Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 477
Filter
1.
Mol Cell ; 81(24): 5025-5038.e10, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34890564

ABSTRACT

The Sonic Hedgehog (SHH) morphogen pathway is fundamental for embryonic development and stem cell maintenance and is implicated in various cancers. A key step in signaling is transfer of a palmitate group to the SHH N terminus, catalyzed by the multi-pass transmembrane enzyme Hedgehog acyltransferase (HHAT). We present the high-resolution cryo-EM structure of HHAT bound to substrate analog palmityl-coenzyme A and a SHH-mimetic megabody, revealing a heme group bound to HHAT that is essential for HHAT function. A structure of HHAT bound to potent small-molecule inhibitor IMP-1575 revealed conformational changes in the active site that occlude substrate binding. Our multidisciplinary analysis provides a detailed view of the mechanism by which HHAT adapts the membrane environment to transfer an acyl chain across the endoplasmic reticulum membrane. This structure of a membrane-bound O-acyltransferase (MBOAT) superfamily member provides a blueprint for other protein-substrate MBOATs and a template for future drug discovery.


Subject(s)
Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Enzyme Inhibitors/pharmacology , Hedgehog Proteins/metabolism , Membrane Proteins/metabolism , Acylation , Acyltransferases/genetics , Acyltransferases/ultrastructure , Allosteric Regulation , Animals , COS Cells , Catalytic Domain , Chlorocebus aethiops , Cryoelectron Microscopy , HEK293 Cells , Heme/metabolism , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/ultrastructure , Molecular Dynamics Simulation , Palmitoyl Coenzyme A/metabolism , Protein Conformation , Signal Transduction , Structure-Activity Relationship
2.
J Biol Chem ; 300(3): 105728, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325740

ABSTRACT

Serine palmitoyltransferase (SPT) catalyzes the pyridoxal-5'-phosphate (PLP)-dependent decarboxylative condensation of l-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine (KDS). Although SPT was shown to synthesize corresponding products from amino acids other than l-serine, it is still arguable whether SPT catalyzes the reaction with d-serine, which is a question of biological importance. Using high substrate and enzyme concentrations, KDS was detected after the incubation of SPT from Sphingobacterium multivorum with d-serine and palmitoyl-CoA. Furthermore, the KDS comprised equal amounts of 2S and 2R isomers. 1H-NMR study showed a slow hydrogen-deuterium exchange at Cα of serine mediated by SPT. We further confirmed that SPT catalyzed the racemization of serine. The rate of the KDS formation from d-serine was comparable to those for the α-hydrogen exchange and the racemization reaction. The structure of the d-serine-soaked crystal (1.65 Å resolution) showed a distinct electron density of the PLP-l-serine aldimine, interpreted as the racemized product trapped in the active site. The structure of the α-methyl-d-serine-soaked crystal (1.70 Å resolution) showed the PLP-α-methyl-d-serine aldimine, mimicking the d-serine-SPT complex prior to racemization. Based on these enzymological and structural analyses, the synthesis of KDS from d-serine was explained as the result of the slow racemization to l-serine, followed by the reaction with palmitoyl-CoA, and SPT would not catalyze the direct condensation between d-serine and palmitoyl-CoA. It was also shown that the S. multivorum SPT catalyzed the racemization of the product KDS, which would explain the presence of (2R)-KDS in the reaction products.


Subject(s)
Serine C-Palmitoyltransferase , Serine , Sphingobacterium , Catalytic Domain , Crystallization , Deuterium Exchange Measurement , Electrons , Hydrogen/metabolism , Palmitoyl Coenzyme A/metabolism , Serine/analogs & derivatives , Serine/metabolism , Serine C-Palmitoyltransferase/chemistry , Serine C-Palmitoyltransferase/metabolism , Sphingobacterium/enzymology , Sphingobacterium/metabolism , Sphingosine/analogs & derivatives , Sphingosine/biosynthesis , Sphingosine/metabolism , Stereoisomerism , Substrate Specificity
3.
J Biol Chem ; 299(5): 104684, 2023 05.
Article in English | MEDLINE | ID: mdl-37030501

ABSTRACT

Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis, which catalyzes the pyridoxal-5'-phosphate-dependent decarboxylative condensation reaction of l-serine (l-Ser) and palmitoyl-CoA (PalCoA) to form 3-ketodihydrosphingosine called long chain base (LCB). SPT is also able to metabolize l-alanine (l-Ala) and glycine (Gly), albeit with much lower efficiency. Human SPT is a membrane-bound large protein complex containing SPTLC1/SPTLC2 heterodimer as the core subunits, and it is known that mutations of the SPTLC1/SPTLC2 genes increase the formation of deoxy-type of LCBs derived from l-Ala and Gly to cause some neurodegenerative diseases. In order to study the substrate recognition of SPT, we examined the reactivity of Sphingobacterium multivorum SPT on various amino acids in the presence of PalCoA. The S. multivorum SPT could convert not only l-Ala and Gly but also l-homoserine, in addition to l-Ser, into the corresponding LCBs. Furthermore, we obtained high-quality crystals of the ligand-free form and the binary complexes with a series of amino acids, including a nonproductive amino acid, l-threonine, and determined the structures at 1.40 to 1.55 Å resolutions. The S. multivorum SPT accommodated various amino acid substrates through subtle rearrangements of the active-site amino acid residues and water molecules. It was also suggested that non-active-site residues mutated in the human SPT genes might indirectly influence the substrate specificity by affecting the hydrogen-bonding networks involving the bound substrate, water molecules, and amino acid residues in the active site of this enzyme. Collectively, our results highlight SPT structural features affecting substrate specificity for this stage of sphingolipid biosynthesis.


Subject(s)
Serine C-Palmitoyltransferase , Sphingobacterium , Humans , Palmitoyl Coenzyme A/chemistry , Palmitoyl Coenzyme A/metabolism , Serine/chemistry , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Sphingobacterium/enzymology , Sphingolipids/metabolism , Substrate Specificity
4.
Biochem J ; 478(13): 2539-2553, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34129667

ABSTRACT

Reductions in mitochondrial function have been proposed to cause insulin resistance, however the possibility that impairments in insulin signaling negatively affects mitochondrial bioenergetics has received little attention. Therefore, we tested the hypothesis that insulin could rapidly improve mitochondrial ADP sensitivity, a key process linked to oxidative phosphorylation and redox balance, and if this phenomenon would be lost following high-fat diet (HFD)-induced insulin resistance. Insulin acutely (60 min post I.P.) increased submaximal (100-1000 µM ADP) mitochondrial respiration ∼2-fold without altering maximal (>1000 µM ADP) respiration, suggesting insulin rapidly improves mitochondrial bioenergetics. The consumption of HFD impaired submaximal ADP-supported respiration ∼50%, however, despite the induction of insulin resistance, the ability of acute insulin to stimulate ADP sensitivity and increase submaximal respiration persisted. While these data suggest that insulin mitigates HFD-induced impairments in mitochondrial bioenergetics, the presence of a high intracellular lipid environment reflective of an HFD (i.e. presence of palmitoyl-CoA) completely prevented the beneficial effects of insulin. Altogether, these data show that while insulin rapidly stimulates mitochondrial bioenergetics through an improvement in ADP sensitivity, this phenomenon is possibly lost following HFD due to the presence of intracellular lipids.


Subject(s)
Adenosine Diphosphate/pharmacology , Energy Metabolism/drug effects , Insulin/pharmacology , Mitochondria, Muscle/drug effects , Muscle, Skeletal/drug effects , Adenosine Diphosphate/metabolism , Animals , Body Weight/drug effects , Diet, High-Fat , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Injections, Intraperitoneal , Insulin/administration & dosage , Insulin/metabolism , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Palmitoyl Coenzyme A/metabolism , Palmitoyl Coenzyme A/pharmacology
5.
Nucleic Acids Res ; 48(11): 5967-5985, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32406921

ABSTRACT

During infection of a host, Pseudomonas aeruginosa orchestrates global gene expression to adapt to the host environment and counter the immune attacks. P. aeruginosa harbours hundreds of regulatory genes that play essential roles in controlling gene expression. However, their contributions to the bacterial pathogenesis remain largely unknown. In this study, we analysed the transcriptomic profile of P. aeruginosa cells isolated from lungs of infected mice and examined the roles of upregulated regulatory genes in bacterial virulence. Mutation of a novel regulatory gene pvrA (PA2957) attenuated the bacterial virulence in an acute pneumonia model. Chromatin immunoprecipitation (ChIP)-Seq and genetic analyses revealed that PvrA directly regulates genes involved in phosphatidylcholine utilization and fatty acid catabolism. Mutation of the pvrA resulted in defective bacterial growth when phosphatidylcholine or palmitic acid was used as the sole carbon source. We further demonstrated that palmitoyl coenzyme A is a ligand for the PvrA, enhancing the binding affinity of PvrA to its target promoters. An arginine residue at position 136 was found to be essential for PvrA to bind palmitoyl coenzyme A. Overall, our results revealed a novel regulatory pathway that controls genes involved in phosphatidylcholine and fatty acid utilization and contributes to the bacterial virulence.


Subject(s)
Bacterial Proteins/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Genes, Bacterial/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Animals , Arginine/metabolism , Base Sequence , Chromatin Immunoprecipitation , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Ligands , Mice , Models, Molecular , Mutation , Palmitic Acid/metabolism , Palmitoyl Coenzyme A/metabolism , Phosphatidylcholines/metabolism , Pneumonia, Bacterial/microbiology , Promoter Regions, Genetic , Pseudomonas aeruginosa/genetics , Transcriptome , Virulence/genetics
6.
Angew Chem Int Ed Engl ; 60(24): 13542-13547, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33768725

ABSTRACT

The mammalian membrane-bound O-acyltransferase (MBOAT) superfamily is involved in biological processes including growth, development and appetite sensing. MBOATs are attractive drug targets in cancer and obesity; however, information on the binding site and molecular mechanisms underlying small-molecule inhibition is elusive. This study reports rational development of a photochemical probe to interrogate a novel small-molecule inhibitor binding site in the human MBOAT Hedgehog acyltransferase (HHAT). Structure-activity relationship investigation identified single enantiomer IMP-1575, the most potent HHAT inhibitor reported to-date, and guided design of photocrosslinking probes that maintained HHAT-inhibitory potency. Photocrosslinking and proteomic sequencing of HHAT delivered identification of the first small-molecule binding site in a mammalian MBOAT. Topology and homology data suggested a potential mechanism for HHAT inhibition which was confirmed by kinetic analysis. Our results provide an optimal HHAT tool inhibitor IMP-1575 (Ki =38 nM) and a strategy for mapping small molecule interaction sites in MBOATs.


Subject(s)
Acetyltransferases/antagonists & inhibitors , Affinity Labels/chemistry , Small Molecule Libraries/chemistry , Acetyltransferases/metabolism , Binding Sites , Humans , Kinetics , Light , Palmitoyl Coenzyme A/antagonists & inhibitors , Palmitoyl Coenzyme A/metabolism , Pyridines/chemistry , Pyridines/metabolism , Small Molecule Libraries/metabolism , Structure-Activity Relationship
7.
Biochem J ; 475(18): 2997-3008, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30111574

ABSTRACT

The mechanisms regulating oxidative phosphorylation during exercise remain poorly defined; however, key mitochondrial proteins, including carnitine palmitoyltransferase-I (CPT-I) and adenine nucleotide translocase, have redox-sensitive sites. Interestingly, muscle contraction has recently been shown to increase mitochondrial membrane potential and reactive oxygen species (ROS) production; therefore, we aimed to determine if mitochondrial-derived ROS influences bioenergetic responses to exercise. Specifically, we examined the influence of acute exercise on mitochondrial bioenergetics in WT (wild type) and transgenic mice (MCAT, mitochondrial-targeted catalase transgenic) possessing attenuated mitochondrial ROS. We found that ablating mitochondrial ROS did not alter palmitoyl-CoA (P-CoA) respiratory kinetics or influence the exercise-mediated reductions in malonyl CoA sensitivity, suggesting that mitochondrial ROS does not regulate CPT-I. In contrast, while mitochondrial protein content, maximal coupled respiration, and ADP (adenosine diphosphate) sensitivity in resting muscle were unchanged in the absence of mitochondrial ROS, exercise increased the apparent ADP Km (decreased ADP sensitivity) ∼30% only in WT mice. Moreover, while the presence of P-CoA decreased ADP sensitivity, it did not influence the basic response to exercise, as the apparent ADP Km was increased only in the presence of mitochondrial ROS. This basic pattern was also mirrored in the ability of ADP to suppress mitochondrial H2O2 emission rates, as exercise decreased the suppression of H2O2 only in WT mice. Altogether, these data demonstrate that while exercise-induced mitochondrial-derived ROS does not influence CPT-I substrate sensitivity, it inhibits ADP sensitivity independent of P-CoA. These data implicate mitochondrial redox signaling as a regulator of oxidative phosphorylation.


Subject(s)
Adenosine Diphosphate/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Hydrogen Peroxide/metabolism , Mitochondria, Muscle/metabolism , Physical Conditioning, Animal , Adenosine Diphosphate/genetics , Animals , Carnitine O-Palmitoyltransferase/genetics , Mice , Mice, Transgenic , Mitochondria, Muscle/genetics , Palmitoyl Coenzyme A/genetics , Palmitoyl Coenzyme A/metabolism , Substrate Specificity
8.
Exp Physiol ; 103(9): 1206-1212, 2018 09.
Article in English | MEDLINE | ID: mdl-30088302

ABSTRACT

NEW FINDINGS: What is the central question of this study? Do peripheral sensory neurons metabolize fat-based fuel sources, and does a ketogenic diet modify these processes? What is the main finding and its importance We show that peripheral axons from mice fed a ketogenic diet respond to fat-based fuel sources with reduced respiration and H2 O2 emission compared with mice fed a control diet. These results add to our understanding of the responses of sensory neurons to neuropathy associated with poor diet, obesity and metabolic syndrome. These findings should be incorporated into current ideas of axonal protection and might identify how dietary interventions may change mitochondrial function in settings of sensory dysfunction. ABSTRACT: Metabolic syndrome and obesity are increasing epidemics that significantly impact the peripheral nervous system and lead to negative changes in sensation and peripheral nerve function. Research to understand the consequences of diet, obesity and fuel usage in sensory neurons has commonly focused on glucose metabolism. Here, we tested whether mouse sensory neurons and nerves have the capacity to metabolize fat-based fuels (palmitoyl-CoA) and whether these effects are altered by feeding of a ketogenic (90% kcal fat) diet compared with a control diet (14% kcal fat). Male C57Bl/6 mice were placed on the diets for 10 weeks, and after the mice were killed, the dorsal root ganglion (DRG) and sciatic nerve (SN) were placed in an Oroboros oxygraph-2K to examine diet-induced alterations in metabolism (respiration) of palmitoyl-CoA and H2 O2 emission (fluorescence). In addition, RNAseq was performed on the DRG of mice fed a control or a ketogenic diet for 12 weeks, and genes associated with mitochondrial respiratory function were analysed. Our results suggest that the sciatic nerves from mice fed a ketogenic diet display reduced O2 respiration and H2 O2 emission when metabolizing palmitoyl-CoA compared with mice fed a control diet. Assessments of changes in mRNA gene expression reveal alterations in genes encoding the NADH dehydrogenase complex and complex IV, which could alter production of reactive oxygen species. These new findings highlight the ability of sensory neurons and axons to oxidize fat-based fuel sources and show that these mechanisms are adaptable to dietary changes.


Subject(s)
Diet, Ketogenic , Mitochondria/metabolism , Peripheral Nerves/metabolism , Reactive Oxygen Species/metabolism , Animals , Blood Glucose/metabolism , Ganglia, Spinal/metabolism , Gene Expression/genetics , Hydrogen Peroxide/metabolism , Male , Mice , Mice, Inbred C57BL , Palmitoyl Coenzyme A/metabolism , Phosphorylation , Sciatic Nerve/metabolism , Sensory Receptor Cells/metabolism
9.
PLoS Comput Biol ; 13(6): e1005588, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28598967

ABSTRACT

Lipids are main fuels for cellular energy and mitochondria their major oxidation site. Yet unknown is to what extent the fuel role of lipids is influenced by their uncoupling effects, and how this affects mitochondrial energetics, redox balance and the emission of reactive oxygen species (ROS). Employing a combined experimental-computational approach, we comparatively analyze ß-oxidation of palmitoyl CoA (PCoA) in isolated heart mitochondria from Sham and streptozotocin (STZ)-induced type 1 diabetic (T1DM) guinea pigs (GPs). Parallel high throughput measurements of the rates of oxygen consumption (VO2) and hydrogen peroxide (H2O2) emission as a function of PCoA concentration, in the presence of L-carnitine and malate, were performed. We found that PCoA concentration < 200 nmol/mg mito protein resulted in low H2O2 emission flux, increasing thereafter in Sham and T1DM GPs under both states 4 and 3 respiration with diabetic mitochondria releasing higher amounts of ROS. Respiratory uncoupling and ROS excess occurred at PCoA > 600 nmol/mg mito prot, in both control and diabetic animals. Also, for the first time, we show that an integrated two compartment mitochondrial model of ß-oxidation of long-chain fatty acids and main energy-redox processes is able to simulate the relationship between VO2 and H2O2 emission as a function of lipid concentration. Model and experimental results indicate that PCoA oxidation and its concentration-dependent uncoupling effect, together with a partial lipid-dependent decrease in the rate of superoxide generation, modulate H2O2 emission as a function of VO2. Results indicate that keeping low levels of intracellular lipid is crucial for mitochondria and cells to maintain ROS within physiological levels compatible with signaling and reliable energy supply.


Subject(s)
Diabetes Mellitus/metabolism , Lipid Metabolism , Mitochondria, Heart/metabolism , Models, Cardiovascular , Palmitoyl Coenzyme A/metabolism , Reactive Oxygen Species/metabolism , Animals , Cell Respiration , Cells, Cultured , Computer Simulation , Electron Transport , Guinea Pigs , Hydrogen Peroxide/metabolism , Male , Metabolism , Oxidation-Reduction , Oxygen/metabolism
10.
Biochem J ; 474(4): 557-569, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27941154

ABSTRACT

The obligatory role of carnitine palmitoyltransferase-I (CPT-I) in mediating mitochondrial lipid transport is well established, a process attenuated by malonyl-CoA (M-CoA). However, the necessity of reducing M-CoA concentrations to promote lipid oxidation has recently been challenged, suggesting external regulation on CPT-I. Since previous work in hepatocytes suggests the involvement of the intermediate filament fraction of the cytoskeleton in regulating CPT-I, we investigated in skeletal muscle if CPT-I sensitivity for M-CoA inhibition could be regulated by the intermediate filaments, and whether AMP-activated protein kinase (AMPK) could be involved in this process. Chemical disruption (3,3'-iminodipropionitrile, IDPN) of the intermediate filaments did not alter mitochondrial respiration or sensitivity for numerous substrates (palmitoyl-CoA, ADP, palmitoyl carnitine and pyruvate). In contrast, IDPN reduced CPT-I sensitivity for M-CoA inhibition in permeabilized muscle fibers, identifying M-CoA kinetics as a specific target for intermediate filament regulation. Importantly, exercise mimicked the effect of IDPN on M-CoA sensitivity, suggesting that intermediate filament disruption in vivo is physiologically important for CPT-I regulation. To ascertain a potential mechanism, since AMPK is activated during exercise, AMPK ß1ß2-KO mice were utilized in an attempt to ablate the observed exercise response. Unexpectedly, these mice displayed drastic attenuation in resting M-CoA sensitivity, such that exercise and IDPN could not further alter M-CoA sensitivity. These data suggest that AMPK is not required for the regulation of the intermediate filament interaction with CPT-I. Altogether, these data highlight that M-CoA sensitivity is important for regulating mitochondrial lipid transport. Moreover, M-CoA sensitivity appears to be regulated by intermediate filament interaction with CPT-I, a process that is important when metabolic homeostasis is challenged.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Intermediate Filaments/metabolism , Malonyl Coenzyme A/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , AMP-Activated Protein Kinases/genetics , Adenosine Diphosphate/metabolism , Animals , Carnitine O-Palmitoyltransferase/genetics , Gene Expression Regulation , Intermediate Filaments/drug effects , Male , Mice , Mice, Knockout , Mitochondria, Muscle/genetics , Muscle, Skeletal/drug effects , Nitriles/pharmacology , Oxidation-Reduction , Oxidative Phosphorylation , Palmitoyl Coenzyme A/metabolism , Palmitoylcarnitine/metabolism , Physical Conditioning, Animal , Pyruvic Acid/metabolism , Signal Transduction , Substrate Specificity
11.
J Biol Chem ; 291(7): 3520-30, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26663084

ABSTRACT

The type I fatty acid synthase (FASN) is responsible for the de novo synthesis of palmitate. Chain length selection and release is performed by the C-terminal thioesterase domain (TE1). FASN expression is up-regulated in cancer, and its activity levels are controlled by gene dosage and transcriptional and post-translational mechanisms. In addition, the chain length of fatty acids produced by FASN is controlled by a type II thioesterase called TE2 (E.C. 3.1.2.14). TE2 has been implicated in breast cancer and generates a broad lipid distribution within milk. The molecular basis for the ability of the TE2 to compete with TE1 for the acyl chain attached to the acyl carrier protein (ACP) domain of FASN is unknown. Herein, we show that human TE1 efficiently hydrolyzes acyl-CoA substrate mimetics. In contrast, TE2 prefers an engineered human acyl-ACP substrate and readily releases short chain fatty acids from full-length FASN during turnover. The 2.8 Å crystal structure of TE2 reveals a novel capping domain insert within the α/ß hydrolase core. This domain is reminiscent of capping domains of type II thioesterases involved in polyketide synthesis. The structure also reveals that the capping domain had collapsed onto the active site containing the Ser-101-His-237-Asp-212 catalytic triad. This observation suggests that the capping domain opens to enable the ACP domain to dock and to place the acyl chain and 4'-phosphopantetheinyl-linker arm correctly for catalysis. Thus, the ability of TE2 to prematurely release fatty acids from FASN parallels the role of editing thioesterases involved in polyketide and non-ribosomal peptide synthase synthases.


Subject(s)
Acyl Coenzyme A/metabolism , Fatty Acid Synthase, Type I/metabolism , Models, Molecular , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/genetics , Acyl Carrier Protein/metabolism , Acyl Coenzyme A/chemistry , Binding Sites , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Fatty Acid Synthase, Type I/chemistry , Fatty Acids, Volatile/chemistry , Fatty Acids, Volatile/metabolism , Humans , Hydrolysis , Molecular Weight , Palmitoyl Coenzyme A/chemistry , Palmitoyl Coenzyme A/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Engineering , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity
12.
J Lipid Res ; 57(2): 288-98, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26621918

ABSTRACT

The covalent attachment of a 14-carbon aliphatic tail on a glycine residue of nascent translated peptide chains is catalyzed in human cells by two N-myristoyltransferase (NMT) enzymes using the rare myristoyl-CoA (C(14)-CoA) molecule as fatty acid donor. Although, NMT enzymes can only transfer a myristate group, they lack specificity for C(14)-CoA and can also bind the far more abundant palmitoyl-CoA (C(16)-CoA) molecule. We determined that the acyl-CoA binding protein, acyl-CoA binding domain (ACBD)6, stimulated the NMT reaction of NMT2. This stimulatory effect required interaction between ACBD6 and NMT2, and was enhanced by binding of ACBD6 to its ligand, C(18:2)-CoA. ACBD6 also interacted with the second human NMT enzyme, NMT1. The presence of ACBD6 prevented competition of the NMT reaction by C(16)-CoA. Mutants of ACBD6 that were either deficient in ligand binding to the N-terminal ACBD or unable to interact with NMT2 did not stimulate activity of NMT2, nor could they protect the enzyme from utilizing the competitor C(16)-CoA. These results indicate that ACBD6 can locally sequester C(16)-CoA and prevent its access to the enzyme binding site via interaction with NMT2. Thus, the ligand binding properties of the NMT/ACBD6 complex can explain how the NMT reaction can proceed in the presence of the very abundant competitive substrate, C(16)-CoA.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Acyl Coenzyme A/metabolism , Acyltransferases/metabolism , Membrane Lipids/metabolism , Myristic Acid/metabolism , ATP-Binding Cassette Transporters/chemistry , Acylation , Acyltransferases/chemistry , Carrier Proteins , Coenzyme A/metabolism , Fatty Acids/genetics , Fatty Acids/metabolism , Humans , Membrane Lipids/chemistry , Palmitoyl Coenzyme A/metabolism , Phospholipids/metabolism , Protein Interaction Domains and Motifs/genetics , Substrate Specificity
13.
Biochim Biophys Acta ; 1851(5): 549-65, 2015 May.
Article in English | MEDLINE | ID: mdl-25603556

ABSTRACT

Fatty acid transport protein (FATP) 4 is a minor FATP in the liver but it has some activity towards palmitate 16:0 (Pal). We here chose FATP4 as a representative model enzyme for acyl-CoA synthetases (ACSs), and FATPs to determine whether Pal activation would lead to apoptosis and alteration in lipid metabolism. By using FATP4 overexpressed (FATP4) Huh-7 cells, we showed that FATP4 was localized in the endoplasmic reticulum (ER) and mitochondria of FATP4 cells. FATP4 cells were more responsive to Pal than the control GFP cells in increasing palmitoyl-CoA and oleoyl-CoA activities as well as apoptosis by ~2-3 folds. The lipoapoptosis susceptibility by FATP4 was coupled with the increased JNK, PUMA, caspase3, PARP-1 activation as well as Rac-1-mediated cytoskeletal reorganization, and decreased insulin sensitivity. This was associated with increased contents of neutral lipids and significant alteration in composition of phospholipids and sphingolipids including increased lysophosphatidylcholine (LPC), ceramide, and hexosylceramide, as well as an increase of saturated:polyunsaturated fatty acid ratio in LPC and PC, but a decrease of this ratio in phosphatidylethanolamine pool. By use of ceramide synthase inhibitors, our results showed that FATP4-sensitized lipoapoptosis was not mediated by ceramides. Moreover, FATP4 expression was increased in fatty livers in vivo. Thus, our model system has provided a clue that Pal activation FATP4 triggers hepatocellular apoptosis via altered phospholipid composition and steatosis by acylation into complex lipids. This may be a redundant mechanism for other ER-localizing ACSs and FATPs in the liver, and hence their involvement in the development of fatty liver disease.


Subject(s)
Apoptosis , Hepatocytes/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Palmitic Acid/metabolism , Acyl Coenzyme A/metabolism , Animals , Cell Line, Tumor , Ceramides/metabolism , Diet, High-Fat , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Hepatocytes/pathology , Humans , Insulin/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Mitochondria, Liver/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Palmitoyl Coenzyme A/metabolism , Phospholipids/metabolism , RNA Interference , Signal Transduction , Sphingolipids/metabolism , Transfection
14.
Proteomics ; 15(12): 2066-77, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25914232

ABSTRACT

Protein acylation plays a critical role in protein localization and function. Acylation is essential for human immunodeficiency virus 1 (HIV-1) assembly and budding of HIV-1 from the plasma membrane in lipid raft microdomains and is mediated by myristoylation of the Gag polyprotein and the copackaging of the envelope protein is facilitated by colocalization mediated by palmitoylation. Since the viral accessory protein NEF has been shown to alter the substrate specificity of myristoyl transferases, and alter cargo trafficking lipid rafts, we hypothesized that HIV-1 infection may alter protein acylation globally. To test this hypothesis, we labeled HIV-1 infected cells with biomimetics of acyl azides, which are incorporated in a manner analogous to natural acyl-Co-A. A terminal azide group allowed us to use a copper catalyzed click chemistry to conjugate the incorporated modifications to a number of substrates to carry out SDS-PAGE, fluorescence microscopy, and enrichment for LC-MS/MS. Using LC-MS/MS, we identified 103 and 174 proteins from the myristic and palmitic azide enrichments, with 27 and 45 proteins respectively that differentiated HIV-1 infected from uninfected cells. This approach has provided us with important insights into HIV-1 biology and is widely applicable to many virological systems.


Subject(s)
Acyl Coenzyme A/metabolism , Biomimetics , HIV Infections/metabolism , HIV-1/physiology , Palmitoyl Coenzyme A/metabolism , Proteome/analysis , Proteomics/methods , Acylation , Acyltransferases/metabolism , Cells, Cultured , Chromatography, Liquid , Click Chemistry , Electrophoresis, Gel, Two-Dimensional , HIV Infections/virology , Humans , Protein Interaction Maps , Proteome/metabolism , Tandem Mass Spectrometry , Viral Proteins/metabolism
15.
J Biol Chem ; 289(14): 10223-34, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24558043

ABSTRACT

Rat hearts were perfused with [1,2,3,4-(13)C4]palmitic acid (M+4), and the isotopic patterns of myocardial acylcarnitines and acyl-CoAs were analyzed using ultra-HPLC-MS/MS. The 91.2% (13)C enrichment in palmitoylcarnitine shows that little endogenous (M+0) palmitate contributed to its formation. The presence of M+2 myristoylcarnitine (95.7%) and M+2 acetylcarnitine (19.4%) is evidence for ß-oxidation of perfused M+4 palmitic acid. Identical enrichment data were obtained in the respective acyl-CoAs. The relative (13)C enrichment in M+4 (84.7%, 69.9%) and M+6 (16.2%, 17.8%) stearoyl- and arachidylcarnitine, respectively, clearly shows that the perfused palmitate is chain-elongated. The observed enrichment of (13)C in acetylcarnitine (19%), M+6 stearoylcarnitine (16.2%), and M+6 arachidylcarnitine (17.8%) suggests that the majority of two-carbon units for chain elongation are derived from ß-oxidation of [1,2,3,4-(13)C4]palmitic acid. These data are explained by conversion of the M+2 acetyl-CoA to M+2 malonyl-CoA, which serves as the acceptor for M+4 palmitoyl-CoA in chain elongation. Indeed, the (13)C enrichment in mitochondrial acetyl-CoA (18.9%) and malonyl-CoA (19.9%) are identical. No (13)C enrichment was found in acylcarnitine species with carbon chain lengths between 4 and 12, arguing against the simple reversal of fatty acid ß-oxidation. Furthermore, isolated, intact rat heart mitochondria 1) synthesize malonyl-CoA with simultaneous inhibition of carnitine palmitoyltransferase 1b and 2) catalyze the palmitoyl-CoA-dependent incorporation of (14)C from [2-(14)C]malonyl-CoA into lipid-soluble products. In conclusion, rat heart has the capability to chain-elongate fatty acids using mitochondria-derived two-carbon chain extenders. The data suggest that the chain elongation process is localized on the outer surface of the mitochondrial outer membrane.


Subject(s)
Acetyl Coenzyme A/metabolism , Enzyme Inhibitors/pharmacology , Mitochondria, Heart/metabolism , Myocardium/metabolism , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Animals , Carnitine O-Palmitoyltransferase/metabolism , Enzyme Inhibitors/metabolism , Malonyl Coenzyme A/metabolism , Muscle Proteins/metabolism , Oxidation-Reduction , Palmitoyl Coenzyme A/metabolism , Perfusion , Rats , Rats, Inbred F344
16.
J Biol Chem ; 289(39): 26895-26903, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25122772

ABSTRACT

Rotenone is a naturally occurring mitochondrial complex I inhibitor with a known association with parkinsonian phenotypes in both human populations and rodent models. Despite these findings, a clear mechanistic link between rotenone exposure and neuronal damage remains to be determined. Here, we report alterations to lipid metabolism in SH-SY5Y neuroblastoma cells exposed to rotenone. The absolute levels of acetyl-CoA were found to be maintained despite a significant decrease in glucose-derived acetyl-CoA. Furthermore, palmitoyl-CoA levels were maintained, whereas the levels of many of the medium-chain acyl-CoA species were significantly reduced. Additionally, using isotopologue analysis, we found that ß-oxidation of fatty acids with varying chain lengths helped maintain acetyl-CoA levels. Rotenone also induced increased glutamine utilization for lipogenesis, in part through reductive carboxylation, as has been found previously in other cell types. Finally, palmitoylcarnitine levels were increased in response to rotenone, indicating an increase in fatty acid import. Taken together, these findings show that alterations to lipid and glutamine metabolism play an important compensatory role in response to complex I inhibition by rotenone.


Subject(s)
Acetyl Coenzyme A/metabolism , Electron Transport Complex I/antagonists & inhibitors , Fatty Acids/metabolism , Palmitoyl Coenzyme A/metabolism , Rotenone/pharmacology , Uncoupling Agents/pharmacology , Cell Line, Tumor , Electron Transport Complex I/metabolism , Glutamine/metabolism , Humans , Neurons , Oxidation-Reduction/drug effects
17.
J Biol Chem ; 289(32): 21984-94, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-24917677

ABSTRACT

The biosynthesis of ether lipids and wax esters requires as precursors fatty alcohols, which are synthesized by fatty acyl reductases (FARs). The presence of ether glycerolipids as well as branched wax esters has been reported in several free-living ciliate protozoa. In the genome of Tetrahymena thermophila, the only ORF sharing similarities with FARs is fused to an acyltransferase-like domain, whereas, in most other organisms, FARs are monofunctional proteins of similar size and domain structure. Here, we used heterologous expression in plant and yeast to functionally characterize the activities catalyzed by this protozoan protein. Transient expression in tobacco epidermis of a truncated form fused to the green fluorescence protein followed by confocal microscopy analysis suggested peroxisomal localization. In vivo approaches conducted in yeast indicated that the N-terminal FAR-like domain produced both 16:0 and 18:0 fatty alcohols, whereas the C-terminal acyltransferase-like domain was able to rescue the lethal phenotype of the yeast double mutant gat1Δ gat2Δ. Using in vitro approaches, we further demonstrated that this domain is a dihydroxyacetone phosphate acyltransferase that uses preferentially 16:0-coenzyme A as an acyl donor. Finally, coexpression in yeast with the alkyl-dihydroxyacetone phosphate synthase from T. thermophila resulted the detection of various glycerolipids with an ether bond, indicating reconstitution of the ether lipid biosynthetic pathway. Together, these results demonstrate that this FAR-like protein is peroxisomal and bifunctional, providing both substrates required by alkyl-dihydroxyacetone phosphate synthase to initiate ether lipid biosynthesis.


Subject(s)
Acyltransferases/metabolism , Aldehyde Oxidoreductases/metabolism , Lipids/biosynthesis , Protozoan Proteins/metabolism , Tetrahymena thermophila/metabolism , Acyltransferases/chemistry , Acyltransferases/genetics , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/genetics , Ethers/metabolism , Gene Fusion , Genes, Protozoan , Genetic Complementation Test , Palmitoyl Coenzyme A/metabolism , Plants, Genetically Modified , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Substrate Specificity , Tetrahymena thermophila/genetics , Nicotiana/genetics , Nicotiana/metabolism
18.
J Biol Chem ; 289(36): 25241-9, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25012658

ABSTRACT

We have recently shown that RaaS (regulator of antimicrobial-assisted survival), encoded by Rv1219c in Mycobacterium tuberculosis and by bcg_1279c in Mycobacterium bovis bacillus Calmette-Guérin, plays an important role in mycobacterial survival in prolonged stationary phase and during murine infection. Here, we demonstrate that long chain acyl-CoA derivatives (oleoyl-CoA and, to lesser extent, palmitoyl-CoA) modulate RaaS binding to DNA and expression of the downstream genes that encode ATP-dependent efflux pumps. Moreover, exogenously added oleic acid influences RaaS-mediated mycobacterial improvement of survival and expression of the RaaS regulon. Our data suggest that long chain acyl-CoA derivatives serve as biological indicators of the bacterial metabolic state. Dysregulation of efflux pumps can be used to eliminate non-growing mycobacteria.


Subject(s)
Acyl Coenzyme A/metabolism , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Mycobacterium/metabolism , Acyl Coenzyme A/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Binding Sites/genetics , DNA, Bacterial/genetics , Fluorescence Polarization , Gene Expression Regulation, Bacterial/drug effects , Microbial Viability/drug effects , Microbial Viability/genetics , Molecular Sequence Data , Molecular Structure , Mutation , Mycobacterium/genetics , Mycobacterium bovis/genetics , Mycobacterium bovis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Oleic Acid/pharmacology , Palmitoyl Coenzyme A/chemistry , Palmitoyl Coenzyme A/metabolism , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Transcriptome/drug effects , Transcriptome/genetics
19.
Anal Biochem ; 490: 66-72, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26334609

ABSTRACT

Hedgehog signaling is critical for correct embryogenesis and tissue development. However, on maturation, signaling is also found to be aberrantly activated in many cancers. Palmitoylation of the secreted signaling protein sonic hedgehog (Shh) by the enzyme hedgehog acyltransferase (Hhat) is required for functional signaling. To quantify this important posttranslational modification, many in vitro Shh palmitoylation assays employ radiolabeled fatty acids, which have limitations in terms of cost and safety. Here we present a click chemistry armed enzyme-linked immunosorbent assay (click-ELISA) for assessment of Hhat activity through acylation of biotinylated Shh peptide with an alkyne-tagged palmitoyl-CoA (coenzyme A) analogue. Click chemistry functionalization of the alkyne tag with azido-FLAG peptide allows analysis through an ELISA protocol and colorimetric readout. This assay format identified the detergent n-dodecyl ß-d-maltopyranoside as an improved solubilizing agent for Hhat activity. Quantification of the potency of RU-SKI small molecule Hhat inhibitors by click-ELISA indicated IC50 values in the low- or sub-micromolar range. A stopped assay format was also employed that allows measurement of Hhat kinetic parameters where saturating substrate concentrations exceed the binding capacity of the streptavidin-coated plate. Therefore, click-ELISA represents a nonradioactive method for assessing protein palmitoylation in vitro that is readily expandable to other classes of protein lipidation.


Subject(s)
Acyltransferases/metabolism , Hedgehog Proteins/metabolism , Protein Processing, Post-Translational , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Acyltransferases/genetics , Biotinylation , Click Chemistry , Detergents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , Fatty Acids, Unsaturated/pharmacology , HEK293 Cells , Hedgehog Proteins/chemistry , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Lipoylation/drug effects , Maltose/analogs & derivatives , Maltose/chemistry , Oligopeptides/chemistry , Oligopeptides/metabolism , Palmitoyl Coenzyme A/analogs & derivatives , Palmitoyl Coenzyme A/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Processing, Post-Translational/drug effects , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Solubility , Streptavidin/chemistry , Streptavidin/metabolism , Substrate Specificity
20.
Biochemistry ; 53(16): 2632-43, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24713062

ABSTRACT

Peroxisome proliferator-activated receptor α (PPARα) and liver X receptor α (LXRα) are members of the nuclear receptor superfamily that function to regulate lipid metabolism. Complex interactions between the LXRα and PPARα pathways exist, including competition for the same heterodimeric partner, retinoid X receptor α (RXRα). Although data have suggested that PPARα and LXRα may interact directly, the role of endogenous ligands in such interactions has not been investigated. Using in vitro protein-protein binding assays, circular dichroism, and co-immunoprecipitation of endogenous proteins, we established that full-length human PPARα and LXRα interact with high affinity, resulting in altered protein conformations. We demonstrated for the first time that the affinity of this interaction and the resulting conformational changes could be altered by endogenous PPARα ligands, namely long chain fatty acids (LCFA) or their coenzyme A thioesters. This heterodimer pair was capable of binding to PPARα and LXRα response elements (PPRE and LXRE, respectively), albeit with an affinity lower than that of the respective heterodimers formed with RXRα. LCFA had little effect on binding to the PPRE but suppressed binding to the LXRE. Ectopic expression of PPARα and LXRα in mammalian cells yielded an increased level of PPRE transactivation compared to overexpression of PPARα alone and was largely unaffected by LCFA. Overexpression of both receptors also resulted in transactivation from an LXRE, with decreased levels compared to that of LXRα overexpression alone, and LCFA suppressed transactivation from the LXRE. These data are consistent with the hypothesis that ligand binding regulates heterodimer choice and downstream gene regulation by these nuclear receptors.


Subject(s)
Orphan Nuclear Receptors/chemistry , Orphan Nuclear Receptors/metabolism , PPAR alpha/chemistry , PPAR alpha/metabolism , Circular Dichroism , Coenzyme A/chemistry , Coenzyme A/metabolism , Fatty Acids/metabolism , Hep G2 Cells , Humans , Immunoprecipitation , Ligands , Liver X Receptors , Orphan Nuclear Receptors/genetics , PPAR alpha/genetics , Palmitoyl Coenzyme A/chemistry , Palmitoyl Coenzyme A/metabolism , Protein Conformation , Protein Multimerization , Response Elements
SELECTION OF CITATIONS
SEARCH DETAIL