Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.981
Filter
1.
Biochem Biophys Res Commun ; 719: 150027, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38749089

ABSTRACT

Aging is a complex, degenerative process associated with various metabolic abnormalities. Ginsenosides (GS) is the main active components of Panax ginseng, which has anti-aging effects and improves metabolism. However, the anti-aging effect and the mechanism of GS in middle-aged mice has not been elucidated. In this study, GS after 3-month treatment significantly improved the grip strength, fatigue resistance, cognitive indices, and cardiac function of 15-month-old mice. Meanwhile, GS treatment reduced the fat content and obviously inhibited histone H2AX phosphorylation at Ser 139 (γ-H2AX), a marker of DNA damage in major organs, especially in the heart and liver. Further, the correlation analysis of serum metabolomics combined with aging phenotype suggested that myo-inositol (MI) upregulated by GS was positively correlated with left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), the main indicators of cardiac function. More importantly, liver tissue metabolomic analysis showed that GS increased MI content by promoting the synthesis pathway from phosphatidylcholine (PC) to MI for the inhibition of liver aging. Finally, we proved that MI reduced the percentage of senescence-associated ß-galactosidase staining, γ-H2AX immunofluorescence staining, p21 expression, and the production of reactive oxygen species in H2O2-induced cardiomyocytes. These results suggest that GS can enhance multiple organ functions, especially cardiac function for promoting the healthspan of aging mice, which is mediated by the conversion of PC to MI in the liver and the increase of MI level in the serum. Our study might provide new insights into the potential mechanisms of ginsenosides for prolonging the healthspan of natural aging mice.


Subject(s)
Aging , Ginsenosides , Inositol , Metabolomics , Panax , Phosphatidylcholines , Animals , Panax/chemistry , Ginsenosides/pharmacology , Aging/drug effects , Aging/metabolism , Phosphatidylcholines/metabolism , Mice , Male , Inositol/pharmacology , Liver/metabolism , Liver/drug effects , Mice, Inbred C57BL
2.
BMC Plant Biol ; 24(1): 824, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227804

ABSTRACT

The accumulation of secondary metabolites in Panax ginseng Meyer (P. ginseng) exhibits significant geographical variation, normally due to environmental factors. The current study aimed at elucidating the key environmental factors modulating the accumulation of secondary metabolites in P. ginseng. Plant and the associated soil samples were collected from ten geographical locations within the latitudinalrange of 27.09°N - 42.39°N and longitudinal range of 99.28°E - 128.19°E. 12 secondary metabolites in P. ginseng toots were measured. And the correlation between secondary metabolites with a series of soil properties and 7 climatic factors were investigated through Pearson's correlation, mantel test, random forest and pathway analysis. The results revealed that climatic factors were stronger drivers of ginseng secondary metabolite profile than soil nutrients. Specifically, temperature seasonality (TS) and soil available phosphorus (AP) were the most effective environments to have significantly and positively influence on the secondary metabolites of ginseng. This findings contribute to identifying optimal cultivation areas for P. ginseng, and hopefully establishing methods for interfering/shaping microclimate for cultivating high-quality P. ginseng.


Subject(s)
Ginsenosides , Panax , Phosphorus , Seasons , Soil , Temperature , Panax/metabolism , Panax/growth & development , Panax/chemistry , Phosphorus/analysis , Phosphorus/metabolism , Ginsenosides/analysis , Ginsenosides/metabolism , Soil/chemistry
3.
BMC Microbiol ; 24(1): 317, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223475

ABSTRACT

BACKGROUND: Rusted root rot is one of the most common root diseases in Panax ginseng, and Cylindrocarpon destructans is one of the main pathogenic fungus. The objective of this study was to screen and explore the extracts of biocontrol bacteria isolated from ginseng rhizosphere soil against Cylindrocarpon destructans. RESULTS: Bacterial strains Bacillus amyloliquefaciens YY8 and Enterobacteriacea YY115 were isolated and found to exhibit in vitro antifungal activity against C. destructans. A combination of crude protein extract from B. amyloliquefaciens YY8 and ethyl acetate extract from Enterobacteriacea YY115 in a 6:4 ratio exhibited the strongest antifungal activity against C. destructans. Measurements of electrical conductivity, protein content, and nucleic acid content in suspension cultures of C. destructans treated with a mixture extracts indicated that the extracts disrupted the cell membranes of rusted root rot mycelia, resulting in the leakage of electrolytes, proteins, and nucleic acids from the cells, and ultimately inhibiting the growth of C. destructans. The combined extracts suppressed the infection of ginseng roots discs by C. destructans effectively. CONCLUSION: The extracts obtained from the two bacterial strains effectively inhibited C. destructans in P. ginseng. It can provide scientific basis for the development of new biological control pesticides, reduce the use of chemical pesticides, and promote the sustainable development of agriculture.


Subject(s)
Bacillus amyloliquefaciens , Enterobacteriaceae , Panax , Plant Diseases , Plant Roots , Panax/microbiology , Panax/chemistry , Bacillus amyloliquefaciens/metabolism , Bacillus amyloliquefaciens/chemistry , Bacillus amyloliquefaciens/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Roots/microbiology , Enterobacteriaceae/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Soil Microbiology , Rhizosphere , Acetates/pharmacology , Ascomycota/drug effects , Ascomycota/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Biological Control Agents/pharmacology
4.
Metabolomics ; 20(5): 96, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110263

ABSTRACT

INTRODUCTION: Ginseng berry (GB) has previously been demonstrated to improve systemic insulin resistance and regulate hepatic glucose metabolism and steatosis in mice with diet-induced obesity (DIO). OBJECTIVES: In this study, the role of GB in metabolism was assessed using metabolomics analysis on the total liver metabolites of DIO mice. METHODS: Metabolomic profiling was performed using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS) of liver tissue from mice on a 12-wk normal chow diet (NC), high-fat diet (HFD), and HFD supplemented with 0.1% GB (HFD + GB). The detected metabolites, its pathways, and functions were analyzed through partial least square discriminant analysis (PLS-DA), the small molecular pathway database (SMPDB), and MetaboAnalyst 5.0. RESULTS: The liver metabolite profiles of NC, HFD, and GB-fed mice (HFD + GB) were highly compartmentalized. Metabolites involved in major liver functions, such as mitochondrial function, gluconeogenesis/glycolysis, fatty acid metabolism, and primary bile acid biosynthesis, showed differences after GB intake. The metabolites that showed significant correlations with fasting blood glucose (FBG), insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) were highly associated with mitochondrial membrane function, energy homeostasis, and glucose metabolism. Ginseng berry intake increased the levels of metabolites involved in mitochondrial membrane function, decreased the levels of metabolites related to glucose metabolism, and was highly correlated with metabolic phenotypes. CONCLUSION: This study demonstrated that long-term intake of GB changed the metabolite of hepatosteatotic livers in DIO mice, normalizing global liver metabolites involved in mitochondrial function and glucose metabolism and indicating the potential mechanism of GB in ameliorating hyperglycemia in DIO mice.


Subject(s)
Diet, High-Fat , Glucose , Liver , Metabolomics , Obesity , Panax , Animals , Panax/metabolism , Panax/chemistry , Mice , Metabolomics/methods , Liver/metabolism , Glucose/metabolism , Male , Obesity/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Mice, Obese , Insulin Resistance , Fruit/metabolism , Fruit/chemistry , Metabolome/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects
5.
Protein Expr Purif ; 216: 106430, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38184160

ABSTRACT

Pq3-O-UGT2, derived from Panax quinquefolius, functions as a ginsenoside glucosyltransferase, utilizing UDP-glucose (UDPG) as the sugar donor to catalyze the glycosylation of Rh2 and F2. An essential step in comprehending its catalytic mechanism involves structural analysis. In preparation for structural analysis, we expressed Pq3-O-UGT2 in the Escherichia coli (E. coli) strain Rosetta (DE3). The recombinant Pq3-O-UGT2 was purified through Ni-NTA affinity purification, a two-step ion exchange chromatography, and subsequently size-exclusion chromatography (SEC). Notably, the purified Pq3-O-UGT2 showed substantial activity toward Rh2 and F2, catalyzing the formation of Rg3 and Rd, respectively. This activity was discernible within a pH range of 4.0-9.0 and temperature range of 30-55 °C, with optimal conditions observed at pH 7.0-8.0 and 37 °C. The catalytic efficiency of Pq3-O-UGT2 toward Rh2 and F2 was 31.43 s-1 mΜ-1 and 169.31 s-1 mΜ-1, respectively. We further crystalized Pq3-O-UGT2 in both its apo form and co-crystalized forms with UDPG, Rh2 and F2, respectively. High-quality crystals were obtained and X-ray diffraction data was collected for all co-crystalized samples. Analysis of the diffraction data revealed that the crystal of Pq3-O-UGT2 co-crystalized with UDP-Glc belonged to space group P1, while the other two crystals belonged to space group P212121. Together, this study has laid a robust foundation for subsequent structural analysis of Pq3-O-UGT2.


Subject(s)
Ginsenosides , Panax , Ginsenosides/metabolism , Glycosyltransferases , Uridine Diphosphate Glucose , Panax/genetics , Panax/chemistry , Panax/metabolism , Crystallization , Escherichia coli/genetics , Escherichia coli/metabolism
6.
Anal Bioanal Chem ; 416(19): 4275-4288, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38853180

ABSTRACT

Radix ginseng and Schisandra chinensis have been extensively documented in traditional Chinese medicine (TCM) for their potential efficacy in treating dementia. However, the precise mechanism of their therapeutic effects remains to be fully elucidated. In this study, air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) and network pharmacology are used to investigate the pharmacodynamics and mechanism underlying the herbal combination consisting of Radix ginseng-Schisandra chinensis (RS) in a rodent model for Alzheimer's disease (AD). Brain histopathological findings suggested that RS attenuates hippocampal damage in AD mice, making this combination a potential AD treatment. Twenty-eight biomarkers were identified by spatial metabolomics analysis, which are intricately linked to neuroinflammation, neurotransmitter imbalance, energy deficiency, oxidative stress, and aberrant fatty acid metabolism in AD. The total extract of RS (TE) affected 22 of these biomarkers, with the small molecule components of RS (SN) significantly influencing 19 and the large molecule components of RS (PR) impacting 14. Nine small molecule components are likely to dominate the pharmacodynamics of RS. We constructed a target interaction network based on the corresponding bioactivities that revealed relationships amongst 11 key biomarkers, 8 active ingredients and 12 critical targets. This research illustrates the immense potential of spatial metabolomics and network pharmacology in the study of TCM, revealing the targets and mechanisms underlying herbal formulas.


Subject(s)
Alzheimer Disease , Drugs, Chinese Herbal , Metabolomics , Network Pharmacology , Panax , Schisandra , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Metabolomics/methods , Panax/chemistry , Schisandra/chemistry , Network Pharmacology/methods , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/pharmacokinetics , Male , Biomarkers/metabolism , Spectrometry, Mass, Electrospray Ionization/methods
7.
Eur J Nutr ; 63(5): 1487-1500, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38748287

ABSTRACT

PURPOSE: Dietary fiber (DF) has a good application prospect in effectively restoring the integrity of the intestinal mucosal barrier. Ginseng-DF has good physicochemical properties and physiological activity and shows positive effects in enhancing immunity. The aim of this study was to investigate the protective effect of Ginseng-DF on intestinal mucosal barrier injury induced by cyclophosphamide (CTX) in immunosuppressed mice and its possible mechanism. METHODS: The effects of Gginseng-DF on immune function in mice were studied by delayed-type hypersensitivy, lymphocyte proliferation assay and NK cytotoxicity assay, the T lymphocyte differentiation and intestinal barrier integrity were analyzed by flow cytometry and western blot. RESULTS: Ginseng-DF (2.5% and 5%) could attenuate the inhibition of DTH response by CTX, promote the transformation and proliferation of lymphocytes, and stimulate NK effector cell activity. At the same time, Ginseng-DF could restore the proportion of CD4+/CD8+ T lymphocytes induced by CTX to different extents, improved spleen tissue damage, promoted the secretion of immunoglobulin IgG, and enhanced body immunity. More importantly, Ginseng-DF could up-regulate the contents of TNF-α, IFN-γ, IL-6 and IL-1ß in serum and intestine of immunosuppressed mice to maintain the balance between Th1/Th2 cytokines, and improve the permeability of intestinal mucosal barrier. Meanwhile, Ginseng-DF could reduce intestinal epithelial cell apoptosis and improve intestinal adaptive immunity in CTX-induced immunosuppressed mice by regulating MAPK/NF-κB signaling pathway. CONCLUSION: Ginseng-DF can be used as a safe dietary supplement to enhance body immunity and reduce intestinal mucosal injury caused by CTX.


Subject(s)
Cyclophosphamide , Intestinal Mucosa , NF-kappa B , Panax , Signal Transduction , Animals , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Mice , NF-kappa B/metabolism , Panax/chemistry , Signal Transduction/drug effects , Male , Mice, Inbred BALB C , Immunocompromised Host/drug effects , Plant Extracts/pharmacology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , MAP Kinase Signaling System/drug effects , Cytokines/metabolism
8.
J Nat Prod ; 87(4): 1246-1267, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38449105

ABSTRACT

Ginsenosides, the primary pharmacologically active constituents of the Panax genus, have demonstrated a variety of medicinal properties, including anticardiovascular disease, cytotoxic, antiaging, and antidiabetes effects. However, the low concentration of ginsenosides in plants and the challenges associated with their extraction impede the advancement and application of ginsenosides. Heterologous biosynthesis represents a promising strategy for the targeted production of these natural active compounds. As representative triterpenoids, the biosynthetic pathway of the aglycone skeletons of ginsenosides has been successfully decoded. While the sugar moiety is vital for the structural diversity and pharmacological activity of ginsenosides, the mining of uridine diphosphate-dependent glycosyltransferases (UGTs) involved in ginsenoside biosynthesis has attracted a lot of attention and made great progress in recent years. In this paper, we summarize the identification and functional study of UGTs responsible for ginsenoside synthesis in both plants, such as Panax ginseng and Gynostemma pentaphyllum, and microorganisms including Bacillus subtilis and Saccharomyces cerevisiae. The UGT-related microbial cell factories for large-scale ginsenoside production are also mentioned. Additionally, we delve into strategies for UGT mining, particularly potential rapid screening or identification methods, providing insights and prospects. This review provides insights into the study of other unknown glycosyltransferases as candidate genetic elements for the heterologous biosynthesis of rare ginsenosides.


Subject(s)
Ginsenosides , Glycosyltransferases , Ginsenosides/biosynthesis , Ginsenosides/chemistry , Ginsenosides/metabolism , Glycosyltransferases/metabolism , Saccharomyces cerevisiae , Molecular Structure , Panax/chemistry , Uridine Diphosphate/metabolism , Bacillus subtilis/enzymology , Biosynthetic Pathways
9.
J Sep Sci ; 47(14): e2400354, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034839

ABSTRACT

The measurement of data repeatability in small-molecule metabolites acquired within and among different liquid chromatography-mass spectrometry (LC-MS) platforms is crucial for data sharing or data transfer in natural products research. This work was designed to investigate and evaluate the separation and detection performance of three commercial high-resolution LC-MS platforms (e.g., Agilent 6550 QTOF, Waters Vion IM-QTOF, and Thermo Scientific Orbitrap Exploris 120) using 68 ginsenoside references and the extract of Panax ginseng leaf. The retention time (tR), measured on these three platforms (under the same chromatography condition), showed good stability in different concentration tests, and within/among different instruments for both intra-day and inter-day precision examinations. Correlation in tR of ginsenosides was also highly determined on these three platforms. In spite of the different mass analyzers involved, these three platforms gave the accurate mass determination ability, especially enhanced resolution gained because of the ion mobility (IM) separation facilitated by IM-quadrupole time-of-flight. The current study has systematically evaluated the separation and MS detection performance enabled by three high-resolution LC-MS platforms taking ginsenosides as the template, and the reported findings can benefit the researchers for the selection of analytical platforms and the purpose of data sharing or data transfer.


Subject(s)
Ginsenosides , Mass Spectrometry , Panax , Plant Leaves , Ginsenosides/analysis , Ginsenosides/isolation & purification , Ginsenosides/chemistry , Panax/chemistry , Plant Leaves/chemistry , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods
10.
Phytother Res ; 38(8): 4307-4320, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38973353

ABSTRACT

American ginseng (AG) has been reported to have anti-inflammatory effects in many diseases, but the key molecules and mechanisms are unclear. This study aims to evaluate the anti-inflammatory mechanism of AG and identify the key molecules by in vivo and in vitro models. Zebrafish was employed to assess the anti-inflammatory properties of AG and the compounds. Metabolomics was utilized to identify potential anti-inflammatory molecules in AG, while molecular dynamics simulations were conducted to forecast the interaction capabilities of these compounds with inflammatory targets. Additionally, macrophage cell was employed to investigate the anti-inflammatory mechanisms of the key molecules in AG by enzyme-linked immunosorbent assay and western blotting. Seven potential anti-inflammatory molecules were discovered in AG, with ginsenoside Rg1, ginsenoside Rs3 (G-Rs3), and oleanolic acid exhibiting the strongest affinity for signal transducer and activator of transcription 3. These compounds demonstrated inhibitory effects on macrophage migration in zebrafish models and the ability to regulate ROS levels in both zebrafish and macrophages. The cell experiments found that ginsenoside Rg1, ginsenoside Rs3, and oleanolic acid could promote macrophage M2/M1 polarization ratio and inhibit phosphorylation overexpression of signal transducer and activator of transcription 3. This study revealed the key anti-inflammatory molecules and mechanisms of AG, and provided new evidence of anti-inflammatory for the scientific use of AG.


Subject(s)
Anti-Inflammatory Agents , Ginsenosides , Macrophages , Panax , STAT3 Transcription Factor , Zebrafish , Animals , Panax/chemistry , Anti-Inflammatory Agents/pharmacology , STAT3 Transcription Factor/metabolism , Macrophages/drug effects , Macrophages/metabolism , Ginsenosides/pharmacology , Ginsenosides/chemistry , Phosphorylation/drug effects , RAW 264.7 Cells , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Molecular Dynamics Simulation
11.
Chem Biodivers ; 21(8): e202400934, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38898600

ABSTRACT

Ginseng saponins (ginsenosides), bioactive compounds derived from ginseng, are widely used natural products with potent therapeutic properties in the management of various ailments, particularly tumors, cardiovascular and cerebrovascular diseases, and immune system disorders. Autophagy, a highly regulated and multistep process involving the breakdown of impaired organelles and macromolecules by autophagolysosomes and autophagy-related genes (ATGs), has gained increasing attention as a potential target for ginsenoside-mediated disease treatment. This review aims to provide a comprehensive overview of recent research advances in the understanding of autophagy-related signaling pathways and the role of ginsenoside-mediated autophagy regulation. By delving into the intricate autophagy signaling pathways underpinning the pharmacological properties of ginsenosides, we highlight their therapeutic potential in addressing various conditions. Our findings serve as a comprehensive reference for further investigation into the medicinal properties of ginseng or ginseng-related products.


Subject(s)
Autophagy , Panax , Saponins , Signal Transduction , Panax/chemistry , Panax/metabolism , Autophagy/drug effects , Signal Transduction/drug effects , Humans , Saponins/pharmacology , Saponins/chemistry , Ginsenosides/pharmacology , Ginsenosides/chemistry , Animals
12.
Phytochem Anal ; 35(2): 409-418, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37872850

ABSTRACT

INTRODUCTION: Panax ginseng and Panax quinquefolium are traditional Chinese herb medicines and similar in morphology and some chemical components but differ in drug properties, so they cannot be mixed. However, the processed products of them are often sold in the form of slices, powder, and capsules, which are difficult to identify by traditional morphological methods. Furthermore, an accurate evaluation of P. ginseng, P. quinquefolium and the processed products have not been conducted. OBJECTIVE: This study aimed to establish a catalysed hairpin assembly (CHA) identification method for authenticating products made from P. ginseng and P. quinquefolium based on single nucleotide polymorphism (SNP) differences. METHOD: By analysing the differences of SNP in internal transcribed spacer 2 (ITS2) in P. ginseng and P. quinquefolium to design CHA-specific hairpins. Establish a sensitive and efficient CHA method that can identify P. ginseng and P. quinquefolium, use the sequencing technology to verify the accuracy of this method in identifying Panax products, and compare this method with high-resolution melting (HRM). RESULTS: The reaction conditions of CHA were as follows: the ratio of forward and reverse primers, 20:1; hairpin concentration, 5 ng/µL. Compared with capillary electrophoresis, this method had good specificity and the limit of detection was 0.5 ng/µL. The result of Panax product identification with CHA method were coincidence with that of the sequencing method; the positive rate of CHA reaction was 100%. CONCLUSION: This research presents an effective identification method for authenticating P. ginseng and P. quinquefolium products, which is helpful to improve the quality of Panax products.


Subject(s)
Panax , Panax/genetics , Panax/chemistry , Medicine, Chinese Traditional , Polymorphism, Single Nucleotide , Technology
13.
Sensors (Basel) ; 24(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38894248

ABSTRACT

Red ginseng is widely used in food and pharmaceuticals due to its significant nutritional value. However, during the processing and storage of red ginseng, it is susceptible to grow mold and produce mycotoxins, generating security issues. This study proposes a novel approach using hyperspectral imaging technology and a 1D-convolutional neural network-residual-bidirectional-long short-term memory attention mechanism (1DCNN-ResBiLSTM-Attention) for pixel-level mycotoxin recognition in red ginseng. The "Red Ginseng-Mycotoxin" (R-M) dataset is established, and optimal parameters for 1D-CNN, residual bidirectional long short-term memory (ResBiLSTM), and 1DCNN-ResBiLSTM-Attention models are determined. The models achieved testing accuracies of 98.75%, 99.03%, and 99.17%, respectively. To simulate real detection scenarios with potential interfering impurities during the sampling process, a "Red Ginseng-Mycotoxin-Interfering Impurities" (R-M-I) dataset was created. The testing accuracy of the 1DCNN-ResBiLSTM-Attention model reached 96.39%, and it successfully predicted pixel-wise classification for other unknown samples. This study introduces a novel method for real-time mycotoxin monitoring in traditional Chinese medicine, with important implications for the on-site quality control of herbal materials.


Subject(s)
Mycotoxins , Neural Networks, Computer , Panax , Panax/chemistry , Mycotoxins/analysis , Mycotoxins/chemistry , Hyperspectral Imaging/methods
14.
J Asian Nat Prod Res ; 26(9): 1009-1023, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38311941

ABSTRACT

Based on the major components in the leaves, the ashwagandha has been found to exist in several chemotypic forms in India. From the leaves of various accessions of Withania somnifera, which were maintained in our institute, three new steroids namely, 4-acetoxy-20ß-hydroxy-1-oxo-witha-2,5,24-trienolide (7), 24,25-dihydro-14α-hydroxy withanolide D (9), 5α,6ß,17α,27-tetrahydroxy-1-oxo-witha-2,24-dienolide (12) together with thirteen known withanolides were identified by spectroscopic methods. From the roots and stem of one accession and leaves of another, a new alkyl ester glucoside (4) has also been isolated. The new withanolides 7, 9 and 12 have been tentatively named as withanolide 135 A, withanolide 135B and withanolide 108, respectively.


Subject(s)
Glucosides , Plant Leaves , Plant Roots , Plant Stems , Withania , Withanolides , Withanolides/chemistry , Withania/chemistry , Plant Leaves/chemistry , Molecular Structure , Plant Roots/chemistry , Plant Stems/chemistry , Glucosides/chemistry , India , Panax/chemistry , Plant Extracts
15.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474153

ABSTRACT

Cell fate instability is a crucial characteristic of aging and appears to contribute to various age-related pathologies. Exploring the connection between bioactive substances and cell fate stability may offer valuable insights into longevity. Therefore, the objective of this study was to investigate the potential beneficial effects of ginseng oligopeptides (GOPs) isolated from Panax ginseng C. A. Meyer at the cellular level. Disruption of homeostasis of human umbilical vein endothelial cells (HUVECs) and PC-12 was achieved by culturing them in the growth medium supplemented with 200 µM of H2O2, and 25, 50, and 100 µg/mL GOPs for 4 h. Then, they were cultured in a H2O2-free growth medium containing different concentration of GOPs. We found that GOP administration retards the oxidative stress-induced cell instability in HUVECs by increasing cell viability, inhibiting the cell cycle arrest, enhancing telomerase (TE) activity, suppressing oxidative stress and an inflammatory attack, and protecting mitochondrial function. Furthermore, we hypothesized that GOPs may promote mitochondrial biosynthesis by upregulating PGC-1α expression. Similarly, GOPs positively regulated cell stability in PC-12; notably, the protective effect of GOPs on PC-12 mainly occurred through the inhibition of autophagic cell death of neuronal cells, while the protective effect on mitochondria was weak. In conclusion, it is evident that GOPs demonstrate potential beneficial effects in maintaining cell fate stability, thereby potentially contributing to an enhanced health span and overall well-being.


Subject(s)
Antioxidants , Panax , Humans , Antioxidants/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Panax/chemistry , Hydrogen Peroxide/metabolism , Plant Extracts/pharmacology , Oxidative Stress , Oligopeptides/pharmacology
16.
Int J Mol Sci ; 25(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39201796

ABSTRACT

Steroid-resistant asthma (SRA), resisting glucocorticoids such as dexamethasone (DEX), is a bottleneck in the treatment of asthma. It is characterized by a predominantly neutrophilic inflammatory subtype and is prone to developing into severe refractory asthma and fatal asthma. Currently, there is a lack of universally effective treatments for SRA. Moreover, since cold stimulation does increase the risk of asthma development and exacerbate asthma symptoms, the treatment of cold-stimulated SRA (CSRA) will face greater challenges. To find effective new methods to ameliorate CSRA, this study established a CSRA mouse model of allergic airway inflammation mimicking human asthma for the first time and evaluated the alleviating effects of 80% ethanol extract of mountain-cultivated ginseng (MCG) based on multi-omics analysis. The results indicate that cold stimulation indeed exacerbated the SRA-related symptoms in mice; the DEX individual treatment did not show a satisfactory effect; while the combination treatment of DEX and MCG could dose-dependently significantly enhance the lung function; reduce neutrophil aggregation; decrease the levels of LPS, IFN-γ, IL-1ß, CXCL8, and IL-17; increase the level of IL-10; alleviate the inflammatory infiltration; and decrease the mucus secretion and the expression of MUC5AC. Moreover, the combination of DEX and high-dose (200 mg/kg) MCG could significantly increase the levels of tight junction proteins (TJs), regulate the disordered intestinal flora, increase the content of short-chain fatty acids (SCFAs), and regulate the abnormal gene profile and metabolic profile. Multi-omics integrated analysis showed that 7 gut microbes, 34 genes, 6 metabolites, and the involved 15 metabolic/signaling pathways were closely related to the pharmacological effects of combination therapy. In conclusion, integrated multi-omics profiling highlighted the benefits of MCG for CSRA mice by modulating the interactions of microbiota, genes, and metabolites. MCG shows great potential as a functional food in the adjuvant treatment of CSRA.


Subject(s)
Asthma , Dexamethasone , Panax , Plant Extracts , Animals , Asthma/drug therapy , Asthma/microbiology , Asthma/metabolism , Panax/chemistry , Mice , Dexamethasone/pharmacology , Plant Extracts/pharmacology , Cold Temperature , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Metabolomics/methods , Microbiota/drug effects , Mice, Inbred BALB C , Lung/drug effects , Lung/metabolism , Lung/microbiology , Lung/pathology , Mucin 5AC/metabolism , Mucin 5AC/genetics , Cytokines/metabolism , Drug Resistance/genetics , Female , Multiomics
17.
Molecules ; 29(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338369

ABSTRACT

Panax quinquefolius (PQ) has been widely used in traditional Chinese medicine and functional food. Ginsenosides are the important functional components of PQ. The ginsenosides' diversity is deeply affected by the processing conditions. The ginsenosides in the steamed PQ have been not well-characterized yet because of the complexity of their structure. In the study, the comprehensive investigation of ginsenosides was performed on the steamed PQ with different steaming times and temperatures by UPLC-Q-TOF-MS. Based on the molecular weight, retention time and characterized fragment ions, 175 ginsenosides were unambiguously identified or tentatively characterized, including 45 protopanaxatriol type, 49 protopanaxadiol type, 19 octillol type, 6 oleanolic acid type ginsenosides, and 56 other ginsenosides. Ten new ginsenosides and three new aglycones were discovered in the steamed PQ samples through searching the database of CAS SciFindern. Principal component analysis showed the significant influence on the chemical components of PQ through different processing conditions. The steaming temperature was found to promote the transformation of ginsenosides more than the steaming time. The protoginsenosides were found to transform into the rare ginsenosides by elimination reactions. The malonyl ginsenosides were degraded into acetyl ginsenosides, and then degraded into neutral ginsenosides. The sugar chain experienced degradation, with position changes and configuration inversions. Furthermore, 20 (S/R)-ginsenoside Rh1, Rh2, Rg2, and Rh12 were found to transform from the S-configuration to the R-configuration significantly. This study could present a comprehensive ginsenosides profile of PQ with different steaming conditions, and provide technical support for the development and utilization of PQ.


Subject(s)
Ginsenosides , Panax , Ginsenosides/chemistry , Liquid Chromatography-Mass Spectrometry , Panax/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Steam , Chromatography, High Pressure Liquid
18.
Molecules ; 29(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542904

ABSTRACT

Ginseng holds high medicinal and cosmetic value, with stem and leaf extracts garnering attention for their abundant bioactive ingredients. Meanwhile, fermentation can enhance the effectiveness of cosmetics. The aim of this study was to optimize ginseng fermentation to produce functional cosmetics. Ginseng stem and leaf extracts were fermented with five different strains of lactic acid bacteria. Using 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical (·OH), and superoxide anion (O2·-) scavenging activities as indicators, the fermentation process was optimized via response surface methodology. Finally, validation of the antioxidant activity of the optimized fermentation broth was performed using human skin cells (HaCaT and BJ cells). Based on the antioxidant potency composite comprehensive index, Lactiplantibacillus plantarum 1.140 was selected, and the optimized parameters were a fermentation time of 35.50 h, an inoculum size of 2.45%, and a temperature of 28.20 °C. Optimized fermentation boosted antioxidant activity: DPPH scavenging activity increased by 25.00%, ·OH by 94.00%, and O2·- by 73.00%. Only the rare ginsenoside Rg5 showed a substantial rise in content among the 11 ginsenosides examined after fermentation. Furthermore, the flavonoid content and ·OH scavenging activity were significantly negatively correlated (r = -1.00, p < 0.05), while the Rh1 content and O2·- scavenging activity were significantly positively correlated (r = 0.998, p < 0.05). Both the 0.06% (v/v) and 0.25% (v/v) concentrations of the optimized broth significantly promoted cell proliferation, and notable protective effects against oxidative damage were observed in HaCaT cells when the broth was at 0.06%. Collectively, we demonstrated that ginseng fermentation extract effectively eliminates free radicals, preventing and repairing cellular oxidative damage. This study has identified new options for the use of fermented ginseng in functional cosmetics.


Subject(s)
Antioxidants , Panax , Humans , Antioxidants/chemistry , Lactobacillus/metabolism , Fermentation , Plant Extracts/pharmacology , Panax/chemistry
19.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125019

ABSTRACT

Identifying the catalytic regioselectivity of enzymes remains a challenge. Compared to experimental trial-and-error approaches, computational methods like molecular dynamics simulations provide valuable insights into enzyme characteristics. However, the massive data generated by these simulations hinder the extraction of knowledge about enzyme catalytic mechanisms without adequate modeling techniques. Here, we propose a computational framework utilizing graph-based active learning from molecular dynamics to identify the regioselectivity of ginsenoside hydrolases (GHs), which selectively catalyze C6 or C20 positions to obtain rare deglycosylated bioactive compounds from Panax plants. Experimental results reveal that the dynamic-aware graph model can excellently distinguish GH regioselectivity with accuracy as high as 96-98% even when different enzyme-substrate systems exhibit similar dynamic behaviors. The active learning strategy equips our model to work robustly while reducing the reliance on dynamic data, indicating its capacity to mine sufficient knowledge from short multi-replica simulations. Moreover, the model's interpretability identified crucial residues and features associated with regioselectivity. Our findings contribute to the understanding of GH catalytic mechanisms and provide direct assistance for rational design to improve regioselectivity. We presented a general computational framework for modeling enzyme catalytic specificity from simulation data, paving the way for further integration of experimental and computational approaches in enzyme optimization and design.


Subject(s)
Ginsenosides , Molecular Dynamics Simulation , Ginsenosides/chemistry , Ginsenosides/metabolism , Substrate Specificity , Hydrolases/chemistry , Hydrolases/metabolism , Panax/chemistry , Panax/enzymology
20.
Molecules ; 29(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338347

ABSTRACT

The flower buds of three Panax species (PGF: P. ginseng; PQF: P. quinquefolius; PNF: P. notoginseng) widely consumed as health tea are easily confused in market circulation. We aimed to develop a green, fast, and easy analysis strategy to distinguish PGF, PQF, and PNF. In this work, fast gas chromatography electronic nose (fast GC e-nose), headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were utilized to comprehensively analyze the volatile organic components (VOCs) of three flowers. Meanwhile, a principal component analysis (PCA) and heatmap were applied to distinguish the VOCs identified in PGF, PQF, and PNF. A random forest (RF) analysis was used to screen key factors affecting the discrimination. As a result, 39, 68, and 78 VOCs were identified in three flowers using fast GC e-nose, HS-GC-IMS, and HS-SPME-GC-MS. Nine VOCs were selected as potential chemical markers based on a model of RF for distinguishing these three species. Conclusively, a complete VOC analysis strategy was created to provide a methodological reference for the rapid, simple, and environmentally friendly detection and identification of food products (tea, oil, honey, etc.) and herbs with flavor characteristics and to provide a basis for further specification of their quality and base sources.


Subject(s)
Panax , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Electronic Nose , Solid Phase Microextraction/methods , Panax/chemistry , Ion Mobility Spectrometry , Volatile Organic Compounds/analysis , Flowers/chemistry , Tea
SELECTION OF CITATIONS
SEARCH DETAIL