Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.211
Filter
1.
Gastroenterology ; 166(6): 1100-1113, 2024 06.
Article in English | MEDLINE | ID: mdl-38325760

ABSTRACT

BACKGROUND & AIMS: Acinar cells produce digestive enzymes that impede transcriptomic characterization of the exocrine pancreas. Thus, single-cell RNA-sequencing studies of the pancreas underrepresent acinar cells relative to histological expectations, and a robust approach to capture pancreatic cell responses in disease states is needed. We sought to innovate a method that overcomes these challenges to accelerate study of the pancreas in health and disease. METHODS: We leverage FixNCut, a single-cell RNA-sequencing approach in which tissue is reversibly fixed with dithiobis(succinimidyl propionate) before dissociation and single-cell preparation. We apply FixNCut to an established mouse model of acute pancreatitis, validate findings using GeoMx whole transcriptome atlas profiling, and integrate our data with prior studies to compare our method in both mouse and human pancreas datasets. RESULTS: FixNCut achieves unprecedented definition of challenging pancreatic cells, including acinar and immune populations in homeostasis and acute pancreatitis, and identifies changes in all major cell types during injury and recovery. We define the acinar transcriptome during homeostasis and acinar-to-ductal metaplasia and establish a unique gene set to measure deviation from normal acinar identity. We characterize pancreatic immune cells, and analysis of T-cell subsets reveals a polarization of the homeostatic pancreas toward type-2 immunity. We report immune responses during acute pancreatitis and recovery, including early neutrophil infiltration, expansion of dendritic cell subsets, and a substantial shift in the transcriptome of macrophages due to both resident macrophage activation and monocyte infiltration. CONCLUSIONS: FixNCut preserves pancreatic transcriptomes to uncover novel cell states during homeostasis and following pancreatitis, establishing a broadly applicable approach and reference atlas for study of pancreas biology and disease.


Subject(s)
Acinar Cells , Disease Models, Animal , Homeostasis , Pancreatitis , Single-Cell Analysis , Transcriptome , Animals , Pancreatitis/genetics , Pancreatitis/chemically induced , Pancreatitis/pathology , Pancreatitis/metabolism , Humans , Acinar Cells/metabolism , Acinar Cells/pathology , Mice , Pancreas/pathology , Pancreas/metabolism , Gene Expression Profiling/methods , RNA-Seq , Acute Disease , Pancreas, Exocrine/metabolism , Pancreas, Exocrine/pathology , Macrophages/metabolism , Metaplasia/genetics , Metaplasia/pathology , Mice, Inbred C57BL
2.
Am J Pathol ; 194(8): 1494-1510, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38705384

ABSTRACT

Dyslipolysis of adipocytes plays a critical role in various diseases. Adipose triglyceride lipase (ATGL) is a rate-limiting enzyme in adipocyte autonomous lipolysis. However, the degree of adipocyte lipolysis related to the prognoses in acute pancreatitis (AP) and the role of ATGL-mediated lipolysis in the pathogenesis of AP remain elusive. Herein, the visceral adipose tissue consumption rate in the acute stage was measured in both patients with AP and mouse models. Lipolysis levels and ATGL expression were detected in cerulein-induced AP models. CL316,243, a lipolysis stimulator, and adipose tissue-specific ATGL knockout mice were used to further investigate the role of lipolysis in AP. The ATGL-specific inhibitor, atglistatin, was used in C57Bl/6N and ob/ob AP models. This study indicated that increased visceral adipose tissue consumption rate in the acute phase was independently associated with adverse prognoses in patients with AP, which was validated in mouse AP models. Lipolysis of adipocytes was elevated in AP mice. Stimulation of lipolysis aggravated AP. Genetic blockage of ATGL specifically in adipocytes alleviated the damage to AP. The application of atglistatin effectively protected against AP in both lean and obese mice. These findings demonstrated that ATGL-mediated adipocyte lipolysis exacerbates AP and highlighted the therapeutic potential of ATGL as a drug target for AP.


Subject(s)
Adipocytes , Disease Models, Animal , Lipase , Lipolysis , Mice, Inbred C57BL , Pancreatitis , Animals , Lipolysis/drug effects , Lipase/metabolism , Lipase/genetics , Adipocytes/metabolism , Adipocytes/pathology , Mice , Pancreatitis/pathology , Pancreatitis/metabolism , Humans , Male , Mice, Knockout , Female , Acute Disease , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Acyltransferases
3.
FASEB J ; 38(8): e23618, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38651689

ABSTRACT

Intestinal barrier dysfunction usually occurred in acute pancreatitis (AP) but the mechanism remains unclear. In this study, RNA sequencing of ileum in L-arginine-induced AP mice demonstrated that phosphoenolpyruvate kinase 1 (Pck1) was significantly up-regulated. Increased Pck1 expression in intestinal epithelial cells (IECs) was further validated in ileum of AP mice and duodenum of AP patients. In AP mice, level of Pck1 was positively correlated with pancreatic and ileal histopathological scores, serum amylase activity, and intestinal permeability (serum diamine oxidase (DAO), D-lactate, and endotoxin). In AP patients, level of Pck1 had a positive correlation with Ranson scores, white blood cell count and C-reactive protein. Inhibition of Pck1 by 3-Mercaptopicolinic acid hydrochloride (3-MPA) alleviated pancreatic and ileal injuries in AP mice. AP + 3-MPA mice showed improved intestinal permeability, including less epithelial apoptosis, increased tight junction proteins (TJPs) expression, decreased serum DAO, D-lactate, endotoxin, and FITC-Dextran levels, and reduced bacteria translocation. Lysozyme secreted by Paneth cells and mucin2 (MUC2) secretion in goblet cells were also partly restored in AP + 3-MPA mice. Meanwhile, inhibition of Pck1 improved intestinal immune response during AP, including elevation of M2/M1 macrophages ratio and secretory immunoglobulin A (sIgA) and reduction in neutrophils infiltration. In vitro, administration of 3-MPA dramatically ameliorated inflammation and injuries of epithelial cells in enteroids treated by LPS. In conclusion, inhibition of Pck1 in IECs might alleviate AP via modulating intestinal homeostasis.


Subject(s)
Epithelial Cells , Intestinal Mucosa , Pancreatitis , Phosphoenolpyruvate Carboxykinase (GTP) , Animals , Mice , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Homeostasis , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Mice, Inbred C57BL , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/drug therapy , Phosphoenolpyruvate Carboxykinase (GTP)/antagonists & inhibitors , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Picolinic Acids/pharmacology
4.
Mol Ther ; 32(1): 59-73, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37974401

ABSTRACT

GPIHBP1 plays an important role in the hydrolysis of triglyceride (TG) lipoproteins by lipoprotein lipases (LPLs). However, Gpihbp1 knockout mice did not develop hypertriglyceridemia (HTG) during the suckling period but developed severe HTG after weaning on a chow diet. It has been postulated that LPL expression in the liver of suckling mice may be involved. To determine whether hepatic LPL expression could correct severe HTG in Gpihbp1 deficiency, liver-targeted LPL expression was achieved via intravenous administration of the adeno-associated virus (AAV)-human LPL gene, and the effects of AAV-LPL on HTG and HTG-related acute pancreatitis (HTG-AP) were observed. Suckling Gpihbp1-/- mice with high hepatic LPL expression did not develop HTG, whereas Gpihbp1-/- rat pups without hepatic LPL expression developed severe HTG. AAV-mediated liver-targeted LPL expression dose-dependently decreased plasma TG levels in Gpihbp1-/- mice and rats, increased post-heparin plasma LPL mass and activity, decreased mortality in Gpihbp1-/- rat pups, and reduced the susceptibility and severity of both Gpihbp1-/- animals to HTG-AP. However, the muscle expression of AAV-LPL had no significant effect on HTG. Targeted expression of LPL in the liver showed no obvious adverse reactions. Thus, liver-targeted LPL expression may be a new therapeutic approach for HTG-AP caused by GPIHBP1 deficiency.


Subject(s)
Hypertriglyceridemia , Pancreatitis , Receptors, Lipoprotein , Animals , Humans , Mice , Rats , Acute Disease , Dependovirus/genetics , Dependovirus/metabolism , Hypertriglyceridemia/genetics , Hypertriglyceridemia/therapy , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Liver/metabolism , Pancreatitis/genetics , Pancreatitis/therapy , Pancreatitis/metabolism , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/metabolism , Triglycerides/metabolism
5.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709385

ABSTRACT

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Subject(s)
Cathepsin B , Lysosomes , Pancreatitis , Secretory Vesicles , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Animals , Lysosomes/metabolism , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/genetics , Cathepsin B/metabolism , Cathepsin B/genetics , Mice , Secretory Vesicles/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins/metabolism , Acute Disease , Acinar Cells/metabolism , Acinar Cells/pathology , Trypsinogen/metabolism , Trypsinogen/genetics , Ceruletide , Enzyme Precursors/metabolism , Enzyme Precursors/genetics , Mice, Inbred C57BL , Mice, Knockout
6.
J Cell Mol Med ; 28(4): e18120, 2024 02.
Article in English | MEDLINE | ID: mdl-38358010

ABSTRACT

Our previous study confirmed that umbilical cord mesenchymal stem cells-exosomes (ucMSC-Ex) inhibit apoptosis of pancreatic acinar cells to exert protective effects. However, the relationship between apoptosis and autophagy in traumatic pancreatitis (TP) has rarely been reported. We dissected the transcriptomics after pancreatic trauma and ucMSC-Ex therapy by high-throughput sequencing. Additionally, we used rapamycin and MHY1485 to regulate mTOR. HE, inflammatory factors and pancreatic enzymatic assays were used to comprehensively determine the local versus systemic injury level, fluorescence staining and electron microscopy were used to detect the effect of autophagy, and observe the expression levels of autophagy-related markers at the gene and protein levels. High-throughput sequencing identified that autophagy played a crucial role in the pathophysiological process of TP and ucMSC-Ex therapy. The results of electron microscopy, immunofluorescence staining, polymerase chain reaction and western blot suggested that therapeutic effect of ucMSC-Ex was mediated by activation of autophagy in pancreatic acinar cells through inhibition of mTOR. ucMSC-Ex can attenuate pancreas injury by inhibiting mTOR to regulate acinar cell autophagy after TP. Future studies will build on the comprehensive sequencing of RNA carried by ucMSC-Ex to predict and verify specific non-coding RNA.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Pancreatitis , Humans , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Umbilical Cord , TOR Serine-Threonine Kinases/metabolism , Pancreatitis/metabolism , Autophagy/genetics , Apoptosis
7.
Hum Mol Genet ; 31(12): 2023-2034, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35022732

ABSTRACT

Acute pancreatitis (AP) is widely recognized to be an inflammation-related disease, in which HDAC was upregulated. The anti-inflammatory role of suberoylanilide hydroxamic acid (SAHA), a HDAC inhibitor, has been documented. In this context, this research was implemented to figure out whether SAHA manipulated inflammation in AP. Subsequent to induction of AP mouse model, HDAC5 expression was detected. The binding of HDAC5 and SLIT2 was detected by Co-Immunoprecipitation and Chromatin immunoprecipitation assays. SAHA treatment and gain- and loss-of-function approaches were used in AP mice and lipopolysaccharide (LPS)-induced pancreatic acinar cells. In mice, biochemical methods were implemented to measure activities of pancreatic lipase, trypsin, myeloperoxidase (MPO) and pancreatic edema, TUNEL staining to determine pancreatic cell apoptosis, and flow cytometry to assess the total number of leukocytes and neutrophils in pancreas. In pancreatic acinar cells, CCK-8 was performed to evaluate cell viability. HDAC5 exhibited overexpression in AP mice. Mechanical analysis showed that HDAC5 facilitated SLIT2 deacetylation to downregulate SLIT2, thus activating Akt/ß-catenin pathway in pancreatic acinar cells. SAHA treatment, HDAC5 silencing or SLIT2 overexpression diminished inflammation in AP in vivo and in vitro. SAHA treatment, HDAC5 silencing or SLIT2 overexpression reduced activities of pancreatic lipase, trypsin, MPO, pancreatic edema and cell apoptosis in AP mice as well as elevated viability of LPS-induced pancreatic acinar cells. SAHA might exert anti-inflammatory effects in AP mice via HDAC5/SLIT2/Akt/ß-catenin axis.


Subject(s)
Anti-Inflammatory Agents , Pancreatitis , Vorinostat , Acute Disease , Animals , Anti-Inflammatory Agents/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Inflammation/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lipase/genetics , Lipase/metabolism , Lipopolysaccharides , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pancreas , Pancreatitis/chemically induced , Pancreatitis/genetics , Pancreatitis/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Trypsin/metabolism , Vorinostat/pharmacology , beta Catenin/genetics , beta Catenin/metabolism
8.
Apoptosis ; 29(5-6): 920-933, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38625481

ABSTRACT

BACKGROUND: Severe acute pancreatitis (SAP) is a serious gastrointestinal disease that is facilitated by pancreatic acinar cell death. The protective role of human placental mesenchymal stem cells (hP-MSCs) in SAP has been demonstrated in our previous studies. However, the underlying mechanisms of this therapy remain unclear. Herein, we investigated the regularity of acinar cell pyroptosis during SAP and investigated whether the protective effect of hP-MSCs was associated with the inhibition of acinar cell pyroptosis. METHODS: A mouse model of SAP was established by the retrograde injection of sodium taurocholate (NaTC) solution in the pancreatic duct. For the hP-MSCs group, hP-MSCs were injected via the tail vein and were monitored in vivo. Transmission electron microscopy (TEM) was used to observe the pyroptosis-associated ultramorphology of acinar cells. Immunofluorescence and Western blotting were subsequently used to assess the localization and expression of pyroptosis-associated proteins in acinar cells. Systemic inflammation and local injury-associated parameters were evaluated. RESULTS: Acinar cell pyroptosis was observed during SAP, and the expression of pyroptosis-associated proteins initially increased, peaked at 24 h, and subsequently showed a decreasing trend. hP-MSCs effectively attenuated systemic inflammation and local injury in the SAP model mice. Importantly, hP-MSCs decreased the expression of pyroptosis-associated proteins and the activity of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in acinar cells. CONCLUSIONS: Our study demonstrates the regularity and important role of acinar cell pyroptosis during SAP. hP-MSCs attenuate inflammation and inhibit acinar cell pyroptosis via suppressing NLRP3 inflammasome activation, thereby exerting a protective effect against SAP.


Subject(s)
Acinar Cells , Disease Models, Animal , Inflammasomes , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , NLR Family, Pyrin Domain-Containing 3 Protein , Pancreatitis , Pyroptosis , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mice , Acinar Cells/metabolism , Acinar Cells/pathology , Inflammasomes/metabolism , Mesenchymal Stem Cells/metabolism , Pancreatitis/metabolism , Pancreatitis/therapy , Pancreatitis/pathology , Humans , Female , Mesenchymal Stem Cell Transplantation/methods , Placenta/metabolism , Pregnancy , Male , Mice, Inbred C57BL
9.
Mol Med ; 30(1): 60, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750415

ABSTRACT

Severe acute pancreatitis (SAP) begins with premature activation of enzymes, promoted by the immune system, triggering a potential systemic inflammatory response that leads to organ failure with increased mortality and a bleak prognosis. Interleukin-22 (IL-22) is a cytokine that may have a significant role in SAP. IL-22, a member of the IL-10 cytokine family, has garnered growing interest owing to its potential tissue-protective properties. Recently, emerging research has revealed its specific effects on pancreatic diseases, particularly SAP. This paper provides a review of the latest knowledge on the role of IL-22 and its viability as a therapeutic target in SAP.


Subject(s)
Interleukin-22 , Interleukins , Pancreatitis , Humans , Interleukins/metabolism , Pancreatitis/metabolism , Pancreatitis/immunology , Animals , Acute Disease
10.
Expert Rev Proteomics ; 21(1-3): 115-123, 2024.
Article in English | MEDLINE | ID: mdl-38372668

ABSTRACT

INTRODUCTION: Around 20% of individuals diagnosed with acute pancreatitis (AP) may develop severe acute pancreatitis (SAP), possibly resulting in a mortality rate ranging from 15% to 35%. There is an urgent need to thoroughly understand the molecular phenotypes of SAP resulting from diverse etiologies. The field of translational research on AP has seen the use of several innovative proteomic methodologies via the ongoing improvement of isolation, tagging, and quantification methods. AREAS COVERED: This paper provides a comprehensive overview of differentially abundant proteins (DAPs) identified in AP by searching the PubMed/MEDLINE database (2003-2023) and adds significantly to the current theoretical framework. EXPERT OPINION: DAPs for potentially diagnosing AP based on proteomic identification need to be confirmed by multi-center studies that include larger samples. The discovery of DAPs in various organs at different AP stages via proteomic technologies is essential better to understand the pathophysiology of AP-related multiple organ dysfunction syndrome. Regarding the translational research of AP, novel approaches like single-cell proteomics and imaging using mass spectrometry may be used as soon as they become available.


Subject(s)
Pancreatitis , Humans , Pancreatitis/diagnosis , Pancreatitis/complications , Pancreatitis/metabolism , Proteomics , Acute Disease , Multiple Organ Failure
11.
Toxicol Appl Pharmacol ; 485: 116920, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38582373

ABSTRACT

Asparaginase-associated pancreatitis (AAP) is a severe and potentially life-threatening drug-induced pancreas targeted toxicity in the combined chemotherapy of acute lymphoblastic leukemia among children and adolescents. The toxicological mechanism of AAP is not yet clear, and there are no effective preventive and treatment measures available clinically. Fibroblast growth factor 21 (FGF21) is a secretory hormone that regulates lipid, glucose, and energy metabolism balance. Acinar tissue is the main source of pancreatic FGF21 protein and plays an important role in maintaining pancreatic metabolic balance. In this study, we found that the decrease of FGF21 in pancreas is closely related to AAP. Pegaspargase (1 IU/g) induces widespread edema and inflammatory infiltration in the pancreas of rats/mice. The specific expression of FGF21 in the acinar tissue of AAP rats was significantly downregulated. Asparaginase caused dysregulation of the ATF4/ATF3/FGF21 axis in acinar tissue or cells, and thus mediated the decrease of FGF21. It greatly activated ATF3 in the acinar, which competed with ATF4 for the Fgf21 promoter, thereby inhibiting the expression of FGF21. Pharmacological replacement of FGF21 (1 mg/kg) or PERK inhibitors (GSK2656157, 25 mg/kg) can significantly mitigate the pancreatic tissue damage and reduce markers of inflammation associated with AAP, representing potential strategies for the prevention and treatment of AAP.


Subject(s)
Asparaginase , Fibroblast Growth Factors , Pancreas , Pancreatitis , eIF-2 Kinase , Animals , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Asparaginase/toxicity , Pancreatitis/chemically induced , Pancreatitis/metabolism , Pancreatitis/pathology , Male , Rats , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Mice , Rats, Sprague-Dawley , Polyethylene Glycols/toxicity , Antineoplastic Agents/toxicity , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Mice, Inbred C57BL
12.
Arch Biochem Biophys ; 752: 109873, 2024 02.
Article in English | MEDLINE | ID: mdl-38141907

ABSTRACT

Severe acute pancreatitis (SAP) is an inflammatory disease of the pancreas with a high mortality rate. Macrophages play a crucial role in the pathogenesis of pancreatitis. Tectoridin (Tec) is a highly active isoflavone with anti-inflammatory pharmacological activity. However, the role of Tec in the SAP process is not known. The purpose of this study was to investigate the therapeutic effect and potential mechanism of Tec on SAP. To establish SAP mice by intraperitoneal injection of caerulein and Lipopolysaccharide (LPS), the role of Tec in the course of SAP was investigated based on histopathology, biochemical indicators of amylase and lipase and inflammatory factors. The relationship between Tec and macrophage polarization was verified by immunofluorescence, real-time quantitative PCR and Western blot analysis. We then further predicted the possible targets and signal pathways of action of Tec by network pharmacology and molecular docking, and validated them by in vivo and in vitro. In this study, we demonstrated that Tec significantly reduced pancreatic injury in SAP mice, and decreased serum levels of amylase and lipase. The immunofluorescence and Western blot analysis showed that Tec promoted macrophage M2 polarization. Network pharmacology and molecular docking predicted that Tec may target ERK2 for the treatment of SAP, and in vivo and in vitro experiments proved that Tec inhibited the ERK MAPK signal pathway. In summary, Tec can target ERK2, promote macrophage M2 polarization and attenuate pancreatic injury, Tec may be a potential drug for the treatment of SAP.


Subject(s)
Isoflavones , Pancreatitis , Mice , Animals , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Pancreatitis/metabolism , Ceruletide/adverse effects , Acute Disease , Molecular Docking Simulation , Isoflavones/pharmacology , Isoflavones/therapeutic use , Macrophages/metabolism , Amylases , Lipase
13.
Pancreatology ; 24(3): 394-403, 2024 May.
Article in English | MEDLINE | ID: mdl-38493004

ABSTRACT

BACKGROUND: Many affected by pancreatitis harbor rare variants of the cystic fibrosis (CF) gene, CFTR, which encodes an epithelial chloride/bicarbonate channel. We investigated CFTR function and the effect of CFTR modulator drugs in pancreatitis patients carrying CFTR variants. METHODS: Next-generation sequencing was performed to identify CFTR variants. Sweat tests and nasal potential difference (NPD) assays were performed to assess CFTR function in vivo. Intestinal current measurement (ICM) was performed on rectal biopsies. Patient-derived intestinal epithelial monolayers were used to evaluate chloride and bicarbonate transport and the effects of a CFTR modulator combination: elexacaftor, tezacaftor and ivacaftor (ETI). RESULTS: Of 32 pancreatitis patients carrying CFTR variants, three had CF-causing mutations on both alleles and yielded CF-typical sweat test, NPD and ICM results. Fourteen subjects showed a more modest elevation in sweat chloride levels, including three that were provisionally diagnosed with CF. ICM indicated impaired CFTR function in nine out of 17 non-CF subjects tested. This group of nine included five carrying a wild type CFTR allele. In epithelial monolayers, a reduction in CFTR-dependent chloride transport was found in six out of 14 subjects tested, whereas bicarbonate secretion was reduced in only one individual. In epithelial monolayers of four of these six subjects, ETI improved CFTR function. CONCLUSIONS: CFTR function is impaired in a subset of pancreatitis patients carrying CFTR variants. Mutations outside the CFTR locus may contribute to the anion transport defect. Bioassays on patient-derived intestinal tissue and organoids can be used to detect such defects and to assess the effect of CFTR modulators.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Pancreatitis , Humans , Bicarbonates/metabolism , Chlorides , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Mutation , Pancreatitis/genetics , Pancreatitis/metabolism , Quinolones
14.
Pancreatology ; 24(4): 528-537, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38637233

ABSTRACT

BACKGROUND: Store-operated Ca2+ entry (SOCE) mediated by ORAI1 channel plays a crucial role in acute pancreatitis (AP). Macrophage is an important regulator in amplifying pancreatic tissue damage, but little is known about the role of ORAI1 in macrophages. In this study, we examined the effects of macrophage-specific ORAI1 on pancreatic tissue damage in AP. METHOD: Myeloid-specific Orai1 deficient mice was generated by crossing a LysM-Cre mouse line with Orai1f/f mice. Bone marrow-derived macrophages (BMDMs) were isolated, cultured, and stimulated to induce M1 or M2 macrophage polarization. Intracellular Ca2+ signals were measured by time-lapse confocal microscope imaging, with a Ca2+ indicator (Fluo 4). Experimental AP was induced by hourly intraperitoneal injections of caerulein or retrograde biliopancreatic infusion of sodium taurocholate. Pancreatic tissue damage was assessed by histopathological scoring and immunostaining. Sepsis was induced by intraperitoneal injection of lipopolysaccharide; organ damage and serum pro-inflammatory cytokines were measured. RESULT: Myeloid-specific Orai1 deletion exhibited minimal effect on SOCE in M0 macrophages and promoted M2 macrophage polarization ex vivo. Myeloid-specific Orai1 deletion did not affect pancreatic tissue damage, nor neutrophil or macrophage infiltration in two models of AP. Similarly, myeloid-specific Orai1 deletion did not influence overall survival rate in a model of sepsis, nor lung, kidney, and liver damage; while serum pro-inflammatory cytokines, including IL-6, TNF-α, and IL-1ß were higher in Orai1ΔLysM mice, but were largely reduced in mice with Orai1 inhibitor. CONCLUSION: Our data suggest that ORAI1 may not be a predominant SOCE channel in macrophages and play a limited role in mediating pancreatic tissue damage in AP.


Subject(s)
Macrophages , ORAI1 Protein , Pancreas , Pancreatitis , Animals , ORAI1 Protein/metabolism , ORAI1 Protein/genetics , Pancreatitis/pathology , Pancreatitis/metabolism , Pancreatitis/chemically induced , Pancreatitis/genetics , Mice , Macrophages/metabolism , Pancreas/pathology , Pancreas/metabolism , Mice, Inbred C57BL , Myeloid Cells/metabolism , Mice, Knockout , Disease Models, Animal , Gene Deletion
15.
Arch Microbiol ; 206(6): 265, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761195

ABSTRACT

Acute pancreatitis frequently causes intestinal barrier damage, which aggravates pancreatitis. Although Clostridium butyricum exerts anti-inflammatory and protective effects on the intestinal barrier during acute pancreatitis, the underlying mechanism is unclear. The G protein-coupled receptors 109 A (GPR109A) and adenosine monophosphate-activated protein kinase (AMPK)/ peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) signaling pathways can potentially influence the integrity of the intestinal barrier. Our study generated acute pancreatitis mouse models via intraperitoneal injection of cerulein and lipopolysaccharides. After intervention with Clostridium butyricum, the model mice showed reduced small intestinal and colonic intestinal barrier damage, dysbiosis amelioration, and increased GPR109A/AMPK/PGC-1α expression. In conclusion, Clostridium butyricum could improve pancreatic and intestinal inflammation and pancreatic injury, and relieve acute pancreatitis-induced intestinal barrier damage in the small intestine and colon, which may be associated with GPR109A/AMPK/PGC-1α.


Subject(s)
AMP-Activated Protein Kinases , Clostridium butyricum , Disease Models, Animal , Pancreatitis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Receptors, G-Protein-Coupled , Animals , Clostridium butyricum/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice , Pancreatitis/metabolism , Pancreatitis/microbiology , Pancreatitis/pathology , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Male , Signal Transduction , Up-Regulation
16.
BMC Gastroenterol ; 24(1): 151, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698325

ABSTRACT

BACKGROUND: Acute pancreatitis (AP) is a prevalent exocrine inflammatory disorder of the pancreas characterized by pancreatic inflammation and injury to acinar cells. Vitamin B6 (VB6) is a vital nutrient that plays a significant role in preserving human health and has anti-inflammatory and anti-apoptotic effects. METHODS: This study aimed to explore the potential pancreatic protective effects of VB6 in mitigating pancreatic inflammation and apoptosis induced by taurocholate sodium (TLCS) in an AP model and to assess the underlying mechanism of action. AP was induced in Sprague‒Dawley (SD) rats through TLCS administration and lipopolysaccharide (LPS)-treated AR42J cells, followed by treatment with VB6. RESULTS: Various parameters associated with AP were assessed in both plasma and pancreatic tissues. VB6 has been shown to ameliorate the severity of AP through various mechanisms. It effectively reduces the levels of serum amylase, lipase, and inflammatory factors, thereby mitigating histological injury to the pancreas. Moreover, VB6 inhibited pancreatic apoptosis by downregulating bax expression and up-regulating Bcl2 expression in TLCS-treated rats. Additionally, VB6 suppressed the expression of caspase3. The anti-inflammatory and anti-apoptotic effects of VB6 observed in LPS-treated AR42J cells are consistent with those observed in a rat model of AP. CONCLUSIONS: These results suggest that VB6 exerts anti-inflammatory and anti-apoptotic effects through inhibition of the caspase3 signaling pathway and has a protective effect against AP.


Subject(s)
Apoptosis , Caspase 3 , Lipopolysaccharides , Pancreatitis , Rats, Sprague-Dawley , Signal Transduction , Taurocholic Acid , Vitamin B 6 , Animals , Pancreatitis/drug therapy , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/chemically induced , Signal Transduction/drug effects , Apoptosis/drug effects , Caspase 3/metabolism , Rats , Vitamin B 6/pharmacology , Vitamin B 6/therapeutic use , Male , Amylases/blood , Pancreas/pathology , Pancreas/drug effects , Pancreas/metabolism , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Acute Disease , bcl-2-Associated X Protein/metabolism , Lipase/metabolism , Lipase/blood , Proto-Oncogene Proteins c-bcl-2/metabolism
17.
Exp Cell Res ; 424(2): 113508, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36764591

ABSTRACT

In severe acute pancreatitis (SAP), intestinal mucosal barrier damage can cause intestinal bacterial translocation and induce or aggravate systemic infections. Heme oxygenase-1 (HO-1) is a validated antioxidant and cytoprotective agent. This research aimed to investigate the effect and mechanism of HO-1 on SAP-induced intestinal barrier damage in SAP rats. Healthy adult male Sprague-Dawley rats were randomly separated into the sham-operated group, SAP group, SAP + Hemin group, and SAP + Znpp group. The rat model of SAP was established by retrograde injection of sodium taurocholate (5%) into the biliopancreatic duct. Hemin (a potent HO-1 activator) and Znpp (a competitive inhibitor of HO-1) were injected intraperitoneally in the selected groups 24 h before SAP. Serum and intestinal tissue samples were collected for analysis after 24 h in each group. Hemin pretreatment significantly reduced systemic inflammation, intestinal oxidative stress, and intestinal epithelial apoptosis in SAP by increasing HO-1 expression. Meanwhile, pretreatment with Hemin abolished the inhibitory effect on the expression of the tight junction proteins and significantly inhibited the activation of the MLCK/P-MLC signaling pathway. Conversely, ZnPP completely reversed these effects. Our study indicates that upregulation of HO-1 expression attenuates the intestinal mucosal barrier damage in SAP. The protective effect of HO-1 on the intestine is attributed to MLCK/p-MLC signaling pathway inhibition.


Subject(s)
Pancreatitis , Animals , Male , Rats , Acute Disease , Heme Oxygenase-1/metabolism , Hemin/pharmacology , Intestinal Mucosa/metabolism , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Pancreatitis/metabolism , Rats, Sprague-Dawley , Signal Transduction , Myosin-Light-Chain Kinase
18.
Exp Cell Res ; 428(2): 113630, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37196844

ABSTRACT

BACKGROUND: Patients with severe acute pancreatitis (SAP) have a compromised intestinal barrier with decreased barrier function and increased cell death. Intestinal epithelial cells (IECs) create a physicochemical barrier that anchors bacteria in the intestine. Recent studies have shown that the stimulator of interferons genes (STING) signaling pathway plays an important function in a number of inflammatory conditions. METHODS: The rat SAP model was established by retrograde injection of freshly prepared sodium taurocholate into the biliopancreatic duct. Serum amylase (AMY), lipase (LIPA), interleukin (IL)-6, interferon (IFN)-ß, tumor necrosis factor (TNF)-α, intestinal-type fatty acid binding protein (FABP2), diamine oxidase (DAO) and endotoxin (ET) levels were measured in rats. H&E staining was used to assess histological changes in the intestine and pancreas. The expression of intestinal epithelial cell tight junction (TJ) proteins and STING signaling pathway proteins and genes were measured by RT- PCR, Western blot and immunofluorescence staining were used to analyze. The expression of STING signaling pathway proteins in pancreas were measured by Western blot were used to analyze. TUNEL was used to detect IECs death. RESULTS: Upregulation of STING pathway-related proteins and genes occurred after sap-induced IECs. In addition, C-176 reduced serum AMY, LIPA, TNF-α, IL-6, INF-ß, FABP2, DAO and endotoxin levels and decreased pancreatic and intestinal histopathological injury in SAP rats; DMXAA aggravated serum AMY, LIPA, TNF-α, IL-6, INF-ß, FABP2, DAO and endotoxin levels and increased pancreatic and intestinal histopathological injury in SAP rats. CONLUSIONS: The results suggest that inhibition of STING signaling can alleviate IECs after SAP, and activation of STING signaling can aggravate IECs after SAP.


Subject(s)
Pancreatitis , Animals , Rats , Acute Disease , Endotoxins/adverse effects , Endotoxins/metabolism , Interleukin-6/metabolism , Intestinal Mucosa/metabolism , Intestines , Pancreatitis/chemically induced , Pancreatitis/metabolism , Pancreatitis/pathology , Rats, Sprague-Dawley , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
19.
Dig Dis Sci ; 69(1): 148-160, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37957410

ABSTRACT

BACKGROUND: Acute pancreatitis is an inflammation of the pancreatic glandular parenchyma that causes injury with or without the destruction of pancreatic acini. Clinical and experimental evidence suggest that certain systemic proinflammatory mediators may be responsible for initiating the fundamental mechanisms involved in microglial reactivity. Here, we investigated the possible repercussions of acute pancreatitis (AP) on the production of inflammatory mediators in the brain parenchyma focusing on microglial activation in the hippocampus. METHODS: The acute pancreatic injury in rats was induced by a pancreas ligation surgical procedure (PLSP) on the splenic lobe, which corresponds to approximately 10% of total mass of the pancreas. Blood samples were collected via intracardiac puncture for the measurement of serum amylase. After euthanasia, frozen or paraffin-embedded brains and pancreas were analyzed using qRT-PCR or immunohistochemistry, respectively. RESULTS: Immunohistochemistry assays showed a large number of Iba1 and PU.1-positive cells in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus of the PLSP group. TNF-α mRNA expression was significantly higher in the brain from PLSP group. NLRP3 inflammasome expression was found to be significantly increased in the pancreas and brain of rats of the PLSP group. High levels of BNDF mRNA were found in the rat brain of PLSP group. In contrast, NGF mRNA levels were significantly higher in the control group versus PLSP group. CONCLUSION: Our findings suggest that AP has the potential to induce morphological changes in microglia consistent with an activated phenotype.


Subject(s)
Pancreatitis , Rats , Animals , Pancreatitis/metabolism , Microglia/metabolism , Acute Disease , Hippocampus/metabolism , Pancreas/metabolism , RNA, Messenger/metabolism
20.
Dig Dis Sci ; 69(4): 1242-1252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441784

ABSTRACT

BACKGROUND: Intestinal barrier dysfunction in acute pancreatitis (AP) may progress to systemic inflammatory response syndrome (SIRS) and multi-organ failures by causing bacterial translocation. Larazotide acetate (LA) is a molecule that acts as a tight junction (TJ) regulator by blocking zonulin (Zo) receptors in the intestine. AIMS: In our study, we aimed to investigate the effects of LA on intestinal barrier dysfunction and bacterial translocation in the AP model in rats. METHODS: Thirty-two male Sprague-Dawley rats were divided into 4 groups; control, larazotide (LAR), AP, and AP + LAR. The AP model was created by administering 250 mg/100 g bm L-Arginine intraperitoneally 2 times with an hour interval. AP + LAR group received prophylactic 0.01 mg/mL LA orally for 7 days before the first dose of L-Arginine. For intestinal permeability analysis, fluorescein isothiocyanate-dextran (FITC-Dextran) was applied to rats by gavage. The positivity of any of the liver, small intestine mesentery, and spleen cultures were defined as bacterial translocation. Histopathologically damage and zonulin immunoreactivity in the intestine were investigated. RESULTS: Compared to the control group, the intestinal damage scores, anti-Zo-1 immunoreactivity H-Score, serum FITC-Dextran levels and bacterial translocation frequency (100% versus 0%) in the AP group were significantly higher (all p < 0.01). Intestinal damage scores, anti-Zo-1 immunoreactivity H-score, serum FITC-Dextran levels, and bacterial translocation frequency (50% versus 100%) were significantly lower in the AP + LAR group compared to the AP group (all p < 0.01). CONCLUSIONS: Our findings show that LA reduces the increased intestinal permeability and intestinal damage by its effect on Zo in the AP model in rats, and decreases the frequency of bacterial translocation as a result of these positive effects.


Subject(s)
Dextrans , Fluorescein-5-isothiocyanate/analogs & derivatives , Intestinal Diseases , Pancreatitis , Rats , Male , Animals , Pancreatitis/metabolism , Intestinal Mucosa/metabolism , Rats, Sprague-Dawley , Intestinal Barrier Function , Bacterial Translocation , Acute Disease , Oligopeptides/pharmacology , Intestinal Diseases/metabolism , Arginine , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL