Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 840
Filter
1.
J Neurosci ; 44(34)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39019613

ABSTRACT

Although anesthesia provides favorable conditions for surgical procedures, recent studies have revealed that the brain remains active in processing noxious signals even during anesthesia. However, whether and how these responses affect the anesthesia effect remains unclear. The ventrolateral periaqueductal gray (vlPAG), a crucial hub for pain regulation, also plays an essential role in controlling general anesthesia. Hence, it was hypothesized that the vlPAG may be involved in the regulation of general anesthesia by noxious stimuli. Here, we found that acute noxious stimuli, including capsaicin-induced inflammatory pain, acetic acid-induced visceral pain, and incision-induced surgical pain, significantly delayed recovery from sevoflurane anesthesia in male mice, whereas this effect was absent in the spared nerve injury-induced chronic pain. Pretreatment with peripheral analgesics could prevent the delayed recovery induced by acute nociception. Furthermore, we found that acute noxious stimuli, induced by the injection of capsaicin under sevoflurane anesthesia, increased c-Fos expression and activity in the GABAergic neurons of the ventrolateral periaqueductal gray. Specific reactivation of capsaicin-activated vlPAGGABA neurons mimicked the effect of capsaicin and its chemogenetic inhibition prevented the delayed recovery from anesthesia induced by capsaicin. Finally, we revealed that the vlPAGGABA neurons regulated the recovery from anesthesia through the inhibition of ventral tegmental area dopaminergic neuronal activity, thus decreasing dopamine (DA) release and activation of DA D1-like receptors in the brain. These findings reveal a novel, cell- and circuit-based mechanism for regulating anesthesia recovery by nociception, and it is important to provide new insights for guiding the management of the anesthesia recovery period.


Subject(s)
Anesthetics, Inhalation , Mice, Inbred C57BL , Nociception , Periaqueductal Gray , Sevoflurane , Sevoflurane/pharmacology , Animals , Male , Mice , Anesthetics, Inhalation/pharmacology , Nociception/drug effects , Nociception/physiology , Periaqueductal Gray/drug effects , Periaqueductal Gray/metabolism , Mesencephalon/drug effects , Consciousness/drug effects , Consciousness/physiology , Anesthesia Recovery Period , Capsaicin/pharmacology , GABAergic Neurons/drug effects , GABAergic Neurons/physiology
2.
Pflugers Arch ; 476(11): 1743-1760, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39218820

ABSTRACT

Ulcerative colitis has been associated with psychological distress and an aberrant immune response. The immunomodulatory role of systemic cytokines produced during experimental intestinal inflammation in tonic immobility (TI) defensive behavior remains unknown. The present study characterized the TI defensive behavior of guinea pigs subjected to colitis induction at the acute stage and after recovery from intestinal mucosa injury. Moreover, we investigated whether inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-8, IL-10, and prostaglandins) act on the mesencephalic nucleus, periaqueductal gray matter (PAG). Colitis was induced in guinea pigs by intrarectal administration of acetic acid. The TI defensive behavior, histology, cytokine production, and expression of c-FOS, IBA-1, and cyclooxygenase (COX)-2 in PAG were evaluated. Colitis reduced the duration of TI episodes from the first day, persisting throughout the 7-day experimental period. Neuronal c-FOS immunoreactivity was augmented in both columns of the PAG (ventrolateral (vlPAG) and dorsal), but there were no changes in IBA-1 expression. Dexamethasone, infliximab, and parecoxib treatments increased the duration of TI episodes, suggesting a modulatory role of peripheral inflammatory mediators in this behavior. Immunoneutralization of TNF-α, IL-1ß, and IL-8 in the vlPAG reversed all effects produced by colitis. In contrast, IL-10 neutralization further reduced the duration of TI episodes. Our results reveal that peripherally produced inflammatory mediators during colitis may modulate neuronal functioning in mesencephalic structures such as vlPAG.


Subject(s)
Colitis , Animals , Male , Guinea Pigs , Colitis/metabolism , Colitis/chemically induced , Colitis/immunology , Immobility Response, Tonic , Periaqueductal Gray/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Cytokines/metabolism , Dexamethasone/pharmacology , Cyclooxygenase 2/metabolism , Infliximab/pharmacology , Infliximab/therapeutic use , Disease Models, Animal
3.
Pflugers Arch ; 476(8): 1235-1247, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38856775

ABSTRACT

To assess the possible interactions between the dorsolateral periaqueductal gray matter (dlPAG) and the different domains of the nucleus ambiguus (nA), we have examined the pattern of double-staining c-Fos/FoxP2 protein immunoreactivity (c-Fos-ir/FoxP2-ir) and tyrosine hydroxylase (TH) throughout the rostrocaudal extent of nA in spontaneously breathing anaesthetised male Sprague-Dawley rats during dlPAG electrical stimulation. Activation of the dlPAG elicited a selective increase in c-Fos-ir with an ipsilateral predominance in the somatas of the loose (p < 0.05) and compact formation (p < 0.01) within the nA and confirmed the expression of FoxP2 bilaterally in all the domains within the nA. A second group of experiments was made to examine the importance of the dlPAG in modulating the laryngeal response evoked after electrical or chemical (glutamate) dlPAG stimulations. Both electrical and chemical stimulations evoked a significant decrease in laryngeal resistance (subglottal pressure) (p < 0.001) accompanied with an increase in respiratory rate together with a pressor and tachycardic response. The results of our study contribute to new data on the role of the mesencephalic neuronal circuits in the control mechanisms of subglottic pressure and laryngeal activity.


Subject(s)
Electric Stimulation , Larynx , Periaqueductal Gray , Proto-Oncogene Proteins c-fos , Rats, Sprague-Dawley , Animals , Male , Rats , Periaqueductal Gray/metabolism , Periaqueductal Gray/physiology , Electric Stimulation/methods , Proto-Oncogene Proteins c-fos/metabolism , Larynx/physiology , Larynx/metabolism , Forkhead Transcription Factors/metabolism , Tyrosine 3-Monooxygenase/metabolism , Pressure , Medulla Oblongata/metabolism , Medulla Oblongata/physiology , Glutamic Acid/metabolism
4.
Mol Pain ; 20: 17448069241254201, 2024.
Article in English | MEDLINE | ID: mdl-38670551

ABSTRACT

It has been widely recognized that electroacupuncture (EA) inducing the release of ß-endorphin represents a crucial mechanism of EA analgesia. The arcuate nucleus (ARC) in the hypothalamus is a vital component of the endogenous opioid peptide system. Serving as an integration center, the periaqueductal gray (PAG) receives neural fiber projections from the frontal cortex, insular cortex, and ARC. However, the specific mechanisms how EA facilitates the release of ß-endorphin within the ARC, eliciting analgesic effects are yet to be elucidated. In this study, we conducted in vivo and in vitro experiments by transcriptomics, microdialysis, photogenetics, chemical genetics, and calcium imaging, combined with transgenic animals. Firstly, we detected 2 Hz EA at the Zusanli (ST36) increased the level of ß-endorphin and transcriptional level of proopiomelanocortin (POMC). Our transcriptomics profiling demonstrated that 2 Hz EA at the ST36 modulates the expression of c-Fos and Jun B in ARC brain nuclear cluster, and the transcriptional regulation of 2 Hz EA mainly occur in POMC neurons by Immunofluorescence staining verification. Meaning while, 2 Hz EA specifically activated the cAMP-PKA-CREB signaling pathway in ARC which mediating the c-Fos and Jun B transcription, and 2 Hz EA analgesia is dependent on the activation of cAMP-PKA-CREB signaling pathway in ARC. In order to investigate how the ß-endorphin produced in ARC transfer to integration center PAG, transneuronal tracing technology was used to observe the 2 Hz EA promoted the neural projection from ARC to PAG compared to 100 Hz EA and sham mice. Inhibited PAGGABA neurons, the transfer of ß-endorphin from the ARC nucleus to the PAG nucleus through the ARCPOMC-PAGGABA neural circuit. Furthermore, by manipulating the excitability of POMC neurons from ARCPOMC to PAGGABA using inhibitory chemogenetics and optogenetics, we found that this inhibition significantly reduced transfer of ß-endorphin from the ARC nucleus to the PAG nucleus and the effectiveness of 2 Hz EA analgesia in neurological POMC cyclization recombination enzyme (Cre) mice and C57BL/6J mice, which indicates that the transfer of ß-endorphin depends on the activation of POMC neurons prefect from ARCPOMC to PAGGABA. These findings contribute to our understanding of the neural circuitry underlying the EA pain-relieving effects and maybe provide valuable insights for optimizing EA stimulation parameters in clinical pain treatment using the in vivo dynamic visual investigating the central analgesic mechanism.


Subject(s)
Arcuate Nucleus of Hypothalamus , Electroacupuncture , Periaqueductal Gray , Pro-Opiomelanocortin , beta-Endorphin , Animals , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Periaqueductal Gray/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Electroacupuncture/methods , beta-Endorphin/metabolism , Male , Mice, Transgenic , Mice, Inbred C57BL , Mice , Proto-Oncogene Proteins c-fos/metabolism , Neurons/metabolism
5.
BMC Med ; 22(1): 406, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304892

ABSTRACT

BACKGROUND: Physical symptoms and aversion induced by opioid withdrawal strongly affect the management of opioid addiction. YTH N6-methyladenosine (m6A) RNA binding protein 1 (YTHDF1), an m6A-binding protein, from the periaqueductal gray (PAG) reportedly contributes to morphine tolerance and hyperalgesia. However, the role of YTHDF1 in morphine withdrawal remains unclear. METHODS: A naloxone-precipitated morphine withdrawal model was established in C57/BL6 mice or transgenic mice. YTHDF1 was knocked down via adeno-associated virus transfection. Combined with the results of the single-cell RNA sequencing analysis, the changes in morphine withdrawal somatic signs and conditioned place aversion (CPA) scores were compared when YTHDF1 originating from different neurons in the ventrolateral periaqueductal gray (vlPAG) was knocked down. We further explored the role of inflammatory factors and transcription factors related to inflammatory response in morphine withdrawal. RESULTS: Our results revealed that YTHDF1 expression was upregulated in the vlPAG of mice with morphine withdrawal and that the knockdown of vlPAG YTHDF1 attenuated morphine withdrawal-related somatic signs and aversion. The levels of NF-κB and p-NF-κB were reduced after the inhibition of YTHDF1 in the vlPAG. YTHDF1 from vlPAG inhibitory neurons, rather than excitatory neurons, facilitated morphine withdrawal responses. The inhibition of YTHDF1 in vlPAG somatostatin (Sst)-expressing neurons relieved somatic signs of morphine withdrawal and aversion, whereas the knockdown of YTHDF1 in cholecystokinin (Cck)-expressing or parvalbumin (PV)-expressing neurons did not change morphine withdrawal-induced responses. The activity of c-fos + neurons, the intensity of the calcium signal, the density of dendritic spines, and the frequency of mIPSCs in the vlPAG, which were increased in mice with morphine withdrawal, were decreased with the inhibition of YTHDF1 from vlPAG inhibitory neurons or Sst-expressing neurons. Knockdown of NF-κB in Sst-expressing neurons also alleviated morphine withdrawal-induced responses. CONCLUSIONS: YTHDF1 originating from Sst-expressing neurons in the vlPAG is crucial for the modulation of morphine withdrawal responses, and the underlying mechanism might be related to the regulation of the expression and phosphorylation of NF-κB.


Subject(s)
Mice, Inbred C57BL , Morphine , Neurons , Periaqueductal Gray , RNA-Binding Proteins , Substance Withdrawal Syndrome , Animals , Substance Withdrawal Syndrome/metabolism , Periaqueductal Gray/metabolism , Mice , Morphine/pharmacology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Neurons/metabolism , Male , Mice, Transgenic , Disease Models, Animal
6.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R66-R78, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38708545

ABSTRACT

The stress-induced cardiovascular response is based on the defensive reaction in mammals. It has been shown that the sympathetic vasomotor pathway of acute psychological stress is indirectly mediated via neurons in the rostroventral medulla (RVM) from the hypothalamic stress center. In this study, direct projections to the RVM and distribution of neuroexcitatory marker c-Fos-expressed neurons were investigated during social defeat stress (SDS) in conscious rats. The experimental rat that was injected with a neural tracer, FluoroGold (FG) into the unilateral RVM, was exposed to the SDS. Double-positive neurons of both c-Fos and FG were locally distributed in the lateral/ventrolateral periaqueductal gray matter (l/vl PAG) in the midbrain. These results suggest that the neurons in the l/vl PAG contribute to the defensive reaction evoked by acute psychological stress, such as the SDS. During the SDS period, arterial pressure (AP) and heart rate (HR) showed sustained increases in the rat. Therefore, we performed chemical stimulation by excitatory amino acid microinjection within the l/vl PAG and measured cardiovascular response and sympathetic nerve activity in some anesthetized rats. The chemical stimulation of neurons in the l/vl PAG caused significant increases in arterial pressure and renal sympathetic nerve activity. Taken together, our results suggest that neurons in the l/vl PAG are a possible candidate for the cardiovascular descending pathway that modulates sympathetic vascular resistance evoked by acute psychological stress, like the SDS.NEW & NOTEWORTHY The sympathetic vasomotor pathway of an acute psychological stress-induced cardiovascular response is mediated via neurons in the RVM indirectly from the hypothalamus. In this study, we showed the relaying area of the efferent sympathetic vasomotor pathway from the hypothalamus to the RVM. The results suggested that the pressor response during psychological stress is mediated via neurons in the lateral/ventrolateral PAG to the RVM.


Subject(s)
Medulla Oblongata , Periaqueductal Gray , Social Defeat , Stress, Psychological , Vasomotor System , Animals , Stress, Psychological/physiopathology , Male , Periaqueductal Gray/metabolism , Periaqueductal Gray/physiopathology , Medulla Oblongata/physiopathology , Medulla Oblongata/metabolism , Vasomotor System/physiopathology , Rats , Heart Rate , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar , Sympathetic Nervous System/physiopathology , Rats, Sprague-Dawley , Arterial Pressure , Behavior, Animal
7.
Mol Psychiatry ; 28(4): 1703-1717, 2023 04.
Article in English | MEDLINE | ID: mdl-36782064

ABSTRACT

Vocalization is an essential medium for social signaling in birds and mammals. Periaqueductal gray (PAG) a conserved midbrain structure is believed to be responsible for innate vocalizations, but its molecular regulation remains largely unknown. Here, through a mouse forward genetic screening we identified one of the key Wnt/ß-catenin effectors TCF7L2/TCF4 controls ultrasonic vocalization (USV) production and syllable complexity during maternal deprivation and sexual encounter. Early developmental expression of TCF7L2 in PAG excitatory neurons is necessary for the complex trait, while TCF7L2 loss reduces neuronal gene expressions and synaptic transmission in PAG. TCF7L2-mediated vocal control is independent of its ß-catenin-binding domain but dependent of its DNA binding ability. Patient mutations associated with developmental disorders, including autism spectrum disorders, disrupt the transcriptional repression effect of TCF7L2, while mice carrying those mutations display severe USV impairments. Therefore, we conclude that TCF7L2 orchestrates gene expression in midbrain to control vocal production through its DNA binding but not transcription activation domain.


Subject(s)
Transcription Factor 7-Like 2 Protein , beta Catenin , Mice , Animals , beta Catenin/metabolism , Transcription Factor 7-Like 2 Protein/genetics , Transcription Factor 7-Like 2 Protein/metabolism , Periaqueductal Gray/metabolism , Signal Transduction/physiology , Mammals/genetics , Mammals/metabolism , DNA , Vocalization, Animal/physiology
8.
Headache ; 64(8): 973-982, 2024 09.
Article in English | MEDLINE | ID: mdl-38899347

ABSTRACT

OBJECTIVE: Our aim was to survey astrocyte and microglial activation across four brain regions in a mouse model of chronic migraine. BACKGROUND: Chronic migraine is a leading cause of disability, with higher rates in females. The role of central nervous system neurons and glia in migraine pathophysiology is not fully elucidated. Preclinical studies have shown abnormal glial activation in the trigeminal nucleus caudalis of male rodents. No current reports have investigated glial activation in both sexes in other important brain regions involved with the nociceptive and emotional processing of pain. METHODS: The mouse nitroglycerin model of migraine was used, and nitroglycerin (10 mg/kg) or vehicle was administered every other day for 9 days. Prior to injections on days 1, 5, and 9, cephalic allodynia was determined by periorbital von Frey hair testing. Immunofluorescent staining of astrocyte marker, glial fibrillary protein (GFAP), and microglial marker, ionized calcium binding adaptor molecule 1 (Iba1), in male and female trigeminal nucleus caudalis, periaqueductal gray, somatosensory cortex, and nucleus accumbens was completed. RESULTS: Behavioral testing demonstrated increased cephalic allodynia in nitroglycerin- versus vehicle-treated mice. An increase in the percent area covered by GFAP+ cells in the trigeminal nucleus caudalis and nucleus accumbens, but not the periaqueductal gray or somatosensory cortex, was observed in response to nitroglycerin. No significant differences were observed for Iba1 staining across brain regions. We did not detect significant sex differences in GFAP or Iba1 quantification. CONCLUSIONS: Immunohistochemical analysis suggests that, at the time point tested, immunoreactivity of GFAP+ astrocytes, but not Iba1+ microglia, changes in response to chronic migraine-associated pain. Additionally, there do not appear to be significant differences between males and females in GFAP+ or Iba1+ cells across the four brain regions analyzed.


Subject(s)
Disease Models, Animal , Migraine Disorders , Nitroglycerin , Animals , Nitroglycerin/pharmacology , Migraine Disorders/metabolism , Migraine Disorders/physiopathology , Male , Female , Mice , Hyperalgesia/physiopathology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Mice, Inbred C57BL , Somatosensory Cortex/drug effects , Somatosensory Cortex/physiopathology , Neuroglia/drug effects , Neuroglia/metabolism , Calcium-Binding Proteins/metabolism , Periaqueductal Gray/drug effects , Periaqueductal Gray/metabolism , Microglia/drug effects , Microglia/metabolism , Glial Fibrillary Acidic Protein/metabolism , Emotions/physiology , Emotions/drug effects , Microfilament Proteins/metabolism , Vasodilator Agents/pharmacology , Chronic Disease , Brain/drug effects , Brain/metabolism , Trigeminal Caudal Nucleus/drug effects , Trigeminal Caudal Nucleus/metabolism
9.
Int J Mol Sci ; 25(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39337262

ABSTRACT

Mu opioid receptors (MORs) represent a vital mechanism related to the modulation of stress-induced analgesia (SIA). Previous studies have reported on the gamma-aminobutyric acid (GABA)ergic "disinhibition" mechanisms of MORs on the descending pain modulatory pathway of SIA induced in the midbrain. However, the role of the MORs expressed in the medial prefrontal cortex (mPFC), one of the main cortical areas participating in pain modulation, in SIA remains completely unknown. In this study, we investigated the contributions of MORs expressed on glutamatergic (MORGlut) and GABAergic (MORGABA) neurons of the medial prefrontal cortex (mPFC), as well as the functional role and activity of neurons projecting from the mPFC to the periaqueductal gray (PAG) region, in male mice. We achieved this through a combination of hot-plate tests, c-fos staining, and 1 h acute restraint stress exposure tests. The results showed that our acute restraint stress protocol produced mPFC MOR-dependent SIA effects. In particular, MORGABA was found to play a major role in modulating the effects of SIA, whereas MORGlut seemed to be unconnected to the process. We also found that mPFC-PAG projections were efficiently activated and played key roles in the effects of SIA, and their activation was mediated by MORGABA to a large extent. These results indicated that the activation of mPFC MORGABA due to restraint stress was able to activate mPFC-PAG projections in a potential "disinhibition" pathway that produced analgesic effects. These findings provide a potential theoretical basis for pain treatment or drug screening targeting the mPFC.


Subject(s)
Analgesia , Prefrontal Cortex , Receptors, Opioid, mu , Restraint, Physical , Stress, Psychological , Animals , Prefrontal Cortex/metabolism , Male , Mice , Receptors, Opioid, mu/metabolism , Analgesia/methods , Stress, Psychological/metabolism , Pain/metabolism , Periaqueductal Gray/metabolism , GABAergic Neurons/metabolism
10.
J Headache Pain ; 25(1): 142, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210271

ABSTRACT

BACKGROUND: Magnetic resonance spectroscopy (MRS) studies have indicated that the imbalance between gamma-aminobutyric acid (GABA) and glutamate/glutamine (Glx) levels was the potential cause of migraine development. However, the changes in the GABA and Glx levels in patients with New daily persistent headache (NDPH) remain unclear. This study aimed to investigate the changes in GABA and Glx levels in the periaqueductal gray (PAG) and dentate nucleus (DN) in patients with NDPH using the MEGA-PRESS sequence. METHODS: Twenty-one NDPH patients and 22 age- and sex-matched healthy controls (HCs) were included and underwent a 3.0T MRI examination, using the MEGA-PRESS sequence to analyze GABA and Glx levels of PAG and DN. The correlations between these neurotransmitter levels and clinical characteristics were also analyzed. RESULTS: There were no significant differences in the GABA+/Water, GABA+/Cr, Glx/Water, and Glx/Cr levels in both PAG and DN between the two groups (all p > 0.05). Moderate-severe NDPH patients had lower levels of Glx/Water (p = 0.034) and Glx/Cr (p = 0.012) in DN than minimal-mild NDPH patients. In patients with NDPH, higher Glx/Water levels in the PAG (r=-0.471, p = 0.031, n = 21) and DN (r=-0.501, p = 0.021, n = 21) and higher Glx/Cr levels in DN (r=-0.483, p = 0.026, n = 21) were found to be correlated with lower Visual Analogue Scale scores. Additionally, a positive correlation was observed between the GABA+/Cr levels in the DN and the Generalized Anxiety Disorder-7 scores (r = 0.519, p = 0.039, n = 16). CONCLUSIONS: The results of this study indicated that the GABA and Glx levels in the PAG and DN may not be the primary contributor to the development of NDPH. The correlations between certain clinical scales and the neurotransmitter levels may be derived from the NDPH related symptoms.


Subject(s)
Cerebellar Nuclei , Glutamic Acid , Glutamine , Magnetic Resonance Spectroscopy , Periaqueductal Gray , gamma-Aminobutyric Acid , Humans , Female , Male , Glutamic Acid/metabolism , Glutamine/metabolism , Adult , gamma-Aminobutyric Acid/metabolism , Magnetic Resonance Spectroscopy/methods , Periaqueductal Gray/metabolism , Periaqueductal Gray/diagnostic imaging , Middle Aged , Cerebellar Nuclei/metabolism , Cerebellar Nuclei/diagnostic imaging , Headache Disorders/metabolism , Magnetic Resonance Imaging
11.
J Neurosci ; 42(41): 7744-7756, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36414010

ABSTRACT

The midbrain periaqueductal gray (PAG) plays a central role in pain modulation via descending pathways. Opioids and cannabinoids are thought to activate these descending pathways by relieving intrinsic GABAergic inhibition of PAG neurons which project to the rostroventromedial medulla (RVM), a process known as disinhibition. However, the PAG also receives descending extrinsic GABAergic inputs from the central nucleus of the amygdala (CeA) which are thought to inhibit PAG GABAergic interneurons. It remains unclear how opioids and cannabinoids act at these different synapses to control descending analgesic pathways. We used optogenetics, tract tracing and electrophysiology to identify the circuitry underlying opioid and cannabinoid actions within the PAG of male and female rats. It was observed that both RVM-projection and nonprojection PAG neurons received intrinsic-PAG and extrinsic-CeA synaptic inputs, which were predominantly GABAergic. Opioids acted via presynaptic µ-receptors to suppress both intrinsic and extrinsic GABAergic inputs onto all PAG neurons, although this inhibition was greater in RVM-projection neurons. By contrast, cannabinoids acted via presynaptic CB1 receptors to exclusively suppress the direct descending GABAergic input from the CeA onto RVM-projection PAG neurons. These findings indicate the CeA controls PAG output neurons which project to the RVM via parallel direct and indirect GABAergic pathways. While µ-opioids indiscriminately inhibit GABAergic inputs onto all PAG neurons, cannabinoids selectively inhibit a direct extrinsic GABAergic input from the amygdala onto PAG projection neurons. These differential actions of opioids and cannabinoids provide a flexible system to gate the descending control of analgesia from the PAG.SIGNIFICANCE STATEMENT The disinhibition hypothesis of analgesia states that opioids activate the midbrain periaqueductal gray (PAG) descending pathway by relieving the tonic inhibition of projection neurons from GABAergic interneurons. However, the PAG also receives extrinsic GABAergic inputs and is the locus of action of cannabinoid analgesics. Here, we show the relative sensitivity of GABAergic synapses to opioids and cannabinoids within the PAG depends on both the origin of presynaptic inputs and their postsynaptic targets. While opioids indiscriminately inhibit all GABAergic inputs onto all PAG neurons, cannabinoids selectively inhibit a direct extrinsic GABAergic input from the amygdala onto PAG descending projection neurons. These differential actions of opioids and cannabinoids provide a flexible system to gate PAG descending outputs.


Subject(s)
Cannabinoids , Periaqueductal Gray , Male , Female , Rats , Animals , Periaqueductal Gray/metabolism , Analgesics, Opioid/pharmacology , Analgesics, Opioid/metabolism , Cannabinoids/pharmacology , Cannabinoids/metabolism , Pain/metabolism , Medulla Oblongata/metabolism , Analgesics
12.
Mol Pharmacol ; 103(1): 1-8, 2023 01.
Article in English | MEDLINE | ID: mdl-36310031

ABSTRACT

Opioid analgesics exert their therapeutic and adverse effects by activating µ opioid receptors (MOPR); however, functional responses to MOPR activation are modulated by distinct signal transduction complexes within the brain. The ventrolateral periaqueductal gray (vlPAG) plays a critical role in modulation of nociception and analgesia, but the exact intracellular pathways associated with opioid responses in this region are not fully understood. We previously showed that knockout of the signal transduction modulator Regulator of G protein Signaling z1 (RGSz1) enhanced analgesic responses to opioids, whereas it decreased the rewarding efficacy of morphine. Here, we applied viral mediated gene transfer methodology and delivered adeno-associated virus (AAV) expressing Cre recombinase to the vlPAG of RGSz1fl\fl mice to demonstrate that downregulation of RGSz1 in this region decreases sensitivity to morphine in the place preference paradigm, under pain-free as well as neuropathic pain states. We also used retrograde viral vectors along with flippase-dependent Cre vectors to conditionally downregulate RGSz1 in vlPAG projections to the ventral tegmental area (VTA) and show that downregulation of RGSz1 prevents the development of place conditioning to low morphine doses. Consistent with the role for RGSz1 as a negative modulator of MOPR activity, RGSz1KO enhances opioid-induced cAMP inhibition in periaqueductal gray (PAG) membranes. Furthermore, using a new generation of bioluminescence resonance energy transfer (BRET) sensors, we demonstrate that RGSz1 modulates Gαz but not other Gαi family subunits and selectively impedes MOPR-mediated Gαz signaling events invoked by morphine and other opioids. Our work highlights a regional and circuit-specific role of the G protein-signaling modulator RGSz1 in morphine reward, providing insights on midbrain intracellular pathways that control addiction-related behaviors. SIGNIFICANCE STATEMENT: This study used advanced genetic mouse models to highlight the role of the signal transduction modulator named RGSz1 in responses to clinically used opioid analgesics. We show that RGSz1 controls the rewarding efficacy of opioids by actions in ventrolateral periaqueductal gray projections to the ventral tegmental area, a key component of the midbrain dopamine pathway. These studies highlight novel mechanisms by which pain-modulating structures control the rewarding efficacy of opioids.


Subject(s)
Analgesics, Opioid , Morphine , Mice , Animals , Morphine/pharmacology , Morphine/metabolism , Analgesics, Opioid/pharmacology , Analgesics, Opioid/metabolism , Periaqueductal Gray/metabolism , Signal Transduction , GTP-Binding Proteins/metabolism , Reward , Receptors, Opioid, mu/metabolism
13.
Mol Psychiatry ; 27(12): 4905-4917, 2022 12.
Article in English | MEDLINE | ID: mdl-36127430

ABSTRACT

Freezing is a conserved defensive behaviour that constitutes a major stress-coping mechanism. Decades of research have demonstrated a role of the amygdala, periaqueductal grey and hypothalamus as core actuators of the control of fear responses, including freezing. However, the role that other modulatory sites provide to this hardwired scaffold is not known. Here, we show that freezing elicited by exposure to electrical foot shocks activates laterodorsal tegmentum (LDTg) GABAergic neurons projecting to the VTA, without altering the excitability of cholinergic and glutamatergic LDTg neurons. Selective chemogenetic silencing of this inhibitory projection, but not other LDTg neuronal subtypes, dampens freezing responses but does not prevent the formation of conditioned fear memories. Conversely, optogenetic-activation of LDTg GABA terminals within the VTA drives freezing responses and elicits bradycardia, a common hallmark of freezing. Notably, this aversive information is subsequently conveyed from the VTA to the amygdala via a discrete GABAergic pathway. Hence, we unveiled a circuit mechanism linking LDTg-VTA-amygdala regions, which holds potential translational relevance for pathological freezing states such as post-traumatic stress disorders, panic attacks and social phobias.


Subject(s)
Amygdala , Periaqueductal Gray , Freezing , Periaqueductal Gray/metabolism , Amygdala/physiology , GABAergic Neurons
14.
J Neuroinflammation ; 19(1): 310, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36550542

ABSTRACT

Long-term use of opioids such as morphine has negative side effects, such as morphine analgesic tolerance and morphine-induced hyperalgesia (MIH). These side effects limit the clinical use and analgesic efficacy of morphine. Elucidation of the mechanisms and identification of feasible and effective methods or treatment targets to solve this clinical phenomenon are important. Here, we discovered that YTHDF1 and TNF receptor-associated factor 6 (TRAF6) are crucial for morphine analgesic tolerance and MIH. The m6A reader YTHDF1 positively regulated the translation of TRAF6 mRNA, and chronic morphine treatments enhanced the m6A modification of TRAF6 mRNA. TRAF6 protein expression was drastically reduced by YTHDF1 knockdown, although TRAF6 mRNA levels were unaffected. By reducing inflammatory markers such as IL-1ß, IL-6, TNF-α and NF-κB, targeted reduction of YTHDF1 or suppression of TRAF6 activity in ventrolateral periaqueductal gray (vlPAG) slows the development of morphine analgesic tolerance and MIH. Our findings provide new insights into the mechanism of morphine analgesic tolerance and MIH indicating that YTHDF1 regulates inflammatory factors such as IL-1ß, IL-6, TNF-α and NF-κB by enhancing TRAF6 protein expression.


Subject(s)
Hyperalgesia , Morphine , Rats , Animals , Humans , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Periaqueductal Gray/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Rats, Sprague-Dawley , Analgesics/pharmacology , Inflammation/metabolism , RNA-Binding Proteins/genetics
15.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R749-R762, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36154489

ABSTRACT

The complexity of neuropathic pain and its associated comorbidities, including dysautonomia, make it difficult to treat. Overlap of anatomical regions and pharmacology of sympathosensory systems in the central nervous system (CNS) provide targets for novel treatment strategies. The dorsal periaqueductal gray (dPAG) is an integral component of both the descending pain modulation system and the acute stress response and is critically involved in both analgesia and the regulation of sympathetic activity. Local manipulation of the endocannabinoid signaling system holds great promise to provide analgesia without excessive adverse effects and also influence autonomic output. Inhibition of fatty acid amide hydrolase (FAAH) increases brain concentrations of the endocannabinoid N-arachidonoylethanolamine (AEA) and reduces pain-related behaviors in neuropathic pain models. Neuropathic hyperalgesia and reduced sympathetic tone are associated with increased FAAH activity in the dPAG, which suggests the hypothesis that inhibition of FAAH in the dPAG will normalize pain sensation and autonomic function in neuropathic pain. To test this hypothesis, the effects of systemic or intra-dPAG FAAH inhibition on hyperalgesia and dysautonomia developed after spared nerve injury (SNI) were assessed in male and female rats. Administration of the FAAH inhibitor PF-3845 into the dPAG reduces hyperalgesia behavior and the decrease in sympathetic tone induced by SNI. Prior administration of the CB1 receptor antagonist AM281, attenuated the antihyperalgesic and sympathetic effects of FAAH inhibition. No sex differences were identified. These data support an integrative role for AEA/CB1 receptor signaling in the dPAG contributing to the regulation of both hyperalgesia behavior and altered sympathetic tone in neuropathic pain.


Subject(s)
Neuralgia , Primary Dysautonomias , Female , Male , Animals , Rats , Endocannabinoids/pharmacology , Hyperalgesia/drug therapy , Periaqueductal Gray/metabolism , Receptor, Cannabinoid, CB1 , Amidohydrolases/metabolism , Neuralgia/drug therapy , Polyunsaturated Alkamides/therapeutic use
16.
PLoS Biol ; 17(8): e3000417, 2019 08.
Article in English | MEDLINE | ID: mdl-31469831

ABSTRACT

Threatening sounds can elicit a series of defensive behavioral reactions in animals for survival, but the underlying neural substrates are not fully understood. Here, we demonstrate a previously unexplored neural pathway in mice that projects directly from the auditory cortex (ACx) to the lateral periaqueductal gray (lPAG) and controls noise-evoked defensive behaviors. Electrophysiological recordings showed that the lPAG could be excited by a loud noise that induced an escape-like behavior. Trans-synaptic viral tracing showed that a great number of glutamatergic neurons, rather than GABAergic neurons, in the lPAG were directly innervated by those in layer V of the ACx. Activation of this pathway by optogenetic manipulations produced a behavior in mice that mimicked the noise-evoked escape, whereas inhibition of the pathway reduced this behavior. Therefore, our newly identified descending pathway is a novel neural substrate for noise-evoked escape and is involved in controlling the threat-related behavior.


Subject(s)
Auditory Cortex/physiology , Escape Reaction/physiology , Periaqueductal Gray/metabolism , Animals , Auditory Cortex/metabolism , Auditory Perception/physiology , Behavior, Animal/physiology , Defense Mechanisms , Excitatory Amino Acids/physiology , GABAergic Neurons/physiology , Male , Mice , Mice, Inbred C57BL , Neural Pathways/physiology , Optogenetics/methods , Periaqueductal Gray/physiology , Sound
17.
Behav Pharmacol ; 33(7): 442-451, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35942845

ABSTRACT

A newly deorphanized G protein-coupled receptor, GPR171, is found to be highly expressed within the periaqueductal gray, a pain-modulating region in the brain. Our recent research has shown that a GPR171 agonist increases morphine antinociception in male mice and opioid signaling in vitro . The objective of this study was to evaluate the effects of combination treatment in females as well as whether chronic treatment can be used without exacerbating morphine-induced tolerance and withdrawal in female and male mice. Our results demonstrate that activation of GPR171 with an agonist attenuates morphine tolerance in both female and male mice on the tail-flick test, but not the hotplate test. Importantly, the GPR171 agonist in combination with morphine does not exacerbate morphine-induced tolerance and withdrawal during long-term morphine treatment. Taken together, these data suggest that the GPR171 agonist may be combined with morphine to maintain antinociception while reducing the dose of morphine and therefore reducing side effects and abuse liability. The outcome of this study is clearly an important step toward understanding the functional interactions between opioid receptors and GPR171 and developing safer therapeutics for long-term pain management.


Subject(s)
Analgesics, Opioid , Morphine , Analgesics, Opioid/pharmacology , Animals , Drug Tolerance/physiology , Female , Male , Mice , Morphine/pharmacology , Periaqueductal Gray/metabolism , Receptors, G-Protein-Coupled , Receptors, Opioid , Receptors, Opioid, mu/agonists
18.
Behav Pharmacol ; 33(2&3): 213-221, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34074811

ABSTRACT

The endocannabinoid system modulates the stress coping strategies in the dorsolateral periaqueductal grey (dlPAG). The most relevant endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG) exert inhibitory control over defensive reactions mediated by the dlPAG. However, the protective role of anandamide is limited by its lack of effect in higher concentrations. Thus, the 2-AG emerges as a complementary target for developing new anxiolytic compounds. Nevertheless, the role of 2-AG on stress responsivity may vary according to the nature of the stimulus. In this study, we verified whether the dlPAG injection of 2-AG or inhibitors of its hydrolysis induce anxiolytic-like effects in male Wistar rats exposed to behavioral models in which physical stress (mild electric shock) is a critical component, namely the contextual fear conditioning test (CFC) and the Vogel conflict test (VCT). We also investigated the contribution of cannabinoid receptor type 1 (CB1) and type 2 (CB2) in such effects. The facilitation of 2-AG signaling in the dlPAG reduced contextual fear expression and exhibited an anxiolytic-like effect in the VCT in a mechanism dependent on activation of CB1 and CB2. However, the VCT required a higher dose than CFC. Further, the monoacylglycerol inhibitors, which inhibit the hydrolysis of 2-AG, were effective only in the CFC. In conclusion, we confirmed the anti-aversive properties of 2-AG in the dlPAG through CB1 and CB2 mechanisms. However, these effects could vary according to the type of stressor and the anxiety model employed.


Subject(s)
Anti-Anxiety Agents , Endocannabinoids , Animals , Anti-Anxiety Agents/metabolism , Anti-Anxiety Agents/pharmacology , Arachidonic Acids , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Fear , Glycerides , Male , Periaqueductal Gray/metabolism , Piperidines/pharmacology , Pyrazoles/pharmacology , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/metabolism
19.
J Neurochem ; 158(5): 1151-1171, 2021 09.
Article in English | MEDLINE | ID: mdl-34287873

ABSTRACT

Individual differences in the effects of a chronic neuropathic injury on social behaviours characterize both the human experience and pre-clinical animal models. The impacts of these changes to the well-being of the individual are often underappreciated. Earlier work from our laboratory using GeneChip® microarrays identified increased cholecystokinin (CCK) gene expression in the periaqueductal gray (PAG) of rats that showed persistent changes in social interactions during a Resident-Intruder encounter following sciatic nerve chronic constriction injury (CCI). In this study, we confirmed these gene regulation patterns using RT-PCR and identified the anatomical location of the CCK-mRNA as well as the translated CCK peptides in the midbrains of rats with a CCI. We found that rats with persistent CCI-induced changes in social behaviours had increased CCK-mRNA in neurons of the ventrolateral PAG and dorsal raphe nuclei, as well as increased CCK-8 peptide expression in terminal boutons located in the lateral and ventrolateral PAG. The functional significance of these changes was explored by microinjecting small volumes of CCK-8 into the PAG of uninjured rats and observing their Resident-Intruder social interactions. Disturbances to social interactions identical to those observed in CCI rats were evoked when injection sites were located in the rostral lateral and ventrolateral PAG. We suggest that CCI-induced changes in CCK expression in these PAG regions contributes to the disruptions to social behaviours experienced by a subset of individuals with neuropathic injury.


Subject(s)
Cholecystokinin/biosynthesis , Escape Reaction/physiology , Periaqueductal Gray/metabolism , Sciatic Neuropathy/metabolism , Social Interaction , Animals , Escape Reaction/drug effects , Male , Microinjections/methods , Periaqueductal Gray/drug effects , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/psychology , Rats , Rats, Sprague-Dawley , Sciatic Neuropathy/pathology , Sciatic Neuropathy/psychology , Sincalide/administration & dosage
20.
Int J Neuropsychopharmacol ; 24(8): 666-676, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34000028

ABSTRACT

BACKGROUND: The restraint water immersion stress (RWIS) model includes both psychological and physical stimulation, which may lead to gastrointestinal disorders and cause gastric mucosal damage. The ventrolateral periaqueductal gray (VLPAG) contributes to gastrointestinal function, but whether it is involved in RWIS-induced gastric mucosal damage has not yet been reported. METHODS: The expression of glial fibrillary acidic protein, neuronal c-Fos, and phosphorylated extracellular signal regulated kinase 1/2 in the VLPAG after RWIS was assessed using western blotting and immunocytochemical staining methods. Lateral ventricle injection of astrocytic toxin L-a-aminoadipate and treatment with extracellular signal-regulated kinase (ERK)1/2 signaling pathway inhibitor PD98059 were further used to study protein expression and distribution in the VLPAG after RWIS. RESULTS: The expression of c-Fos, glial fibrillary acidic protein, and phosphorylated extracellular signal regulated kinase 1/2 in the VLPAG significantly increased following RWIS and peaked at 1 hour after RWIS. Lateral ventricle injection of the astrocytic toxin L-a-aminoadipate significantly alleviated gastric mucosal injury and decreased the activation of neurons and astrocytes. Treatment with the ERK1/2 signaling pathway inhibitor PD98059 obviously suppressed gastric mucosal damage as well as the RWIS-induced activation of neurons and astrocytes in the VLPAG. CONCLUSIONS: These results suggested that activation of VLPAG neurons and astrocytes induced by RWIS through the ERK1/2 signaling pathway may play a critical role in RWIS-induced gastric mucosa damage.


Subject(s)
Astrocytes/physiology , Gastric Mucosa/physiopathology , MAP Kinase Signaling System/physiology , Neurons/physiology , Periaqueductal Gray/metabolism , Periaqueductal Gray/physiopathology , Protein Kinase Inhibitors/pharmacology , Stomach Diseases , Stress, Psychological , Animals , Astrocytes/drug effects , Gastric Mucosa/drug effects , MAP Kinase Signaling System/drug effects , Male , Neurons/drug effects , Periaqueductal Gray/drug effects , Rats , Rats, Wistar , Restraint, Physical , Stomach Diseases/etiology , Stomach Diseases/metabolism , Stomach Diseases/physiopathology , Stress, Psychological/complications , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL