Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Planta ; 259(6): 155, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750378

ABSTRACT

MAIN CONCLUSION: Pearl millet wild relatives harbour novel alleles which could be utilized to broaden genetic base of cultivated species. Genomics-informed pre-breeding is needed to speed up introgression from wild to cultivated gene pool in pearl millet. Rising episodes of intense biotic and abiotic stresses challenge pearl millet production globally. Wild relatives provide a wide spectrum of novel alleles which could address challenges posed by climate change. Pre-breeding holds potential to introgress novel diversity in genetically narrow cultivated Pennisetum glaucum from diverse gene pool. Practical utilization of gene pool diversity remained elusive due to genetic intricacies. Harnessing promising traits from wild pennisetum is limited by lack of information on underlying candidate genes/QTLs. Next-Generation Omics provide vast scope to speed up pre-breeding in pearl millet. Genomic resources generated out of draft genome sequence and improved genome assemblies can be employed to utilize gene bank accessions effectively. The article highlights genetic richness in pearl millet and its utilization with a focus on harnessing next-generation Omics to empower pre-breeding.


Subject(s)
Genome, Plant , Genomics , Pennisetum , Plant Breeding , Pennisetum/genetics , Pennisetum/physiology , Plant Breeding/methods , Genome, Plant/genetics , Genetic Variation , Quantitative Trait Loci/genetics , Alleles
2.
Theor Appl Genet ; 137(7): 157, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861001

ABSTRACT

KEY MESSAGE: Through the histological, physiological, and transcriptome-level identification of the abscission zone of Pennisetum alopecuroides 'Liqiu', we explored the structure and the genes related to seed shattering, ultimately revealing the regulatory network of seed shattering in P. alopecuroides. Pennisetum alopecuroides is one of the most representative ornamental grass species of Pennisetum genus. It has unique inflorescence, elegant appearance, and strong stress tolerance. However, the shattering of seeds not only reduces the ornamental effect, but also hinders the seed production. In order to understand the potential mechanisms of seed shattering in P. alopecuroides, we conducted morphological, histological, physiological, and transcriptomic analyses on P. alopecuroides cv. 'Liqiu'. According to histological findings, the seed shattering of 'Liqiu' was determined by the abscission zone at the base of the pedicel. Correlation analysis showed that seed shattering was significantly correlated with cellulase, lignin, auxin, gibberellin, cytokinin and jasmonic acid. Through a combination of histological and physiological analyses, we observed the accumulation of cellulase and lignin during 'Liqiu' seed abscission. We used PacBio full-length transcriptome sequencing (SMRT) combined with next-generation sequencing (NGS) transcriptome technology to improve the transcriptome data of 'Liqiu'. Transcriptomics further identified many differential genes involved in cellulase, lignin and plant hormone-related pathways. This study will provide new insights into the research on the shattering mechanism of P. alopecuroides.


Subject(s)
Gene Expression Regulation, Plant , Pennisetum , Plant Growth Regulators , Seeds , Transcriptome , Pennisetum/genetics , Pennisetum/physiology , Pennisetum/growth & development , Seeds/genetics , Seeds/growth & development , Plant Growth Regulators/metabolism , Gene Expression Profiling , Lignin/metabolism
3.
Theor Appl Genet ; 137(7): 149, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836874

ABSTRACT

KEY MESSAGE: Analyze the evolutionary pattern of DNAJ protein genes in the Panicoideae, including pearl millet, to identify and characterize the biological function of PgDNAJ genes in pearl millet. Global warming has become a major factor threatening food security and human development. It is urgent to analyze the heat-tolerant mechanism of plants and cultivate crops that are adapted to high temperature conditions. The Panicoideae are the second largest subfamily of the Poaceae, widely distributed in warm temperate and tropical regions. Many of these species have been reported to have strong adaptability to high temperature stress, such as pearl millet, foxtail millet and sorghum. The evolutionary differences in DNAJ protein genes among 12 Panicoideae species and 10 other species were identified and analyzed. Among them, 79% of Panicoideae DNAJ protein genes were associated with retrotransposon insertion. Analysis of the DNAJ protein pan-gene family in six pearl millet accessions revealed that the non-core genes contained significantly more TEs than the core genes. By identifying and analyzing the distribution and types of TEs near the DNAJ protein genes, it was found that the insertion of Copia and Gypsy retrotransposons provided the source of expansion for the DNAJ protein genes in the Panicoideae. Based on the analysis of the evolutionary pattern of DNAJ protein genes in Panicoideae, the PgDNAJ was obtained from pearl millet through identification. PgDNAJ reduces the accumulation of reactive oxygen species caused by high temperature by activating ascorbate peroxidase (APX), thereby improving the heat resistance of plants. In summary, these data provide new ideas for mining potential heat-tolerant genes in Panicoideae, and help to improve the heat tolerance of other crops.


Subject(s)
Pennisetum , Plant Proteins , Pennisetum/genetics , Pennisetum/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , HSP40 Heat-Shock Proteins/genetics , Gene Expression Regulation, Plant , Retroelements/genetics , Poaceae/genetics , Evolution, Molecular , Genes, Plant
4.
Ecotoxicol Environ Saf ; 211: 111943, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33493720

ABSTRACT

Pearl millet (Pennisetum americanum (L.) K. Schum) has been proven as a potential remediation plant of the pollution caused by atrazine. Plants used in remediation can release root exudates to communicate with rhizosphere microorganisms and accelerate the removal of pollutants in soil. However, the response of pearl millet root exudates under atrazine stress has remained unclear. In this study, hydroponic experiments were conducted at Northeast Agricultural University, Harbin, China, to investigate the oxidative stress response and the changes in composition of root exudates in pearl millet plants that were exposed to 19.4 mgL-1 of atrazine, compared to the untreated control. The experiment was established as six treatments with exposure to no atrazine for 2, 4 and 6 days (CK-2, CK-4, CK-6) and 19.4 mgL-1 atrazine for 2, 4 and 6 days (AT-2, AT-4, AT-6), respectively. The results suggest that the growth of the seedlings changed slightly when exposed to atrazine for 2 days. The content of thiobarbituric acid reactive substances exposed to atrazine for 6 days increased 26% compared with the treatment that was exposed for 2 days. Moreover, the reactive oxygen species in test plant obviously increased when exposed to atrazine for 6 days. In addition, the activity of superoxide dismutase increased from 30.82 ug-1 to 37.33 ug-1 fresh weight after 6 days of exposure to atrazine. The results of a nontargeted metabolomic analysis suggest that carbohydrate metabolism, fatty acid metabolism and amino acid metabolism in pearl millet were obviously affected by the oxidative stress caused by atrazine. The contents of sphinganine and methylimidazole acetaldehyde in CK-6 increased by 5.14 times and 2.05 times, respectively, compared with those of CK-2. Furthermore, the contents of (S)-methylmalonic acid semialdehyde and 1-pyrroline-2-carboxylic acid decreased by 0.56 times and 0.5 times, respectively, compared with the AT-6. These results strongly suggest that the changes observed in the composition of root exudates in pearl millet seedlings can be attributed to the oxidative stress caused by atrazine.


Subject(s)
Atrazine/toxicity , Herbicides/toxicity , Oxidative Stress/physiology , Pennisetum/drug effects , Plant Exudates/metabolism , Atrazine/metabolism , China , Herbicides/metabolism , Oxidation-Reduction , Pennisetum/metabolism , Pennisetum/physiology , Rhizosphere , Seedlings/metabolism , Soil/chemistry , Superoxide Dismutase/metabolism
5.
BMC Genomics ; 21(1): 777, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33167854

ABSTRACT

BACKGROUND: Pearl millet, a nutritious food for around 100 million people in Africa and India, displays extensive genetic diversity and a high degree of admixture with wild relatives. Two major morphotypes can be distinguished in Senegal: early-flowering Souna and late-flowering Sanio. Phenotypic variabilities related to flowering time play an important role in the adaptation of pearl millet to climate variability. A better understanding of the genetic makeup of these variabilities would make it possible to breed pearl millet to suit regions with different climates. The aim of this study was to characterize the genetic basis of these phenotypic differences. RESULTS: We defined a core collection that captures most of the diversity of cultivated pearl millets in Senegal and includes 60 early-flowering Souna and 31 late-flowering Sanio morphotypes. Sixteen agro-morphological traits were evaluated in the panel in the 2016 and 2017 rainy seasons. Phenological and phenotypic traits related with yield, flowering time, and biomass helped differentiate early- and late-flowering morphotypes. Further, using genotyping-by-sequencing (GBS), 21,663 single nucleotide polymorphisms (SNPs) markers with more than 5% of minor allele frequencies were discovered. Sparse non-negative matrix factorization (sNMF) analysis confirmed the genetic structure in two gene pools associated with differences in flowering time. Two chromosomal regions on linkage groups (LG 3) (~ 89.7 Mb) and (LG 6) (~ 68.1 Mb) differentiated two clusters among the early-flowering Souna. A genome-wide association study (GWAS) was used to link phenotypic variation to the SNPs, and 18 genes were linked to flowering time, plant height, tillering, and biomass (P-value < 2.3E-06). CONCLUSIONS: The diversity of early- and late-flowering pearl millet morphotypes in Senegal was captured using a heuristic approach. Key phenological and phenotypic traits, SNPs, and candidate genes underlying flowering time, tillering, biomass yield and plant height of pearl millet were identified. Chromosome rearrangements in LG3 and LG6 were inferred as a source of variation in early-flowering morphotypes. Using candidate genes underlying these features between pearl millet morphotypes will be of paramount importance in breeding for resilience to climatic variability.


Subject(s)
Flowers/physiology , Pennisetum , Climate , Genetic Association Studies , India , Pennisetum/genetics , Pennisetum/physiology , Plant Breeding , Senegal
6.
Plant Mol Biol ; 103(6): 639-652, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32430635

ABSTRACT

Pearl millet is a widely cultivated grain and forage crop in areas frequented with hot and dry weather, and high temperature. Being cultivated in arid and semi-arid regions, the crop often encounters intermittent water stress either at early stages of development or flowering stage or both. However, its asynchronous tillering behavior and fast growth rate helps recovering from drought stress at vegetative stages while there is no such reprieve under terminal stress (flowering through grain filling). At present, the molecular basis of terminal drought tolerance of certain pearl millet genotypes remains elusive. In this study, a comparative transcriptome analysis has been performed at both vegetative and flowering stages of a terminal drought tolerant genotype, PRLT2/89-33, subjected to drought stress. The gene expression profiling analysis showed that PRLT2/89-33 has an inherent ability to sense drought at both developmental stages. Gene Ontology (GO) and MapMan pathway analyses underlined that flavanoid pathway, lignin biosynthesis, phenyl propanoid pathway, pigment biosynthesis, and other secondary metabolite pathways were enriched in control and drought stressed PRLT2/89-33 at flowering stage than at the vegetative stage. To our knowledge, this is the first report of comparative transcriptome analysis under drought stress at two different developmental stages which can facilitate fastidious discovery of drought tolerant genes leading to improved yield in pearl millet and other related crops.


Subject(s)
Droughts , Pennisetum/genetics , Pennisetum/physiology , Transcriptome/genetics , Chromosome Mapping , Gene Expression Regulation, Plant/genetics , Quantitative Trait Loci/genetics , Stress, Physiological/genetics
7.
BMC Plant Biol ; 20(1): 323, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32640987

ABSTRACT

BACKGROUND: Heat and drought are serious threats for crop growth and development. As the sixth largest cereal crop in the world, pearl millet can not only be used for food and forage but also as a source of bioenergy. Pearl millet is highly tolerant to heat and drought. Given this, it is considered an ideal crop to study plant stress tolerance and can be used to identify heat-resistant genes. RESULTS: In this study, we used Pacbio sequencing data as a reference sequence to analyze the Illumina data of pearl millet that had been subjected to heat and drought stress for 48 h. By summarizing previous studies, we found 26,299 new genes and 63,090 new transcripts, and the number of gene annotations increased by 20.18%. We identified 2792 transcription factors and 1223 transcriptional regulators. There were 318 TFs and 149 TRs differentially expressed under heat stress, and 315 TFs and 128 TRs were differentially expressed under drought stress. We used RNA sequencing to identify 6920 genes and 6484 genes differentially expressed under heat stress and drought stress, respectively. CONCLUSIONS: Through Pacbio sequencing, we have identified more new genes and new transcripts. On the other hand, comparing the differentially expressed genes under heat tolerance with the DEGs under drought stress, we found that even in the same pathway, pearl millet responds with a different protein.


Subject(s)
Pennisetum/genetics , Stress, Physiological , Transcription Factors/genetics , Transcriptome , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Heat-Shock Response , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Pennisetum/physiology , Plant Proteins , Sequence Analysis, RNA
8.
Ecotoxicol Environ Saf ; 202: 110854, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32585484

ABSTRACT

Atrazine as a kind of herbicide could cause damage to the sensitive plants. Though plant growth promoting rhizobacteria (PGPR) have been proven with the potential to enhance the resistance of plants against various abiotic stresses, whether it could alleviate phytotoxicity caused by atrazine is sill unclear. In present study, the effects of strain Pseudomonas chlororaphis PAS18, a kind of PGPR enable to produce indole-3-acetic acid (IAA), on the growth and physiological responses of Pennisetum americanum (L.) K.Schum seedlings were investigated under three different levels (0, 20 and 100 mg kg-1) of atrazine in pot experiment. The results suggest that strain PAS18 could alleviate the growth and physiological interference caused by 20 mg kg-1 of atrazine. Physiological analysis showed strain PAS18 could further decrease the damaged extent of photosystem II, superoxide radical level and malondialdehyde content of test plant via up-regulating psbA expression, enhancing superoxide dismutase activity and reducing atrazine accumulation in the test plant. Moreover, ion flux measurements suggest that IAA could alleviate the Ca2+ exflux state of the test plant which caused by atrazine stress. Hence, it is plausible that strain PAS18 could alleviate atrazine-induced stress to P. americanum by enhancing the photosystem II repair and antioxidant defense ability as well as balancing the Ca2+ flux.


Subject(s)
Atrazine/toxicity , Indoleacetic Acids/metabolism , Pennisetum/physiology , Pseudomonas chlororaphis/physiology , Antioxidants/metabolism , Atrazine/metabolism , Drug Tolerance , Herbicides/metabolism , Malondialdehyde/metabolism , Pennisetum/drug effects , Photosynthesis , Pseudomonas chlororaphis/metabolism , Seedlings/drug effects , Stress, Physiological
9.
Microb Ecol ; 77(3): 676-688, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30209586

ABSTRACT

Genetic and functional diversity of osmotolerant bacterial endophytes colonizing the root, stem, and leaf tissues of pearl millet genotypes differing in their drought susceptibility was assessed. Two genotypes of pearl millet, viz., the drought tolerant genotype TT-1 and the drought susceptible genotype PPMI-69, were used in the present study. Diazotrophs were found to be the predominant colonizers, followed by the Gram positive bacteria in most of the tissues of both the genotypes. Higher proportion of bacterial endophytes obtained from the drought tolerant genotype was found to be osmotolerant. Results of 16S rRNA gene-ARDRA analysis grouped 50 of the highly osmotolerant isolates into 16 clusters, out of which nine clusters had only one isolate each, indicating their uniqueness. One cluster had 21 isolates and remaining clusters were represented by isolates ranging from two to four. The representative isolates from each cluster were identified, and Bacillus was found to be the most prevalent osmotolerant genera with many different species. Other endophytic bacteria belonged to Pseudomonas sp., Stenotrophomonas sp., and Macrococcus caseolyticus. High phylogenetic diversity was observed in the roots of the drought tolerant genotype while different tissues of the drought susceptible genotype showed less diversity. Isolates of Bacillus axarquiensis were present in all the tissues of both the genotypes of pearl millet. However, most of the other endophytic bacteria showed tissue/genotype specificity. With the exception of B. axarquiensis and B. thuringiensis, rest all the species of Bacillus were found colonizing only the drought-tolerant genotype; while M. caseolyticus colonized all the tissues of only the drought susceptible genotype. There was high incidence of IAA producers and low incidence of ACC deaminase producers among the isolates from the root tissues of the drought-tolerant genotype while reverse was the case for the drought-susceptible genotype. Thus, host played an important role in the selection of endophytes based on both phylogenetic and functional traits.


Subject(s)
Bacteria/isolation & purification , Biodiversity , Endophytes/isolation & purification , Pennisetum/microbiology , Bacteria/classification , Bacteria/genetics , Droughts , Endophytes/classification , Endophytes/genetics , Genotype , Pennisetum/genetics , Pennisetum/physiology , Phylogeny , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Leaves/physiology , Plant Roots/genetics , Plant Roots/microbiology , Plant Roots/physiology
10.
Int J Mol Sci ; 20(10)2019 May 23.
Article in English | MEDLINE | ID: mdl-31126029

ABSTRACT

King grass, a hybrid grass between pearl millet and elephant grass, has many excellent characteristics such as high biomass yield, great stress tolerance, and enormous economic and ecological value, which makes it ideal for development of phytoremediation. At present, the physiological and molecular response of king grass to cadmium (Cd) stress is poorly understood. Transcriptome analysis of early response (3 h and 24 h) of king grass leaves and roots to high level Cd (100 µM) has been investigated and has shed light on the molecular mechanism underlying Cd stress response in this hybrid grass. Our comparative transcriptome analysis demonstrated that in combat with Cd stress, king grass roots have activated the glutathione metabolism pathway by up-regulating glutathione S-transferases (GSTs) which are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damages. In roots, early inductions of phenylpropanoid biosynthesis and phenylalanine metabolism pathways were observed to be enriched in differentially expressed genes (DEGs). Meanwhile, oxidoreductase activities were significantly enriched in the first 3 h to bestow the plant cells with resistance to oxidative stress. We also found that transporter activities and jasmonic acid (JA)-signaling might be activated by Cd in king grass. Our study provided the first-hand information on genome-wide transcriptome profiling of king grass and novel insights on phytoremediation.


Subject(s)
Cadmium/metabolism , Gene Expression Regulation, Plant , Pennisetum/genetics , Plant Proteins/genetics , Transcriptome , Gene Expression Profiling , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Pennisetum/physiology , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/physiology , Stress, Physiological
11.
BMC Plant Biol ; 18(1): 65, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-29665794

ABSTRACT

BACKGROUND: Pearl millet (Pennisetum glaucum (L.) R. Br., syn. Cenchrus americanus (L.) R. Br) is an important cereal and fodder crop in hot and arid environments. There is great potential to improve pearl millet production through hybrid breeding. Cytoplasmic male sterility (CMS) and the corresponding nuclear fertility restoration / sterility maintenance genes (Rfs) are essential tools for economic hybrid seed production in pearl millet. Mapping the Rf genes of the A4 CMS system in pearl millet would enable more efficient introgression of both dominant male-fertility restoration alleles (Rf) and their recessive male-sterility maintenance counterparts (rf). RESULTS: A high density linkage map based on single nucleotide polymorphism (SNP) markers was generated using an F2 mapping population and genotyping-by-sequencing (GBS). The parents of this cross were 'ICMA 02777' and 'ICMR 08888', which segregate for the A4 Rf locus. The linkage map consists of 460 SNP markers distributed mostly evenly and has a total length of 462 cM. The segregation ratio of male-fertile and male-sterile plants (3:1) based on pollen production (presence/absence) indicated monogenic dominant inheritance of male-fertility restoration. Correspondingly, a major quantitative trait locus (QTL) for pollen production was found on linkage group 2, with cross-validation showing a very high QTL occurrence (97%). The major QTL was confirmed using selfed seed set as phenotypic trait, though with a lower precision. However, these QTL explained only 14.5% and 9.9% of the phenotypic variance of pollen production and selfed seed set, respectively, which was below expectation. Two functional KASP markers were developed for the identified locus. CONCLUSION: This study identified a major QTL for male-fertility restoration using a GBS-based linkage map and developed KASP markers which support high-throughput screening of the haploblock. This is a first step toward marker-assisted selection of A4 male-fertility restoration and male-sterility maintenance in pearl millet.


Subject(s)
Pennisetum/genetics , Pennisetum/physiology , Plant Infertility/physiology , Chromosome Mapping , DNA, Plant/genetics , Genetic Linkage/genetics , Genetic Linkage/physiology , Genotype , Plant Infertility/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
12.
Plant Cell Environ ; 41(5): 993-1007, 2018 05.
Article in English | MEDLINE | ID: mdl-28173611

ABSTRACT

The objectives were to (1) quantify high temperature (HT) stress impacts at different growth stages (season long, booting to seed-set and booting to maturity) on various yield components; (2) identify the most sensitive stage(s) to short episodes of HT stress during reproductive development; (3) understand the genetic variations for HT stress tolerance based on cardinal temperatures for pollen germination; and (4) determine relative sensitivity of pollen and pistil to HT stress and associated tolerance or susceptible mechanisms in pearl millet. High temperature stress (≥36/26°C) imposed at different stages and durations caused decrease in number of seeds, individual seed weight and seed yield. Two periods (10-12 days and 2-0 days before anthesis) were identified as most sensitive to short episodes of stress, causing maximum decreases in pollen germination percentage and seeds numbers. HT stresses of ≥36/26°C results in floret sterility. Pistils were relatively more sensitive than pollen grains, causing decreased number of seeds and seed yield. HT stress increased the reactive oxygen species contents and decreased the activity of the antioxidant enzymes in both pollen and pistils. Under HT stress, pistils had relatively higher reactive oxygen species and lower antioxidant enzymes activity compared with pollen grains, which explains greater susceptibility of pistils.


Subject(s)
Genetic Variation , Pennisetum/physiology , Reactive Oxygen Species/metabolism , Flowers/genetics , Flowers/physiology , Hot Temperature , Pennisetum/genetics , Pollen/genetics , Pollen/physiology , Seasons , Seeds/genetics , Seeds/physiology , Stress, Physiological
13.
Theor Appl Genet ; 131(7): 1509-1529, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29679097

ABSTRACT

KEY MESSAGE: Four genetic regions associated with water use traits, measured at different levels of plant organization, and with agronomic traits were identified within a previously reported region for terminal water deficit adaptation on linkage group 2. Close linkages between these traits showed the value of phenotyping both for agronomic and secondary traits to better understand plant productive processes. Water saving traits are critical for water stress adaptation of pearl millet, whereas maximizing water use is key to the absence of stress. This research aimed at demonstrating the close relationship between traits measured at different levels of plant organization, some putatively involved in water stress adaptation, and those responsible for agronomic performance. A fine-mapping population of pearl millet, segregating for a previously identified quantitative trait locus (QTL) for adaptation to terminal drought stress on LG02, was phenotyped for traits at different levels of plant organization in different experimental environments (pot culture, high-throughput phenotyping platform, lysimeters, and field). The linkages among traits across the experimental systems were analysed using principal component analysis and QTL co-localization approach. Four regions within the LG02-QTL were found and revealed substantial co-mapping of water use and agronomic traits. These regions, identified across experimental systems, provided genetic evidence of the tight linkages between traits phenotyped at a lower level of plant organization and agronomic traits assessed in the field, therefore deepening our understanding of complex traits and then benefiting both geneticists and breeders. In short: (1) under no/mild stress conditions, increasing biomass and tiller production increased water use and eventually yield; (2) under severe stress conditions, water savings at vegetative stage, from lower plant vigour and fewer tillers in that population, led to more water available during grain filling, expression of stay-green phenotypes, and higher yield.


Subject(s)
Adaptation, Physiological/genetics , Pennisetum/genetics , Quantitative Trait Loci , Water/physiology , Chromosome Mapping , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Droughts , Genetic Linkage , Pennisetum/physiology , Phenotype , Plant Transpiration
14.
Trop Anim Health Prod ; 50(1): 29-36, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28905183

ABSTRACT

The aim of this work was to evaluate the effect of quebracho tannins extract (QTE) on feed intake, dry matter (DM) digestibility, and methane (CH4) emissions in cattle fed low-quality Pennisetum purpureum grass. Five heifers (Bos taurus × Bos indicus) with an average live weight (LW) of 295 ± 19 kg were allotted to five treatments (0, 1, 2, 3, and 4% QTE/kg DM) in a 5 × 5 Latin square design. Intake, digestibility, and total methane emissions (L/day) were recorded for periods of 23 h when cattle were housed in open-circuit respiration chambers. Dry matter intake (DMI), organic matter intake (OMI), dry matter digestibility (DMD), and organic matter digestibility (OMD) were different between treatments with 0 and 4% of QTE/kg DM (P < 0.05). Total volatile fatty acid and the molar proportion of acetate in the rumen was not affected (P < 0.05); however, the molar proportion of propionate increased linearly (P < 0.01) for treatments with 3 and 4% QTE. Total CH4 production decreased linearly (P < 0.01) as QTE increased in the diet, particularly with 3 and 4% concentration. When expressed as DMI and OMI by CH4, production (L/kg) was different between treatments with 0 vs 3 and 4% QTE (P < 0.05). It is concluded that the addition of QTE at 2 or 3% of dry matter ration can decrease methane production up to 29 and 41%, respectively, without significantly compromising feed intake and nutrients digestibility.


Subject(s)
Anacardiaceae/chemistry , Diet/veterinary , Digestion/drug effects , Feeding Behavior/drug effects , Methane/metabolism , Tannins/administration & dosage , Air Pollutants/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Cattle , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Female , Pennisetum/physiology , Plant Extracts/administration & dosage , Trees/chemistry
15.
Heredity (Edinb) ; 119(2): 88-94, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28295033

ABSTRACT

Phenotypic changes in plants can be observed along many environmental gradients and are determined by both environmental and genetic factors. The identification of alleles associated with phenotypic variations is a rapidly developing area of research. We studied the genetic basis of phenotypic variations in 11 populations of wild pearl millet (Pennisetum glaucum) on two North-South aridity gradients, one in Niger and one in Mali. Most of the 11 phenotypic traits assessed in a common garden experiment varied between the populations studied. Moreover, the size of the inflorescence, the number of flowers and aboveground dry mass co-varied positively with a decrease in rainfall. To decipher the genetic basis of these phenotypes, we used an association mapping strategy with a mixed model. We found two SNPs on the same myosin XI contig significantly associated with variations in the average number of flowers. Both the allele frequency of the two SNPs and the average number of flowers co-varied with the rainfall gradient on the two gradients. Interestingly, this gene was also a target of selection during domestication. The Myosin XI gene is thus a good candidate for fitness-related adaptation in wild populations.


Subject(s)
Adaptation, Physiological/genetics , Genetic Fitness , Myosins/genetics , Pennisetum/genetics , Alleles , Climate , Gene Frequency , Genetic Association Studies , Genetics, Population , Genotype , Mali , Niger , Pennisetum/physiology , Phenotype , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Rain , Water/physiology
16.
Mol Biol Rep ; 43(3): 117-28, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26842722

ABSTRACT

Downy mildew caused by Sclerospora graminicola is a devastating disease of pearl millet. Based on candidate gene approach, a set of 22 resistance gene analogues were identified. The clone RGPM 301 (AY117410) containing a partial sequence shared 83% similarity to rice R-proteins. A full-length R-gene RGA RGPM 301 of 3552 bp with 2979 bp open reading frame encoding 992 amino acids was isolated by the degenerate primers and rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR) approach. It had a molecular mass of 113.96 kDa and isoelectric point (pI) of 8.71. The sequence alignment and phylogenetic analysis grouped it to a non-TIR NBS LRR group. The quantitative real-time PCR (qRT-PCR) analysis revealed higher accumulation of the transcripts following inoculation with S. graminicola in the resistant cultivar (IP18296) compared to susceptible cultivar (7042S). Further, significant induction in the transcript levels were observed when treated with abiotic elicitor ß-aminobutyric acid (BABA) and biotic elicitor Pseudomonas fluorescens. Exogenous application of phytohormones jasmonic acid or salicylic acid also up-regulated the expression levels of RGA RGPM 301. The treatment of cultivar IP18296 with mitogen-activated protein kinase (MPK) inhibitors (PD98059 and U0126) suppressed the levels of RGA RGPM 301. A 3.5 kb RGA RGPM 301 which is a non-TIR NBS-LRR protein was isolated from pearl millet and its up-regulation during downy mildew interaction was demonstrated by qRT-PCR. These studies indicate a role for this RGA in pearl millet downy mildew interaction.


Subject(s)
Disease Resistance , Oomycetes , Pennisetum/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Amino Acid Sequence , Aminobutyrates/pharmacology , Bacterial Proteins , Base Sequence , Cenchrus/drug effects , Cenchrus/metabolism , Cenchrus/microbiology , Cenchrus/physiology , Cloning, Molecular , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant , Molecular Sequence Data , Oxylipins/pharmacology , Pennisetum/metabolism , Pennisetum/microbiology , Pennisetum/physiology , Phylogeny , Plant Proteins/drug effects , Plant Proteins/metabolism , Pseudomonas fluorescens , Salicylic Acid/pharmacology , Sequence Alignment , Up-Regulation
17.
J Exp Bot ; 66(18): 5581-93, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26034130

ABSTRACT

In this paper, we describe the thought process and initial data behind the development of an imaging platform (LeasyScan) combined with lysimetric capacity, to assess canopy traits affecting water use (leaf area, leaf area index, transpiration). LeasyScan is based on a novel 3D scanning technique to capture leaf area development continuously, a scanner-to-plant concept to increase imaging throughput and analytical scales to combine gravimetric transpiration measurements. The paper presents how the technology functions, how data are visualised via a web-based interface and how data extraction and analysis is interfaced through 'R' libraries. Close agreement between scanned and observed leaf area data of individual plants in different crops was found (R(2) between 0.86 and 0.94). Similar agreement was found when comparing scanned and observed area of plants cultivated at densities reflecting field conditions (R(2) between 0.80 and 0.96). An example in monitoring plant transpiration by the analytical scales is presented. The last section illustrates some of the early ongoing applications of the platform to target key phenotypes: (i) the comparison of the leaf area development pattern of fine mapping recombinants of pearl millet; (ii) the leaf area development pattern of pearl millet breeding material targeted to different agro-ecological zones; (iii) the assessment of the transpiration response to high VPD in sorghum and pearl millet. This new platform has the potential to phenotype for traits controlling plant water use at a high rate and precision, of critical importance for drought adaptation, and creates an opportunity to harness their genetics for the breeding of improved varieties.


Subject(s)
Crops, Agricultural/physiology , Imaging, Three-Dimensional/methods , Pennisetum/physiology , Phenotype , Physiology/methods , Water/metabolism , Acclimatization , Crops, Agricultural/genetics , Pennisetum/genetics , Plant Leaves/physiology , Plant Transpiration
18.
Indian J Exp Biol ; 53(8): 543-50, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26349318

ABSTRACT

Pearl millet (Pennisetum glaucum L. R. Br.) is an important cereal crop grown mainly in the arid and semi-arid regions of India known to possess the natural ability to withstand thermal stress. To elucidate the molecular basis of high temperature response in pearl millet, 12 days old seedlings of P. glaucum cv. 841A were subjected to heat stress at 46 degrees C for different time durations ( 30 min, 2, 4, 8, 12 and 24 h) and a forward subtractive cDNA library was constructed from pooled RNA of heat stressed seedlings. A total of 331 high quality Expressed Sequence Tags (ESTs) were obtained from randomly selected 1050 clones. Sequences were assembled into 103 unique sequences consisting of 37 contigs and 66 singletons. Of these, 92 unique sequences were submitted to NCBI dbEST database. Gene Ontology through RGAP data base and BLASTx analysis revealed that about 18% of the ESTs showed homology to genes for "response to abiotic and biotic stimulus". About 2% of the ESTs showed no homology with genes in dbEST, indicating the presence of uncharacterized candidate genes involved in heat stress response in P. glaucum. Differential expression of selected genes (hsp101 and CRT) from the SSH library were validated by qRT-PCR analysis. The ESTs thus generated are a rich source of heat stress responsive genes, which can be utilized in improving thermotolerance of other food crops.


Subject(s)
Gene Library , Heat-Shock Response/genetics , Pennisetum/genetics , Expressed Sequence Tags , Gene Expression Regulation, Plant , Hot Temperature , India , Pennisetum/physiology , Seedlings/genetics , Seedlings/physiology , Temperature
19.
Genet Mol Res ; 13(4): 10898-908, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25526210

ABSTRACT

Elephant grass is a tropical forage plant widely distributed throughout Brazil. It was first exclusively used in the livestock sector as cattle feed. The grass is characterized by its high productivity and photosynthetic capacity and is considered as an alternative source of renewable energy. Here, we estimated the general combining ability of the parents and specific combining ability of the hybrids based on morpho-agronomic biomass-quality traits. The experiment was conducted in a randomized block design with 3 replicates. The diallel was composed of 16 hybrids and 2 groups of genitors. In the diallel analysis of variance, we observed a significant difference among treatments. A significant difference was observed among genitors for dry matter production (DMP). For the general combining ability of group 1, the traits leaf blade width, DMP, height, percentage of neutral detergent fiber, percentage of hemicellulose, percentage of lignin, percentage of acid detergent fiber, and percentage of cellulose were significant. For the estimates of general combining ability of DMP, parents Porto Rico 534-B, Vruckwona, Taiwan A-146, and Mercker S. E. A. were 0.4748, 3.2819, 1.1659, and 0.4317. The parents of Mercker S. E. A. and Porto Rico 534-B produced the highest percentage of detergent fiber and percentage of lignin with values of 0.1482 and 0.0856. Thus, parents Vruckwona, Porto Rico 534-B, and Taiwan A-146 are promising for integration into breeding programs. The best hybrid combinations for DMP were 1 x 5, 1 x 8, 2 x 6, 3 x 7, and 4 x 5.


Subject(s)
Biofuels , Pennisetum/classification , Pennisetum/physiology , Agriculture , Biomass , Brazil , Crosses, Genetic , Quantitative Trait Loci
20.
PLoS One ; 18(2): e0268120, 2023.
Article in English | MEDLINE | ID: mdl-36730331

ABSTRACT

Finger millet, pearl millet and sorghum are amongst the most important drought-tolerant crops worldwide. They constitute primary staple crops in drylands, where their production is known to date back over 5000 years ago. Compared to other crops, millets and sorghum have received less attention until very recently, and their production has been progressively reduced in the last 50 years. Here, we present new models that focus on the ecological factors driving finger millet, pearl millet and sorghum traditional cultivation, with a global perspective. The interaction between environment and traditional agrosystems was investigated by Redundancy Analysis of published literature and tested against novel ethnographic data. Contrary to earlier beliefs, our models show that the total annual precipitation is not the most determinant factor in shaping millet and sorghum agriculture. Instead, our results point to the importance of other variables such as the duration of the plant growing cycle, soil water-holding capacity or soil nutrient availability. This highlights the potential of finger millet, pearl millet and sorghum traditional cultivation practices as a response to recent increase of aridity levels worldwide. Ultimately, these practices can play a pivotal role for resilience and sustainability of dryland agriculture.


Subject(s)
Eleusine , Pennisetum , Sorghum , Sorghum/physiology , Millets , Edible Grain , Agriculture , Crops, Agricultural , Soil , Pennisetum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL