods , T-Lymphocytes/metabolism , T-Lymphocytes/cytology
4.
Anal Chem ; 96(18): 7281-7288, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38663032

ABSTRACT

Single-cell spatial proteomic analysis holds great promise to advance our understanding of the composition, organization, interaction, and function of the various cell types in complex biological systems. However, the current multiplexed protein imaging technologies suffer from low detection sensitivity, limited multiplexing capacity, or are technically demanding. To tackle these issues, here, we report the development of a highly sensitive and multiplexed in situ protein profiling method using off-the-shelf antibodies. In this approach, the protein targets are stained with horseradish peroxidase (HRP) conjugated antibodies and cleavable fluorophores via click chemistry. Through repeated cycles of target staining, fluorescence imaging, and fluorophore cleavage, many proteins can be profiled in single cells in situ. Applying this approach, we successfully quantified 28 different proteins in human formalin-fixed paraffin-embedded (FFPE) tonsil tissue, which represents the highest multiplexing capacity among the tyramide signal amplification (TSA) methods. Based on their unique protein expression patterns and their microenvironment, ∼820,000 cells in the tissue are classified into distinct cell clusters. We also explored the cell-cell interactions between these varied cell clusters and observed that different subregions of the tissue are composed of cells from specific clusters.


Subject(s)
Click Chemistry , Fluorescent Dyes , Palatine Tonsil , Humans , Fluorescent Dyes/chemistry , Palatine Tonsil/cytology , Palatine Tonsil/chemistry , Palatine Tonsil/metabolism , Single-Cell Analysis , Proteins/analysis , Proteins/chemistry , Proteins/metabolism , Proteomics/methods , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Optical Imaging , Paraffin Embedding
5.
Cell Commun Signal ; 22(1): 323, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867259

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) are widely used in the development of therapeutic tools in regenerative medicine. However, their quality decreases during in vitro expansion because of heterogeneity and acquired cellular senescence. We investigated the potential role of podoplanin (PDPN) in minimizing cellular senescence and maintaining the stemness of tonsil-derived MSCs (TMSCs). METHODS: TMSCs were isolated from human tonsil tissues using an enzymatic method, expanded, and divided into two groups: early-passaged TMSCs, which were cultured for 3-7 passages, and late-passaged TMSCs, which were passaged more than 15 times. The TMSCs were evaluated for cellular senescence and MSC characteristics, and PDPN-positive and -negative cells were identified by fluorescence-activated cell sorting. In addition, MSC features were assessed in siRNA-mediated PDPN-depleted TMSCs. RESULTS: TMSCs, when passaged more than 15 times and becoming senescent, exhibited reduced proliferative rates, telomere length, pluripotency marker (NANOG, OCT4, and SOX2) expression, and tri-lineage differentiation potential (adipogenesis, chondrogenesis, or osteogenesis) compared to cells passaged less than five times. Furthermore, PDPN protein levels significantly decreased in a passage-dependent manner. PDPN-positive cells maintained their stemness characteristics, such as MSC-specific surface antigen (CD14, CD34, CD45, CD73, CD90, and CD105) and pluripotency marker expression, and exhibited higher tri-lineage differentiation potential than PDPN-negative cells. SiRNA-mediated silencing of PDPN led to decreased cell-cycle progression, proliferation, and migration, indicating the significance of PDPN as a preliminary senescence-related factor. These reductions directly contributed to the induction of cellular senescence via p16Ink4a/Rb pathway activation. CONCLUSION: PDPN may serve as a novel biomarker to mitigate cellular senescence in the clinical application of MSCs.


Subject(s)
Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16 , Membrane Glycoproteins , Mesenchymal Stem Cells , Palatine Tonsil , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Palatine Tonsil/cytology , Palatine Tonsil/metabolism , Cell Differentiation , Cell Proliferation , Signal Transduction , Cells, Cultured
6.
J Cell Biochem ; 123(12): 1966-1979, 2022 12.
Article in English | MEDLINE | ID: mdl-36029519

ABSTRACT

There are contradictory reports on the use of mesenchymal stromal cells (MSCs) in cancer therapy. Variable outcomes have been associated with several factors including cancer pathology, experimental procedure, MSC source tissue, and individual genetic differences. It is also known that MSCs exert their therapeutic effects with various paracrine factors released from these cells. The profiles of the factors released from MSCs are altered by heat shock, hypoxia, oxidative stress, starvation or various agents such as inflammatory cytokines, and their therapeutic potential is affected. In this study, the antitumor potential of conditioned media (CM), which contains paracrine factors, of mild hyperthermia-stimulated mesenchymal stromal cells derived from lymphoid organ tonsil tissue (T-MSC) was investigated in comparison with CM obtained from T-MSCs grew under normal culture conditions. CM was obtained from T-MSCs that were successfully isolated from palatine tonsil tissue and characterized. The cytotoxic effect of CM on the growth of hematological cancer cell lines at different concentrations (1:1 and 1:2) was demonstrated by methylthiazoldiphenyl-tetrazolium bromide analysis. In addition, the apoptotic effect of T-MSC-CM treatment was evaluated on the cancer cells using Annexin-V/PI detection method by flow cytometry. The pro/anti-apoptotic and cytokine-related gene expressions were also analyzed by real-time polymerase chain reaction post T-MSC-CM treatment. In conclusion, we demonstrated that the factors released from hyperthermia-stimulated T-MSCs induced apoptosis in hematological cancer cell lines in a dose-dependent manner. Importantly, our results at the transcriptional level support that the factors and cytokines released from hyperthermia-stimulated T-MSC may exert antitumoral effects in cancer cells by downregulation of IL-6 that promotes tumorigenesis. These findings reveal that T-MSC-CM can be a powerful cell-free therapeutical strategy for cancer therapy.


Subject(s)
Hematologic Neoplasms , Hyperthermia, Induced , Mesenchymal Stem Cells , Humans , Interleukin-6/metabolism , Palatine Tonsil/metabolism , Down-Regulation , Mesenchymal Stem Cells/metabolism , Cytokines/metabolism , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Culture Media, Conditioned/pharmacology
7.
J Virol ; 95(18): e0092121, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34232730

ABSTRACT

Mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) and human cytomegalovirus (HCMV) may occur during pregnancy, labor, or breastfeeding. These viruses from amniotic fluid, cervicovaginal secretions, and breast milk may simultaneously interact with oropharyngeal and tonsil epithelia; however, the molecular mechanism of HIV-1 and HCMV cotransmission through the oral mucosa and its role in MTCT are poorly understood. To study the molecular mechanism of HIV-1 and HCMV MTCT via oral epithelium, we established polarized infant tonsil epithelial cells and polarized-oriented ex vivo tonsil tissue explants. Using these models, we showed that cell-free HIV-1 and its proteins gp120 and tat induce the disruption of tonsil epithelial tight junctions and increase paracellular permeability, which facilitates HCMV spread within the tonsil mucosa. Inhibition of HIV-1 gp120-induced upregulation of mitogen-activated protein kinase (MAPK) and NF-κB signaling in tonsil epithelial cells, reduces HCMV infection, indicating that HIV-1-activated MAPK and NF-κB signaling may play a critical role in HCMV infection of tonsil epithelium. HCMV infection of tonsil epithelial cells also leads to the disruption of tight junctions and increases paracellular permeability, facilitating HIV-1 paracellular spread into tonsil mucosa. HCMV-promoted paracellular spread of HIV-1 increases its accessibility to tonsil CD4 T lymphocytes, macrophages, and dendritic cells. HIV-1-enhanced HCMV paracellular spread and infection of epithelial cells subsequently leads to the spread of HCMV to tonsil macrophages and dendritic cells. Our findings revealed that HIV-1- and HCMV-induced disruption of infant tonsil epithelial tight junctions promotes MTCT of these viruses through tonsil mucosal epithelium, and therapeutic intervention for both HIV-1 and HCMV infection may substantially reduce their MTCT. IMPORTANCE Most HIV-1 and HCMV MTCT occurs in infancy, and the cotransmission of these viruses may occur via infant oropharyngeal and tonsil epithelia, which are the first biological barriers for viral pathogens. We have shown that HIV-1 and HCMV disrupt epithelial junctions, reducing the barrier functions of epithelia and thus allowing paracellular penetration of both viruses via mucosal epithelia. Subsequently, HCMV infects epithelial cells, macrophages, and dendritic cells, and HIV-1 infects CD4+ lymphocytes, macrophages, and dendritic cells. Infection of these cells in HCMV- and HIV-1-coinfected tonsil tissues is much higher than that by HCMV or HIV-1 infection alone, promoting their MTCT at its initial stages via infant oropharyngeal and tonsil epithelia.


Subject(s)
Coinfection/virology , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Epithelium/virology , HIV Infections/virology , HIV-1/physiology , Palatine Tonsil/virology , California/epidemiology , Coinfection/epidemiology , Coinfection/metabolism , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/metabolism , Dendritic Cells/metabolism , Dendritic Cells/virology , Epithelium/metabolism , HIV Infections/epidemiology , HIV Infections/metabolism , Humans , Infant , Macrophages/metabolism , Macrophages/virology , Palatine Tonsil/metabolism , Tight Junctions
8.
Hematol Oncol ; 40(1): 40-47, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34679195

ABSTRACT

Long non-coding RNAs are emerging as essential regulators of gene expression, but their role in normal and neoplastic B cells is still largely uncharacterized. Here, we report on the expression pattern of the LINC00152 in normal B cells and Chronic Lymphocytic Leukemia B cell clones. Higher LINC00152 levels were consistently observed in memory B cell populations when compared to naïve B cells in the normal tissues analyzed [peripheral blood (PB), tonsils, and spleen]. In addition, independent stimulation via Immunoglobulins (IG), CD40, or Toll-like Receptor 9 (TLR9) upregulated LINC00152 in PB B cells. The expression of LINC00152 in a cohort of 107 early stage Binet A CLL patients was highly variable and did not correlate with known prognostic markers or clinical evolution. TLR9 stimulation, but not CD40 or IG challenge, was able to upregulate LINC00152 expression in CLL cells. In addition, LINC00152 silencing in CLL cell lines expressing LINC00152 failed to induce significant cell survival or apoptosis changes. These data suggest that, in normal B cells, the expression of LINC00152 is regulated by immunomodulatory signals, which are only partially effective in CLL cells. However, LINC00152 does not appear to contribute to CLL cell expansion and/or survival in a cohort of newly diagnosed CLL patients.


Subject(s)
Biomarkers, Tumor/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Palatine Tonsil/metabolism , RNA, Long Noncoding/metabolism , Spleen/metabolism , Biomarkers, Tumor/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Prognosis , Prospective Studies , RNA, Long Noncoding/genetics , Survival Rate
9.
Mol Ther ; 29(4): 1471-1486, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33348053

ABSTRACT

Mesenchymal stromal cells (MSCs) are considered as a promising therapeutic tool for liver fibrosis, a main feature of chronic liver disease. Because small extracellular vesicles (sEVs) harboring a variety of proteins and RNAs are known to have similar functions with their derived cells, MSC-derived sEVs carry out the regenerative capacities of MSCs. Human tonsil-derived MSCs (T-MSCs) are reported as a novel source of MSCs, but their effects on liver fibrosis remain unclear. In the present study, we investigated the effects of T-MSC-derived sEVs on liver fibrosis. The expression of profibrotic genes decreased in human primary hepatic stellate cells (pHSCs) co-cultured with T-MSCs. Treatment of T-MSC-sEVs inactivated human and mouse pHSCs. Administration of T-MSC-sEVs ameliorated hepatic injuries and fibrosis in chronically damaged liver induced by carbon tetrachloride (CCl4). miR-486-5p highly enriched in T-MSC-sEVs targeting the hedgehog receptor, smoothened (Smo), was upregulated, whereas Smo and Gli2, the hedgehog target gene, were downregulated in pHSCs and liver tissues treated with T-MSC-sEVs or miR-486-5p mimic, indicating that sEV-miR-486 inactivates HSCs by suppressing hedgehog signaling. Our results showed that T-MSCs attenuate HSC activation and liver fibrosis by delivering sEVs, and miR-486 in the sEVs inactivates hedgehog signaling, suggesting that T-MSCs and their sEVs are novel anti-fibrotic therapeutics for treating chronic liver disease.


Subject(s)
Liver Cirrhosis/therapy , MicroRNAs/genetics , Nuclear Proteins/genetics , Smoothened Receptor/genetics , Zinc Finger Protein Gli2/genetics , Animals , Carbon Tetrachloride/toxicity , Coculture Techniques , Extracellular Vesicles/genetics , Extracellular Vesicles/transplantation , Gene Expression Regulation, Developmental/genetics , Hedgehog Proteins/genetics , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Palatine Tonsil/cytology , Palatine Tonsil/metabolism , Signal Transduction
10.
PLoS Genet ; 15(6): e1007721, 2019 06.
Article in English | MEDLINE | ID: mdl-31199803

ABSTRACT

B-cell activation yields abundant cell death in parallel to clonal amplification and remodeling of immunoglobulin (Ig) genes by activation-induced deaminase (AID). AID promotes affinity maturation of Ig variable regions and class switch recombination (CSR) in mature B lymphocytes. In the IgH locus, these processes are under control of the 3' regulatory region (3'RR) super-enhancer, a region demonstrated in the mouse to be both transcribed and itself targeted by AID-mediated recombination. Alternatively to CSR, IgH deletions joining Sµ to "like-switch" DNA repeats that flank the 3' super-enhancer can thus accomplish so-called "locus suicide recombination" (LSR) in mouse B-cells. Using an optimized LSR-seq high throughput method, we now show that AID-mediated LSR is evolutionarily conserved and also actively occurs in humans, providing an activation-induced cell death pathway in multiple conditions of B-cell activation. LSR either focuses on the functional IgH allele or is bi-allelic, and its signature is mainly detected when LSR is ongoing while it vanishes from fully differentiated plasma cells or from "resting" blood memory B-cells. Highly diversified breakpoints are distributed either within the upstream (3'RR1) or downstream (3'RR2) copies of the IgH 3' super-enhancer and all conditions activating CSR in vitro also seem to trigger LSR although TLR ligation appeared the most efficient. Molecular analysis of breakpoints and junctions confirms that LSR is AID-dependent and reveals junctional sequences somehow similar to CSR junctions but with increased usage of microhomologies.


Subject(s)
B-Lymphocytes/immunology , Cytidine Deaminase/genetics , Immunoglobulin Switch Region/genetics , Immunoglobulins/immunology , Alleles , Animals , Cell Differentiation/genetics , Cytidine Deaminase/immunology , Gene Targeting , Humans , Immunoglobulin Switch Region/immunology , Lymphoid Tissue/immunology , Mice , Palatine Tonsil/immunology , Palatine Tonsil/metabolism , Plasma Cells/immunology , Plasma Cells/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Regulatory Sequences, Nucleic Acid
11.
Int J Mol Sci ; 23(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35054911

ABSTRACT

Hematuria is an essential symptom of immunoglobulin A nephropathy (IgAN). Although the etiology of hematuria in IgAN has not been fully elucidated, it is thought that the rupture of the glomerular basement membranes caused by intra-capillary leukocyte influx, so-called glomerular vasculitis, is the pathological condition responsible for severe hematuria. Glomerular vasculitis are active lesions that exist in the glomeruli of acute phase IgAN and it is important because it is suspected to make the transition to segmental glomerular sclerosis (SGS) as a repair scar lesion in the chronic phase, and the progression of SGS would eventually lead to glomerular obsolescence. Worsening of hematuria concomitant with acute pharyngitis is common in patients with IgAN; therefore, elucidating the relationship between the immune system of Waldeyer's ring, including the palatine tonsil and epipharyngeal lymphoid tissue, and the glomerular vasculitis may lead to understanding the nature of IgAN. The epipharynx is an immunologically activated site even under normal conditions, and enhanced activation of innate immunity is likely to occur in response to airborne infection. Hyperactivation of innate immunity via upregulation of Toll-like receptors in the interfollicular area of the palatine tonsil and epipharyngeal lymphoid tissue, followed by enhanced fractalkine/CX3CR1 interactions, appears to play an important role in the development of glomerular vasculitis in IgAN. As latent but significant epipharyngitis is present in most patients with IgAN, it is plausible that acute upper respiratory infection may contribute as a trigger for the innate epipharyngeal immune system, which is already upregulated in a chronically inflamed environment. Given that epipharyngitis and its effects on IgAN are not fully understood, we propose that the so-called "epipharynx-kidney axis" may provide an important focus for future research.


Subject(s)
Disease Susceptibility , Glomerulonephritis, IGA/etiology , Immunity, Mucosal , Intraepithelial Lymphocytes/immunology , Kidney Glomerulus/immunology , Palatine Tonsil/immunology , Animals , Biomarkers , Combined Modality Therapy/methods , Disease Management , Disease Progression , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/metabolism , Glomerulonephritis, IGA/therapy , Humans , Immunohistochemistry , Intraepithelial Lymphocytes/metabolism , Kidney Glomerulus/pathology , Molecular Diagnostic Techniques , Palatine Tonsil/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
12.
Wiad Lek ; 75(2): 491-493, 2022.
Article in English | MEDLINE | ID: mdl-35307682

ABSTRACT

OBJECTIVE: The aim: The aim of the study is to compare the class G antibody content in serum and tissue lysate from tonsils of children with hypertrophy and chronic tonsillitis to: streptolysin-O of Str. haemolyticus, protein-A of S. aureus, proteoglycans of Klebsiela spp., as well as to compare the content of interleukins 1ß, 10, TNF-α, γ-IFN and lactoferrin in serum and tissue lysate from tonsils of children with hypertrophy and chronic tonsillitis. PATIENTS AND METHODS: Materials and methods: We studied tonsils of 33 children aged 4-18 years with hypertrophy of palatine tonsils (HPT) and with chronic tonsillitis (CT). The content of interleukins 1ß, 10, TNF-α, γ-IFN and lactoferrin in tonsil lysate and serum was determined by immunofluorescence assay. Antistreptolysin O was studied by neutralization test of micromethod; class G antibodies to protein A of S. aureus and proteoglycans of Klebsiela spp. were studied by treponema pallidum hemagglutination assay. All the results were statistically processed using U-test (Mann-Whitney-Wilcoxon test) and Fisher's z-transformation. RESULTS: Results: The serum and tissue lysate from tonsils of patients with HPT showed significantly high level of antibodies to streptolysin O in comparison with similar studies of substrates from patients with CT. Anti-inflammatory cytokine IL-10 was detected only in the serum of patients with CT. The TNF-α concentration in the lysates of tonsils in the group of patients with HPT was 2 times higher than in the group of patients with CT. The γ-IFN concentration was significantly lower both in the serum and in the lysates of tonsils of patients with CT. The content of lactoferrin in the lysates of patients with CT was 3 times higher (P<0.05) than in the lysates of patients with HPT. CONCLUSION: Conclusions: The results indicate a significant difference in the state of antibodies to microbial antigens and cytokines production in case of HPT and CT. In tonsils with HPT, there predominate reactions of antibody production to bacterial antigens and antiviral reactions like a high-level cytokines TNF-α and γ-IFN in tissue lysate of palatine tonsils.


Subject(s)
Palatine Tonsil , Tonsillitis , Adolescent , Child , Child, Preschool , Cytokines/metabolism , Humans , Hypertrophy , Palatine Tonsil/metabolism , Staphylococcus aureus , Tonsillitis/metabolism
13.
Clin Immunol ; 226: 108697, 2021 05.
Article in English | MEDLINE | ID: mdl-33636366

ABSTRACT

Autoinflammatory disorders of the innate immune system present with recurrent episodes of inflammation often beginning in early childhood. While there are now more than 30 genetically-defined hereditary fever disorders, many patients lack a clear diagnosis. Many pediatric patients are often grouped with patients with periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome despite failing to meet diagnostic criteria. Here, we categorize these patients as syndrome of undifferentiated recurrent fever (SURF), and identify the unique features which distinguish them from the PFAPA syndrome. SURF patients were more likely to report gastrointestinal symptoms of nausea, vomiting and abdominal pain, and experienced inconsistent responses to on-demand steroid therapy compared to PFAPA patients. For this previously undefined cohort, an optimal course of therapy remains uncertain, with medical and surgical therapies largely driven by parental preference. A subset of patients with SURF underwent tonsillectomy with complete resolution. Flow cytometric evaluation demonstrates leukocytic populations distinct from PFAPA patients, with reduced CD3+ T cell numbers. SURF patient tonsils were predominantly characterized by an IL-1 signature compared to PFAPA, even during the afebrile period. Peripheral blood signatures were similar between groups suggesting that PFAPA and SURF patient tonsils have localized, persistent inflammation, without clinical symptoms. These data suggest that SURF is a heterogenous syndrome on the autoinflammatory disease spectrum.


Subject(s)
Fever/diagnosis , Hereditary Autoinflammatory Diseases/diagnosis , Inflammation/diagnosis , Interleukin-1/metabolism , Lymphadenitis/diagnosis , Pharyngitis/diagnosis , Stomatitis, Aphthous/diagnosis , CD3 Complex/metabolism , Child, Preschool , Female , Fever/metabolism , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/metabolism , Hereditary Autoinflammatory Diseases/metabolism , Humans , Inflammation/metabolism , Lymphadenitis/metabolism , Male , Palatine Tonsil/metabolism , Pediatrics , Pharyngitis/metabolism , Stomatitis, Aphthous/metabolism , Syndrome , T-Lymphocytes/metabolism , Tonsillectomy/methods
14.
Blood ; 133(10): 1119-1129, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30591526

ABSTRACT

Follicular lymphoma (FL) is a low-grade B-cell malignancy that transforms into a highly aggressive and lethal disease at a rate of 2% per year. Perfect isolation of the malignant B-cell population from a surgical biopsy is a significant challenge, masking important FL biology, such as immune checkpoint coexpression patterns. To resolve the underlying transcriptional networks of follicular B-cell lymphomas, we analyzed the transcriptomes of 34 188 cells derived from 6 primary FL tumors. For each tumor, we identified normal immune subpopulations and malignant B cells, based on gene expression. We used multicolor flow cytometry analysis of the same tumors to confirm our assignments of cellular lineages and validate our predictions of expressed proteins. Comparison of gene expression between matched malignant and normal B cells from the same patient revealed tumor-specific features. Malignant B cells exhibited restricted immunoglobulin (Ig) light chain expression (either Igκ or Igλ), as well the expected upregulation of the BCL2 gene, but also downregulation of the FCER2, CD52, and major histocompatibility complex class II genes. By analyzing thousands of individual cells per patient tumor, we identified the mosaic of malignant B-cell subclones that coexist within a FL and examined the characteristics of tumor-infiltrating T cells. We identified genes coexpressed with immune checkpoint molecules, such as CEBPA and B2M in regulatory T (Treg) cells, providing a better understanding of the gene networks involved in immune regulation. In summary, parallel measurement of single-cell expression in thousands of tumor cells and tumor-infiltrating lymphocytes can be used to obtain a systems-level view of the tumor microenvironment and identify new avenues for therapeutic development.


Subject(s)
Lymphoma, B-Cell/genetics , Lymphoma, Follicular/genetics , T-Lymphocytes, Regulatory/cytology , Biopsy , CCAAT-Enhancer-Binding Proteins/genetics , CD4-Positive T-Lymphocytes/cytology , CD52 Antigen/genetics , Cell Lineage , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/cytology , Histocompatibility Antigens Class II/metabolism , Humans , Immune System , Immunoglobulin G , Lectins, C-Type/genetics , Leukocytes, Mononuclear/cytology , Lymphoma, B-Cell/blood , Lymphoma, Follicular/blood , Palatine Tonsil/metabolism , Receptors, IgE/genetics , Sequence Analysis, RNA , Transcriptome , Tumor Microenvironment , beta 2-Microglobulin/genetics
15.
FASEB J ; 34(7): 9269-9284, 2020 07.
Article in English | MEDLINE | ID: mdl-32413173

ABSTRACT

Monocytic cells perform crucial homeostatic and defensive functions. However, their fate and characterization at the transcriptomic level in human tissues are partially understood, often as a consequence of the lack of specific markers allowing their unequivocal identification. The 6-sulfo LacNAc (slan) antigen identifies a subset of non-classical (NC) monocytes in the bloodstream, namely the slan+ -monocytes. In recent studies, we and other groups have reported that, in tonsils, slan marks dendritic cell (DC)-like cells, as defined by morphological, phenotypical, and functional criteria. However, subsequent investigations in lymphomas have uncovered a significant heterogeneity of tumor-infiltrating slan+ -cells, including a macrophage-like state. Based on their emerging role in tissue inflammation and cancer, herein we investigated slan+ -cell fate in tonsils by using a molecular-based approach. Hence, RNA from tonsil slan+ -cells, conventional CD1c+ DCs (cDC2) and CD11b+ CD14+ -macrophages was subjected to gene expression analysis. For comparison, transcriptomes were also obtained from blood cDC2, classical (CL), intermediate (INT), NC, and slan+ -monocytes. Data demonstrate that the main trajectory of human slan+ -monocytes infiltrating the tonsil tissue is toward a macrophage-like population, displaying molecular features distinct from those of tonsil CD11b+ CD14+ -macrophages and cDC2. These findings provide a novel view on the terminal differentiation path of slan+ -monocytes, which is relevant for inflammatory diseases and lymphomas.


Subject(s)
Amino Sugars/metabolism , Dendritic Cells/metabolism , Macrophages/metabolism , Monocytes/metabolism , Palatine Tonsil/metabolism , Tonsillitis/genetics , Case-Control Studies , Cells, Cultured , Dendritic Cells/cytology , Gene Expression Profiling , Humans , Macrophages/cytology , Monocytes/cytology , Palatine Tonsil/cytology , Tonsillitis/metabolism , Tonsillitis/pathology
16.
Eur J Haematol ; 107(1): 74-80, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33714214

ABSTRACT

INTRODUCTION: SOCS1, a negative regulator of JAK/STAT signaling, is among the most frequently mutated genes in DLBCL and classical Hodgkin lymphoma. The C-terminal SOCS box domain, mediating the degradation of phospho-JAK2, is often affected or even lacking. The analysis of such variants is hampered by the lack of a SOCS1-specific monoclonal antibody recognizing the C-terminus of SOCS1. As this C-terminus is often lost or mutated in B-cell lymphomas, staining with amino-terminal targeting antibodies in a lymphoma setting might be misleading. METHODS: BALB/c mice were immunized with a truncated SOCS1 C-terminal protein. The supernatant of generated hybridoma cells was screened by ELISA and, immunohistochemically, on formalin-fixed and paraffin-embedded tonsil. After antibody purification by affinity chromatography, epitope mapping and cross-reactivity check followed via substitution scans. SOCS1 protein expression was investigated on cell cultures and cytoblocks of SOCS1WT stably transfected HEK293T cells, lymphoma cell lines and lymphoid tissues. RESULTS: Procedures resulted in one monoclonal IgG1 anti-SOCS1 antibody, 424C, that recognizes and strongly binds to the C-terminal region of SOCS1 in immunoblot and immunohistochemistry analyses. CONCLUSION: This new anti-SOCS1 monoclonal antibody is a valuable tool to detect SOCS1 expression dependent on an existing SOCS1 box and, therefore, indicating a full-length SOCS1 protein.


Subject(s)
Suppressor of Cytokine Signaling 1 Protein/chemistry , Animals , Antibodies, Monoclonal/chemistry , Binding Sites , Epitope Mapping , Epitopes/chemistry , HEK293 Cells , Humans , Hybridomas/metabolism , Lymphoid Tissue/metabolism , Lymphoma/metabolism , Lymphoma, B-Cell/genetics , Mice , Mice, Inbred BALB C , Mutation , Palatine Tonsil/metabolism , Protein Domains , Signal Transduction , Suppressor of Cytokine Signaling 1 Protein/metabolism , Transfection
17.
Mol Biol Rep ; 48(7): 5579-5586, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34292473

ABSTRACT

OBJECTIVES: Tonsil tissue is a very important component of the human immunity system, contributing to the functioning of the cellular and humoral defence system, especially in childhood. The endoplasmic reticulum (ER) is an organelle that has a very important function in the balanced functioning of cells, in which the accumulation of a cellular protein called ER stress occurs in case of dysfunction. ER stress influences the pathogenesis of many diseases and immune system functions. We aimed to investigate the relation between the diseases of tonsil tissue and ER stress response to elucidate the mechanisms of diseases related with the immune system. METHODS: A prospective study was conducted in 46 children aged between 2 and 16 years who underwent tonsillectomy for chronic tonsillitis or tonsillar hypertrophy. Tonsil tissue was separated into two groups according to their size and evaluated in terms of ER stress markers and apoptosis markers by Real-time PCR and Western blot analysis. RESULTS: The ΔCT levels of ER stress markers (ATF4, ATF6, CHOP, GRP78, EIF2AK3, ERN1, GRP94) were greater in children with chronic tonsillitis (p < 0.005). In contrast, the tonsillar hypertrophy group had greater ΔCT levels of apoptosis markers (BAX, BCL-2) according to the Real-time PCR method (p < 0.005). According to the Western blot analysis, the normalized levels of ATF4, ATF6, CHOP, GRP78, and ERN1 genes were found greater in the chronic tonsillitis group than the tonsillar hypertrophy group. There was no difference between the two groups in terms of normalized BCL-2 and BAX levels by Western blot analysis. CONCLUSION: This is the first study in the literature investigating the effect of the ER stress pathway on the etiopathogenesis of tonsil diseases. It was concluded that the ER stress pathway plays a role in the etiopathogenesis of chronic tonsillitis. Investigating the relationship between ER stress and structures such as the tonsil tissue that make up the immune system can help create new treatment strategies. CLINICAL TRIAL REGISTRATION: Trial Registration ClinicalTrials.gov Identifier: NCT04653376.


Subject(s)
Disease Susceptibility , Endoplasmic Reticulum Stress , Palatine Tonsil/metabolism , Palatine Tonsil/pathology , Tonsillitis/etiology , Tonsillitis/metabolism , Adolescent , Apoptosis/genetics , Biomarkers , Child , Child, Preschool , Chronic Disease , Endoplasmic Reticulum Stress/genetics , Female , Humans , Hypertrophy , Male , Real-Time Polymerase Chain Reaction , Tonsillitis/pathology
18.
BMC Vet Res ; 17(1): 88, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33618723

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is a threat to pig production worldwide. Our objective was to understand mechanisms of persistence of PRRS virus (PRRSV) in tonsil. Transcriptome data from tonsil samples collected at 42 days post infection (dpi) were generated by RNA-seq and NanoString on 51 pigs that were selected to contrast the two PRRSV isolates used, NVSL and KS06, high and low tonsil viral level at 42 dpi, and the favorable and unfavorable genotypes at a genetic marker (WUR) for the putative PRRSV resistance gene GBP5. RESULTS: The number of differentially expressed genes (DEGs) differed markedly between models with and without accounting for cell-type enrichments (CE) in the samples that were predicted from the RNA-seq data. This indicates that differences in cell composition in tissues that consist of multiple cell types, such as tonsil, can have a large impact on observed differences in gene expression. Based on both the NanoString and the RNA-seq data, KS06-infected pigs showed greater activation, or less inhibition, of immune response in tonsils at 42 dpi than NVSL-infected pigs, with and without accounting for CE. This suggests that the NVSL virus may be better than the KS06 virus at evading host immune response and persists in tonsils by weakening, or preventing, host immune responses. Pigs with high viral levels showed larger CE of immune cells than low viral level pigs, potentially to trigger stronger immune responses. Presence of high tonsil virus was associated with a stronger immune response, especially innate immune response through interferon signaling, but these differences were not significant when accounting for CE. Genotype at WUR was associated with different effects on immune response in tonsils of pigs during the persistence stage, depending on viral isolate and tonsil viral level. CONCLUSIONS: Results of this study provide insights into the effects of PRRSV isolate, tonsil viral level, and WUR genotype on host immune response and into potential mechanisms of PRRSV persistence in tonsils that could be targeted to improve strategies to reduce viral rebreaks. Finally, to understand transcriptome responses in tissues that consist of multiple cell types, it is important to consider differences in cell composition.


Subject(s)
Palatine Tonsil/immunology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/classification , Animals , Genotype , Immunity, Innate/genetics , Palatine Tonsil/cytology , Palatine Tonsil/metabolism , Palatine Tonsil/virology , Porcine respiratory and reproductive syndrome virus/immunology , Porcine respiratory and reproductive syndrome virus/isolation & purification , Sus scrofa , Swine , Transcriptome , Viral Load/veterinary , Viremia/veterinary , Viremia/virology
19.
J Nanobiotechnology ; 19(1): 148, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34016123

ABSTRACT

BACKGROUND: The application of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) requires customized materials to target disease or cell damage. We hypothesized that EVs exert different inflammatory effects on one recipient cell, although stem cells of different origins in humans have similar payloads. RESULTS: Here, the payload of EVs released by crosstalk between MSCs and human middle ear epithelial cells (HMEECs) extracted from adipose tissue, bone marrow and tonsils significantly increased the level of anti-inflammatory factors. EVs derived from the co-culture medium decreased TNF-α, COX-2, IL-1ß, and IL-6 levels to approximately zero within 3 h in HMEECs. Expression of miR-638 and amyloid-ß A4 precursor protein-binding family A member 2 was analyzed using microarrays and gene ontology analysis, respectively. CONCLUSIONS: In conclusion, stem cells of different origins have different payloads through crosstalk with recipient-specific cells. Inducing specific factors in EVs by co-culture with MSCs could be valuable in regenerative medicine.


Subject(s)
Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/cytology , Adipose Tissue , Bone Marrow/metabolism , Cell Survival , Cells, Cultured , Coculture Techniques , Epithelial Cells , Humans , Interleukin-1 , Interleukin-1beta , Interleukin-6 , MicroRNAs , Palatine Tonsil/metabolism
20.
Cell Mol Biol Lett ; 26(1): 38, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34407767

ABSTRACT

BACKGROUND: Neurological disorders are considered one of the greatest burdens to global public health and a leading cause of death. Stem cell therapies hold great promise for the cure of neurological disorders, as stem cells can serve as cell replacement, while also secreting factors to enhance endogenous tissue regeneration. Adult human multipotent stem cells (MSCs) reside on blood vessels, and therefore can be found in many tissues throughout the body, including palatine tonsils. Several studies have reported the capacity of MSCs to differentiate into, among other cell types, the neuronal lineage. However, unlike the case with embryonic stem cells, it is unclear whether MSCs can develop into mature neurons. METHODS: Human tonsillar MSCs (T-MSCs) were isolated from a small, 0.6-g sample, of tonsillar biopsies with high viability and yield as we recently reported. Then, these cells were differentiated by a rapid, multi-stage procedure, into committed, post-mitotic, neuron-like cells using defined conditions. RESULTS: Here we describe for the first time the derivation and differentiation of tonsillar biopsy-derived MSCs (T-MSCs), by a rapid, multi-step protocol, into post-mitotic, neuron-like cells using defined conditions without genetic manipulation. We characterized our T-MSC-derived neuronal cells and demonstrate their robust differentiation in vitro. CONCLUSIONS: Our procedure leads to a rapid neuronal lineage commitment and loss of stemness markers, as early as three days following neurogenic differentiation. Our studies identify biopsy-derived T-MSCs as a potential source for generating neuron-like cells which may have potential use for in vitro modeling of neurodegenerative diseases or cell replacement therapies.


Subject(s)
Mesenchymal Stem Cells/cytology , Multipotent Stem Cells/cytology , Neurons/cytology , Palatine Tonsil/cytology , Adult , Biopsy , Cell Differentiation/physiology , Cell Lineage , Cells, Cultured , Child , Child, Preschool , Female , Humans , Male , Mesenchymal Stem Cells/metabolism , Multipotent Stem Cells/metabolism , Neurons/metabolism , Palatine Tonsil/metabolism , Palatine Tonsil/surgery , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL