Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Plant Dis ; 107(2): 393-400, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36089692

ABSTRACT

There is a limited number of chemical control agents for managing Phytophthora root and collar rot diseases of avocado internationally; of these, phosphite is one of the most effective. To determine whether prolonged phosphite use in New Zealand avocado orchards has led to decreased sensitivity of Phytophthora cinnamomi to phosphite, 57 isolates were collected from phosphite-treated and -untreated avocado orchards and screened for tolerance using a mycelial growth inhibition assay. The inhibitory effect of phosphite on mycelial growth was tested in vitro using six concentrations of phosphite. Based on changes in mycelial growth using optical density measurements to calculate the effective concentration to reduce growth by 50% (EC50) estimates, three phosphite-susceptible (EC50 range = 18.71 to 29.26 µg/ml) and three tolerant (EC50 range = 81.85 to 123.89 µg/ml) isolates were selected. The effects of phosphite on the colonization of lupin (Lupinus angustifolius) seedling roots and sporangia and zoospore production of three susceptible and three tolerant isolates were determined. The three tolerant isolates colonized lupin roots more extensively than the three susceptible isolates in the presence of phosphite at 5 and 10 g/liter. The tolerant isolates were able to asymptomatically colonize further above the lesion margin in the lupin treated with phosphite at 5 g/liter relative to the phosphite-susceptible isolates but no isolates were completely resistant to phosphite. The tolerant isolates produced more sporangia and, consequently, zoospores in the presence of phosphite than the susceptible isolates. The detection of phosphite tolerance by P. cinnamomi in planta and in vivo is concerning for the future efficacy of phosphite to manage Phytophthora diseases.


Subject(s)
Persea , Phosphites , Phytophthora , Phytophthora/physiology , Phosphites/pharmacology , New Zealand
2.
Plant Dis ; 107(5): 1602-1608, 2023 May.
Article in English | MEDLINE | ID: mdl-36415890

ABSTRACT

Phytophthora crown rot (PhCR) and leather rot (LR) caused by Phytophthora spp. are major threats to strawberry production worldwide. In the United States, these diseases are mainly caused by Phytophthora cactorum; however, P. nicotianae has also been recently reported causing PhCR. Growers have relied on three different chemical products (i.e., mefenoxam and phosphites for PhCR and LR, and azoxystrobin for LR). Because resistance to mefenoxam and azoxystrobin has been reported, this study aimed to assess the in vitro sensitivity of Phytophthora spp. isolates from strawberry to phosphites and investigate its efficacy on in vivo assays. In vitro sensitivity of P. cactorum (n = 128) and P. nicotianae (n = 24) isolates collected from 1997 to 2018 was assessed for phosphite at 10, 50, 100, 150, and 300 µg/ml. Regardless of the Phytophthora sp. and isolation organ, most of the isolates (75% for P. cactorum and 54.2% for P. nicotianae) had effective concentration that inhibits pathogen growth by 50% (EC50) values ranging from 50 to 100 µg/ml. In vivo tests with strawberry fruit and plants revealed that commercial formulations of phosphite applied at the highest field rate controlled P. cactorum isolates but failed to control PhCR and LR caused by some isolates of P. nicotianae. In this study, EC50 results from in vitro assay did not truly translate the efficacy of phosphites on controlling LR and PhCR caused by P. cactorum and P. nicotianae. Our findings support the hypothesis that the product acts in a dual way: direct on the pathogen and stimulating the plant immune system. Moreover, this has important implications for disease management, highlighting the importance of a correct diagnosis before phosphite recommendations, because its efficacy varies within Phytophthora spp.


Subject(s)
Fragaria , Phosphites , Phytophthora , Phosphites/pharmacology , Plant Diseases/prevention & control , Strobilurins/pharmacology
3.
Plant J ; 105(4): 924-941, 2021 02.
Article in English | MEDLINE | ID: mdl-33184936

ABSTRACT

Phosphorus absorbed in the form of phosphate (H2 PO4- ) is an essential but limiting macronutrient for plant growth and agricultural productivity. A comprehensive understanding of how plants respond to phosphate starvation is essential for the development of more phosphate-efficient crops. Here we employed label-free proteomics and phosphoproteomics to quantify protein-level responses to 48 h of phosphate versus phosphite (H2 PO3- ) resupply to phosphate-deprived Arabidopsis thaliana suspension cells. Phosphite is similarly sensed, taken up and transported by plant cells as phosphate, but cannot be metabolized or used as a nutrient. Phosphite is thus a useful tool for differentiating between non-specific processes related to phosphate sensing and transport and specific responses to phosphorus nutrition. We found that responses to phosphate versus phosphite resupply occurred mainly at the level of protein phosphorylation, complemented by limited changes in protein abundance, primarily in protein translation, phosphate transport and scavenging, and central metabolism proteins. Altered phosphorylation of proteins involved in core processes such as translation, RNA splicing and kinase signaling was especially important. We also found differential phosphorylation in response to phosphate and phosphite in 69 proteins, including splicing factors, translation factors, the PHT1;4 phosphate transporter and the HAT1 histone acetyltransferase - potential phospho-switches signaling changes in phosphorus nutrition. Our study illuminates several new aspects of the phosphate starvation response and identifies important targets for further investigation and potential crop improvement.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Phosphates/metabolism , Phosphites/metabolism , Phosphoproteins/metabolism , Proteome/metabolism , Arabidopsis/cytology , Arabidopsis/drug effects , Biological Transport , Carbon/metabolism , Cell Respiration , Cells, Cultured , Phosphates/pharmacology , Phosphites/pharmacology , Phosphorylation , Proteome/drug effects , Proteomics
4.
Proc Natl Acad Sci U S A ; 115(29): E6946-E6955, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29866830

ABSTRACT

Weeds, which have been the bane of agriculture since the beginning of civilization, are managed manually, mechanically, and, more recently, by chemicals. However, chemical control options are rapidly shrinking due to the recent rise in the number of herbicide-resistant weeds in crop fields, with few alternatives on the horizon. Therefore, there is an urgent need for alternative weed suppression systems to sustain crop productivity while reducing our dependence on herbicides and tillage. Such a development will also allay some of the negative perceptions associated with the use of herbicide-resistance genes and heavy dependence on herbicides. Transgenic plants expressing the bacterial phosphite dehydrogenase (ptxD) gene gain an ability to convert phosphite (Phi) into orthophosphate [Pi, the metabolizable form of phosphorus (P)]. Such plants allow for a selective fertilization scheme, based on Phi as the sole source of P for the crop, while offering an effective alternative for suppressing weed growth. Here, we show that, when P is supplied in the form of Phi, ptxD-expressing cotton (Gossypium hirsutum L.) plants outcompete, in both artificial substrates and natural soils from agricultural fields, three different monocot and dicot weed species intentionally introduced in the experiments, as well as weeds naturally present in the tested soils. Importantly, the ptxD/Phi system proved highly efficacious in inhibiting the growth of glyphosate-resistant Palmer amaranth. With over 250 weed species resistant to currently available herbicides, ptxD-transgenic plants fertilized with Phi could provide an effective alternative to suppressing the growth of these weeds while providing adequate nutrition to the crop.


Subject(s)
Bacterial Proteins , Fertilizers , Gene Expression , Gossypium , Phosphites/pharmacology , Plants, Genetically Modified , Transcription Factors , Weed Control/methods , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Gossypium/enzymology , Gossypium/genetics , Gossypium/growth & development , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Transcription Factors/biosynthesis , Transcription Factors/genetics
5.
Ecotoxicol Environ Saf ; 210: 111873, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33418157

ABSTRACT

Food availability represents a major worldwide concern due to population growth, increased demand, and climate change. Therefore, it is imperative to identify compounds that can improve crop performance. Plant biostimulants have gained prominence because of their potentials to increase germination, productivity and quality of a wide range of horticultural and agronomic crops. Phosphite (Phi), an analog of orthophosphate, is an emerging biostimulant used in horticulture and agronomy. The aim of this study was to uncover the molecular mechanisms through which Phi acts as a biostimulant with potential effects of overall plant growth. Field and greenhouse experiments, using 4 potato cultivars, showed that following Phi applications, plant performance, including several physio-biochemical traits, crop productivity, and quality traits, were significantly improved. RNA sequencing of control and Phi-treated plants of cultivar Xingjia No. 2, at 0 h, 6 h, 24 h, 48 h, 72 h and 96 h after the Phi application for 24 h revealed extensive changes in the gene expression profiles. A total of 2856 differentially expressed genes were identified, suggesting that multiple pathways of primary and secondary metabolism, such as flavonoids biosynthesis, starch and sucrose metabolism, and phenylpropanoid biosynthesis, were strongly influenced by foliar applications of Phi. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses associated with defense responses revealed significant effects of Phi on a plethora of defense mechanisms. These results suggest that Phi acted as a biostimulant by priming the plants, that was, by triggering dynamic changes in gene expression and modulating metabolic fluxes in a way that allowed plants to perform better. Therefore, Phi usage has the potential to improve crop yield and health, alleviating the challenges posed by the need of feeding a growing world population, while minimizing the agricultural impact on human health and environment.


Subject(s)
Phosphites/pharmacology , Solanum tuberosum/drug effects , Carbohydrate Metabolism/drug effects , Solanum tuberosum/growth & development , Solanum tuberosum/metabolism , Stress, Physiological/drug effects , Transcriptome/drug effects
6.
Pestic Biochem Physiol ; 172: 104757, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33518050

ABSTRACT

Although phosphite (Phi)-based fertilizers are used in large quantities in agriculture, the use of Phi-based fungicides against soybean root rot caused by Phytophthora sojae are limited. While, their low toxicity are of high ecological and economic focus. Limited attention has been paid to Phi translocation efficiency in soybeans and the efficacy of Phi as a fungicide against P. sojae. In this study, we evaluated the efficiency of Phi translocation in the Williams soybean cultivar by determining the Phi concentrations in roots, stems, and leaves using high-performance ion chromatography after the application of Phi to the roots. Phi was translocated from roots to leaves within 1 h and its concentration increased significantly in leaves within 36 h after Phi application. Results of an in vitro growth inhibition assay and an in vivo infection assay showed that Phi inhibited P. sojae. Additionally, we examined the activation of the salicylic acid (SA) and ethylene (ET) defense pathways by Phi. The expression of SA and ET pathway-related genes was upregulated in most soybean tissues after Phi application. Our results provide evidence that Phi translocation suppresses root rot caused by P. sojae in soybean.


Subject(s)
Phosphites , Phytophthora , Gene Expression Regulation, Plant , Phosphites/pharmacology , Phytophthora/metabolism , Plant Diseases , Plant Proteins/genetics , Glycine max/metabolism
7.
Plant Dis ; 105(12): 3835-3847, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34270911

ABSTRACT

Phytophthora root rot, caused by Phytophthora cactorum, is an economically important disease on young apple trees. Limited information is available on the effect of different phosphonate application methods and dosages on disease control, fruit and root phosphite concentrations, and soil and root pathogen inoculum levels. Evaluation of phosphonate treatments in three apple orchard trials (two in the Grabouw and one in the Koue Bokkeveld region) showed that foliar sprays (ammonium or potassium phosphonate), trunk sprays and trunk paints, were equally effective at increasing trunk diameter in one trial and yield in a second trial over a 25-month period. Foliar ammonium and potassium phosphonate sprays (12 g of phosphorous acid/tree), and two different dosages of the ammonium phosphonate sprays (∼4.8 g or 12 g of phosphorous acid/tree) were all equally effective at improving tree growth. The addition of a bark penetrant (polyether-polymethylsiloxane-copolymer) to trunk sprays did not improve the activity of trunk sprays. The low dosage ammonium phosphonate foliar spray (∼4.8 g a.i./tree) was the only treatment that, in general, yielded significantly lower root phosphite concentrations than the other phosphonate treatments. Root phosphite concentrations were significantly positively correlated (P < 0.0001) with an increase in trunk diameter and negatively (P < 0.0001) with P. cactorum root DNA quantities. Phosphite fruit residues were <31 ppm for all treatments, with the trunk paint treatment (80 g of phosphorous acid/tree applied annually) yielding significantly lower residues than the higher dosage foliar sprays (∼12 g a.i./tree). Twenty-one months posttreatment, most of the phosphonate treatments in all of the trials similarly significantly reduced P. cactorum DNA quantities estimated directly from roots, but not from soil based on soil baiting DNA analysis. Pathogen quantities in fine feeder roots did not differ significantly from those in higher-order roots (<5 mm diameter). P. cactorum DNA quantities estimated using DNA quantification directly from roots were significantly correlated (P < 0.0001) with those obtained through root leaf baiting DNA analysis and, to a lesser extent, with soil leaf baiting DNA quantities (P = 0.025).


Subject(s)
Malus , Organophosphonates , Phosphites , Phytophthora , Phosphites/pharmacology , Plant Diseases/prevention & control
8.
Physiol Plant ; 168(2): 456-472, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31600428

ABSTRACT

Soybean is the most widely grown oilseed in the world. It is an important source of protein and oil which are derived from its seeds. Drought stress is a major constraint to soybean yields. Finding alternative methods to mitigate the water stress for soybean is useful to maintain adequate crop yields. The aim of this study was to evaluate the morpho-physiological, biochemical and metabolic changes in soybean plants in two ontogenetic stages, under exposure to water deficit and treatment with zinc sulphate (ZS), potassium phosphite (PP) or hydrogen sulphide (HS). We carried out two independent experiments in the V4 and R1 development stages consisting of the following treatments: well-watered control (WW, 100% maximum water holding capacity, MWHC), water deficit (WD, 50% MWHC), PP + WW, PP + WD, HS + WW, HS + WD, ZS + WW and ZS + WD. The experimental design consisted of randomized blocks with eight treatments with five replicates. Morphological, physiological and metabolic analyses were performed 8 days after the start of the treatments for both experiments. We identified two tolerance mechanisms acting in response to compound application during water stress: the first involved the upregulation of antioxidant enzyme activity and the second involved the accumulation of soluble sugars, free amino acids and proline to facilitate osmotic adjustment. Both mechanisms are related to the maintenance of the photosynthetic parameters and cell membrane integrity. This report suggests the potential agricultural use of these compounds to mitigate drought effects in soybean plants.


Subject(s)
Glycine max/drug effects , Hydrogen Sulfide/pharmacology , Phosphites/pharmacology , Potassium Compounds/pharmacology , Stress, Physiological , Zinc Sulfate/pharmacology , Droughts , Plant Leaves , Glycine max/physiology , Water
9.
Anal Bioanal Chem ; 412(19): 4505-4518, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32535801

ABSTRACT

The inhibiting effect of the secondary phosphite antioxidant degradation product bis(2,4-di-tert-butylphenyl)phosphate (bDtBPP) on cell growth is well-known. The present study describes structurally related compounds which are likely to be formed from similar widely used phosphite antioxidants used in materials for the manufacturing of single-use (SU) equipment. Two potential candidates of such compounds-3,3',5,5'-tetra-tert-butyl-2,2'-dihydroxybiphenylphosphate (TtBBP) and bis(p-nonylphenyl)phosphate (bNPP)-were identified by chromatography and mass spectrometry followed by synthesis and X-ray structure elucidation. Additionally, the formation of TtBBP was confirmed in an analytical degradation study and its migration from SU bioprocessing material was estimated. The cytotoxicity evaluation by means of cell culture spiking experiments and flow cytometry analysis revealed that' even if cell growth was inhibited by all the compounds to some extent, bDtBPP showed the most severe effect and stoods out from the other two degradants investigated. Graphical abstract.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Cell Proliferation/drug effects , Phosphites/chemistry , Phosphites/pharmacology , Animals , CHO Cells , Cricetulus , HEK293 Cells , Humans , Models, Molecular , Polyenes/chemistry , Polyenes/pharmacology
10.
Ecotoxicol Environ Saf ; 190: 110048, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31837570

ABSTRACT

Phosphite (Phi), an analog of phosphate (Pi) anion, is emerging as a potential biostimulator, fungicide and insecticide. Here, we reported that Phi also significantly enhanced thermotolerance in potatoes under heat stress. Potato plants with and without Phi pretreatment were exposed to heat stress and their heat tolerance was examined by assessing the morphological characteristics, photosynthetic pigment content, photosystem II (PS II) efficiency, levels of oxidative stress, and level of DNA damage. In addition, RNA-sequencing (RNA-Seq) was adopted to investigate the roles of Phi signals and the underlying heat resistance mechanism. RNA-Seq revealed that Phi orchestrated plant immune responses against heat stress by reprograming global gene expressions. Results from physiological data combined with RNA-Seq suggested that the supply of Phi not only was essential for the better plant performance, but also improved thermotolerance of the plants by alleviating oxidative stress and DNA damage, and improved biosynthesis of osmolytes and defense metabolites when exposed to unfavorable thermal conditions. This is the first study to explore the role of Phi in thermotolerance in plants, and the work can be applied to other crops under the challenging environment.


Subject(s)
Phosphites/pharmacology , Solanum tuberosum/drug effects , Thermotolerance/drug effects , DNA Damage , Heat-Shock Response/drug effects , Oxidative Stress , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , RNA-Seq , Seedlings/drug effects , Seedlings/genetics , Seedlings/immunology , Seedlings/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Solanum tuberosum/metabolism
11.
Plant Dis ; 104(11): 3026-3032, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32830998

ABSTRACT

Currently available fungicides against potato late blight are effective but there are concerns about the sustainability of frequent applications and the risks of fungicide resistance. Therefore, we investigated how potassium phosphite can be integrated into late blight control programs with reduced fungicides in field trials. Phosphite was somewhat less effective than the conventional fungicides at suppressing late blight in the foliage, and the tubers contained less starch. However, when we reduced the amount of phosphite and combined it with reduced amounts of conventional fungicides, we observed no differences in disease suppression, total yields, and tuber starch contents compared with the full treatments with conventional fungicides. The amount of phosphite detected in the harvested tubers was linearly associated with the amount of phosphite applied to the foliage. Our analyses indicate that phosphite could replace some fungicides without exceeding the current European Union standards for the maximum residue levels in potato tubers. No phosphite was detected in the starch from the tubers. In 1 of 2 years, early blight (caused by Alternaria solani) was less severe in the phosphite treatments than in the treatments without phosphite. The integration of phosphite into current treatment strategies would reduce the dependence on conventional fungicides.


Subject(s)
Phosphites , Phytophthora infestans , Solanum tuberosum , Phosphites/pharmacology , Plant Diseases , Starch
12.
Plant J ; 93(5): 894-904, 2018 03.
Article in English | MEDLINE | ID: mdl-29315949

ABSTRACT

Phosphite (Phi) is used commercially to manage diseases mainly caused by oomycetes, primarily due to its low cost compared with other fungicides and its persistent control of oomycetous pathogens. We explored the use of Phi in controlling the fungal pathogens Puccinia emaculata and Phakopsora pachyrhizi, the causal agents of switchgrass rust and Asian soybean rust, respectively. Phi primes host defenses and efficiently inhibits the growth of P. emaculata, P. pachyrhizi and several other fungal pathogens tested. To understand these Phi-mediated effects, a detailed molecular analysis was undertaken in both the host and the pathogen. Transcriptomic studies in switchgrass revealed that Phi activates plant defense signaling as early as 1 h after application by increasing the expression of several cytoplasmic and membrane receptor-like kinases and defense-related genes within 24 h of application. Unlike in oomycetes, RNA sequencing of P. emaculata and P. pachyrhizi did not exhibit Phi-mediated retardation of cell wall biosynthesis. The genes with reduced expression in either or both rust fungi belonged to functional categories such as ribosomal protein, actin, RNA-dependent RNA polymerase, and aldehyde dehydrogenase. A few P. emaculata genes that had reduced expression upon Phi treatment were further characterized. Application of double-stranded RNAs specific to P. emaculata genes encoding glutamate N-acetyltransferase and cystathionine gamma-synthase to switchgrass leaves resulted in reduced disease severity upon P. emaculata inoculation, suggesting their role in pathogen survival and/or pathogenesis.


Subject(s)
Basidiomycota/drug effects , Basidiomycota/genetics , Panicum/microbiology , Phosphites/pharmacology , Plant Diseases/microbiology , Basidiomycota/pathogenicity , Disease Resistance , Fungal Proteins/genetics , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Panicum/drug effects , Panicum/metabolism , Phakopsora pachyrhizi/drug effects , Phakopsora pachyrhizi/genetics , Phakopsora pachyrhizi/pathogenicity , Plant Leaves/microbiology , Reactive Oxygen Species/metabolism , Glycine max/drug effects , Glycine max/metabolism , Glycine max/microbiology
13.
Pestic Biochem Physiol ; 152: 122-130, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30497702

ABSTRACT

Phosphite (Phi)-based fungicides, such as the commercial product Phostrol™, are widely used in potato late blight control. However, the Phi translocation efficiency and the efficacy against pathogen are less discussed. In this study, the Phi concentration were quantified by high performance ion chromatography (HPIC) and the Phi translocation efficiency in potato tissues was evaluated using potato cultivar Russet Burbank with foliar application of the Phostrol solution both under greenhouse and field conditions. In the greenhouse trials, it was found that Phi was translocated from leaves to roots within 3 h and its concentration was significantly increased in the roots 24 h after the Phostrol application. In the field trials, the application rate of Phostrol affected the Phi translocation in potato tubers. To assess the efficacy of Phi against P. infestans, both the inhibition and infection tests were carried out. In the inhibition tests, three most common strains of P. infestans in Canada (US-8, US-23 and US-24) were inoculated on pea agar containing different levels of Phi. In the infection tests, both of detached leaves and whole tubers that received Phi were infected by the three strains of P. infestans. The in vitro tests indicated that the US-8 strain is the most tolerant whereas the US-23 strain is the most sensitive to Phi. Also, the in vivo tests demonstrated the dose-dependent translocation of Phi in potato leaves and tubers decreased the severity of infection by P. infestans. Moreover, potential defense mechanisms related to salicylic acid (SA) and jasmonic acid (JA) pathways that might be activated by Phi were also explored. Overall, the results of the study provided evidences that high Phi translocation efficiency encouraged late blight suppression in potato production.


Subject(s)
Fungicides, Industrial/pharmacology , Phosphites/pharmacology , Phytophthora infestans , Plant Diseases/prevention & control , Solanum tuberosum , Gene Expression Regulation, Plant/drug effects , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Solanum tuberosum/drug effects , Solanum tuberosum/metabolism , Solanum tuberosum/microbiology
14.
Plant Mol Biol ; 95(6): 567-577, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29032395

ABSTRACT

KEY MESSAGE: This report demonstrates the usefulness of ptxD/phosphite as a selection system that not only provides a highly efficient and simple means to generate transgenic cotton plants, but also helps address many of the concerns related to the use of antibiotic and herbicide resistance genes in the production of transgenic crops. Two of the most popular dominant selectable marker systems for plant transformation are based on either antibiotic or herbicide resistance genes. Due to concerns regarding their safety and in order to stack multiple traits in a single plant, there is a need for alternative selectable marker genes. The ptxD gene, derived from Pseudomonas stutzeri WM88, that confers to cells the ability to convert phosphite (Phi) into orthophosphate (Pi) offers an alternative selectable marker gene as demonstrated for tobacco and maize. Here, we show that the ptxD gene in combination with a protocol based on selection medium containing Phi, as the sole source of phosphorus (P), can serve as an effective and efficient system to select for transformed cells and generate transgenic cotton plants. Fluorescence microscopy examination of the cultures under selection and molecular analyses on the regenerated plants demonstrate the efficacy of the system in recovering cotton transformants following Agrobacterium-mediated transformation. Under the ptxD/Phi selection, an average of 3.43 transgenic events per 100 infected explants were recovered as opposed to only 0.41% recovery when bar/phosphinothricin (PPT) selection was used. The event recovery rates for nptII/kanamycin and hpt/hygromycin systems were 2.88 and 2.47%, respectively. Molecular analysis on regenerated events showed a selection efficiency of ~ 97% under the ptxD/Phi system. Thus, ptxD/Phi has proven to be a very efficient, positive selection system for the generation of transgenic cotton plants with equal or higher transformation efficiencies compared to the commonly used, negative selection systems.


Subject(s)
Genes, Bacterial , Gossypium/genetics , Phosphites/pharmacology , Gossypium/drug effects , Gossypium/growth & development , Plants, Genetically Modified , Transformation, Genetic/drug effects , Transgenes
15.
Fungal Genet Biol ; 106: 51-60, 2017 09.
Article in English | MEDLINE | ID: mdl-28694096

ABSTRACT

Zymoseptoria tritici causes Septoria leaf blotch of wheat. The prevailing paradigm of the Z. tritici-wheat interaction assumes fungal ingress through stomata within 24-48h, followed by days of symptomless infection. This is extrapolated from studies testing the mode of fungal ingress under optimal infection conditions. Here, we explicitly assess the timing of entry, using GFP-tagged Z. tritici. We show that early entry is comparatively rare, and extended epiphytic growth possible. We test the hypotheses that our data diverge from earlier studies due to: i. random ingress of Z. tritici into the leaf, with some early entry events; ii. previous reliance upon fungal stains, combined with poor attachment of Z. tritici to the leaf, leading to increased likelihood of observing internal versus external growth, compared to using GFP; iii. use of exceptionally high humidity to promote entry in previous studies. We combine computer simulation of leaf-surface growth with thousands of in planta observations to demonstrate that while spores germinate rapidly on the leaf, over 95% of fungi remain epiphytic, growing randomly over the leaf for ten days or more. We show that epiphytic fungi are easily detached from leaves by rinsing and that humidity promotes epiphytic growth, increasing infection rates. Together, these results explain why epiphytic growth has been dismissed and early ingress assumed. The prolonged epiphytic phase should inform studies of pathogenicity and virulence mutants, disease control strategies, and interpretation of the observed low in planta growth, metabolic quiescence and evasion of plant defences by Zymoseptoria during symptomless infection.


Subject(s)
Ascomycota/growth & development , Ascomycota/pathogenicity , Humidity , Plant Diseases/microbiology , Plant Leaves/microbiology , Triticum/microbiology , Analysis of Variance , Ascomycota/drug effects , Ascomycota/isolation & purification , Benzimidazoles/pharmacology , Carbamates/pharmacology , Fungicides, Industrial/pharmacology , Phosphites/pharmacology , Plant Diseases/prevention & control , Spores, Fungal/drug effects , Spores, Fungal/physiology , Time Factors
16.
BMC Complement Altern Med ; 17(1): 295, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28583179

ABSTRACT

BACKGROUND: Cucurbitacins are mostly found in the members of the family Cucurbitaceae and are responsible for the bitter taste of cucumber. Pharmacological activities such as anti-bacterial and anti-tumor effects have been attributed to these structurally divers triterpens. The aim of this study was to investigate the effect of potassium phosphite (KPhi) and chitosan on Cucurbitacin E (CuE) concentration in different tissues of Cucumis sativus. The antibacterial effect of plant ethanolic extracts was also examined against E.coli PTCC 1399 and Pseudomonas aeruginosa PTCC 1430 bacterial strains. METHODS: After emergence of secondary leaves, cucumber plants were divided into 4 groups (each group consisted of 6 pots and each pot contained one plant) and different treatments performed as follows: group1. Leaves were sprayed with distilled water (Control), group 2. The leaves were solely treated with potassium phosphite (KPhi), group 3. Leaves were solely sprayed with chitosan (Chitosan), group 4. Leaves were treated with KPhi and chitosan (KPhi + chitosan). The KPhi (2 g L-1) and chitosan (0.2 g L-1) were applied twice every 12 h for one day. Fruits, roots and leaves were harvested 24 h later. The ethanolic extract of plant organs was used for determination of CuE concentration using HPLC approach. The antimicrobial activity was evaluated by the agar well diffusion method. The experiments were arranged in a completely randomized design (CRD) and performed in six biological replications for each treatment. Analysis of variance was performed by one-way ANOVA and Dunnette multiple comparison using SPSS. RESULTS: The highest level of CuE was recorded in fruit (2.2 g L-1) of plants under concomitant applications of KPhi and chitosan. Result of antibacterial activity evaluation showed that under concomitant treatments of KPhi and chitosan, fruit extract exhibited the highest potential for activity against E. coli PTCC 1399 (with mean zone of inhibition equal to 36 mm) and Pseudomonas aeruginosa PTCC 1430 (with mean zone of inhibition equal to 33 mm). CONCLUSIONS: KPhi and chitosan can induce production of CuE compound and increase antibacterial potential of cucumber plant extract. The application of KPhi and chitosan may be considered as promising prospect in the biotechnological production of CuE.


Subject(s)
Chitosan/pharmacology , Cucumis sativus/chemistry , Cucumis sativus/drug effects , Phosphites/pharmacology , Plant Extracts/analysis , Plant Extracts/pharmacology , Potassium Compounds/pharmacology , Triterpenes/analysis , Triterpenes/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Fruit/chemistry , Fruit/drug effects , Fruit/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development
17.
Physiol Plant ; 158(2): 124-34, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26968132

ABSTRACT

Phytophthora plant pathogens cause tremendous damage in planted and natural systems worldwide. Phosphite is one of the only effective chemicals to control broad-scale Phytophthora disease. Little work has been done on the phytotoxic effects of phosphite application on plant communities especially in combination with plant physiological impacts. Here, we tested the phytotoxic impact of phosphite applied as foliar spray at 0, 12, 24 and 48 kg a.i. ha(-1) . Eighteen-month-old saplings of 13 conifer and angiosperm species native to New Zealand, and two exotic coniferous species were treated and the development of necrotic tissue and chlorophyll-a-fluorescence parameters (optimal quantum yield, Fv /Fm ; effective quantum yield of photosystem II, ΦPSII ) were assessed. In addition, stomatal conductance (gs ) was measured on a subset of six species. Significant necrosis assessed by digital image analysis occurred in only three species: in the lauraceous canopy tree Beilschmiedia tawa (8-14%) and the understory shrub Dodonaea viscosa (5-7%) across phosphite concentrations and solely at the highest concentration in the myrtaceous pioneer shrub Leptospermum scoparium (66%). In non-necrotic tissue, Fv /Fm , ΦPSII and gs remained unaffected by the phosphite treatment. Overall, our findings suggest minor phytotoxic effects resulting from foliar phosphite application across diverse taxa and regardless of concentration. This study supports the large-scale use of phosphite as a management tool to control plant diseases caused by Phytophthora pathogens in plantations and natural ecosystems. Long-term studies are required to ascertain potential ecological impacts of repeated phosphite applications.


Subject(s)
Magnoliopsida/drug effects , Phosphites/pharmacology , Plant Diseases/prevention & control , Tracheophyta/drug effects , Chlorophyll/metabolism , Chlorophyll A , Fluorescence , Magnoliopsida/physiology , Phosphites/adverse effects , Photosystem II Protein Complex/metabolism , Plant Stomata/drug effects , Plant Stomata/physiology , Plant Transpiration , Tracheophyta/physiology , Trees
18.
J Exp Bot ; 66(9): 2501-14, 2015 May.
Article in English | MEDLINE | ID: mdl-25697796

ABSTRACT

Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the 'PHO regulon' in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate.


Subject(s)
Arabidopsis/metabolism , Phosphates/metabolism , Phosphites/pharmacology , Anthocyanins/metabolism , Arabidopsis/drug effects , Arabidopsis/growth & development , Biological Transport , Gene Expression Regulation, Plant/drug effects , Kinetics , Signal Transduction
19.
Commun Agric Appl Biol Sci ; 80(3): 445-51, 2015.
Article in English | MEDLINE | ID: mdl-27141741

ABSTRACT

Fifteen experimental trials were carried out under greenhouse conditions to evaluate the efficacy of preventative treatments based on phosphite salts on the following pathosystems: tomato/Phytophthora nicotianae, zucchini/P. capsici, lettuce/Fusarium oxysporum f.sp. Iactucae, rocket/Fusarium oxysporum f. sp. raphani, wild rocket/Plectosphaerella cucumerina and basii/Peronospora belbahrii. The possible use of phosphite salts in nursery cultivation systems is considered in comparison with chemical fungicides. Phosphites-based products reduced 66-88% and 56-72% the severity of Phytophthora crown root rot of tomato and zucchini, respectively. Four application with the phosphites-based products provided a disease reduction of Fusarium wilt of lettuce from of 33 to 83% and of 45 to 68% on cultivated rocket. These products provide the most constant results when applied in three treatments against Plectosphaerella cucumerina with a disease reduction ranging between 34%-82%. Phosphite-based products showed results statistically similar to mefenoxam when tested against downy mildew of basil. Their contribution to disease management can be very interesting, because they can complement other control measures.


Subject(s)
Crops, Agricultural/microbiology , Fungicides, Industrial/pharmacology , Phosphites/pharmacology , Plant Diseases/prevention & control , Vegetables/microbiology , Fusarium/drug effects , Fusarium/growth & development , Phytophthora/drug effects , Phytophthora/growth & development , Plant Diseases/microbiology , Soil Microbiology
20.
BMC Plant Biol ; 14: 254, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25270759

ABSTRACT

BACKGROUND: Potato late blight caused by the oomycete pathogen Phytophthora infestans can lead to immense yield loss. We investigated the transcriptome of Solanum tubersoum (cv. Desiree) and characterized the secretome by quantitative proteomics after foliar application of the protective agent phosphite. We also studied the distribution of phosphite in planta after application and tested transgenic potato lines with impaired in salicylic and jasmonic acid signaling. RESULTS: Phosphite had a rapid and transient effect on the transcriptome, with a clear response 3 h after treatment. Strikingly this effect lasted less than 24 h, whereas protection was observed throughout all time points tested. In contrast, 67 secretome proteins predominantly associated with cell-wall processes and defense changed in abundance at 48 h after treatment. Transcripts associated with defense, wounding, and oxidative stress constituted the core of the phosphite response. We also observed changes in primary metabolism and cell wall-related processes. These changes were shown not to be due to phosphate depletion or acidification caused by phosphite treatment. Of the phosphite-regulated transcripts 40% also changed with ß-aminobutyric acid (BABA) as an elicitor, while the defence gene PR1 was only up-regulated by BABA. Although phosphite was shown to be distributed in planta to parts not directly exposed to phosphite, no protection in leaves without direct foliar application was observed. Furthermore, the analysis of transgenic potato lines indicated that the phosphite-mediated resistance was independent of the plant hormones salicylic and jasmonic acid. CONCLUSIONS: Our study suggests that a rapid phosphite-triggered response is important to confer long-lasting resistance against P. infestans and gives molecular understanding of its successful field applications.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Phosphites/pharmacology , Phytophthora infestans/physiology , Plant Diseases/immunology , Solanum tuberosum/drug effects , Transcriptome , Aminobutyrates/pharmacology , Gene Ontology , Phosphites/analysis , Plant Immunity , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/immunology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Solanum tuberosum/genetics , Solanum tuberosum/immunology
SELECTION OF CITATIONS
SEARCH DETAIL