Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.421
Filter
Add more filters

Publication year range
1.
Nature ; 618(7967): 974-980, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258677

ABSTRACT

Phosphorus is a limiting nutrient that is thought to control oceanic oxygen levels to a large extent1-3. A possible increase in marine phosphorus concentrations during the Ediacaran Period (about 635-539 million years ago) has been proposed as a driver for increasing oxygen levels4-6. However, little is known about the nature and evolution of phosphorus cycling during this time4. Here we use carbonate-associated phosphate (CAP) from six globally distributed sections to reconstruct oceanic phosphorus concentrations during a large negative carbon-isotope excursion-the Shuram excursion (SE)-which co-occurred with global oceanic oxygenation7-9. Our data suggest pulsed increases in oceanic phosphorus concentrations during the falling and rising limbs of the SE. Using a quantitative biogeochemical model, we propose that this observation could be explained by carbon dioxide and phosphorus release from marine organic-matter oxidation primarily by sulfate, with further phosphorus release from carbon-dioxide-driven weathering on land. Collectively, this may have resulted in elevated organic-pyrite burial and ocean oxygenation. Our CAP data also seem to suggest equivalent oceanic phosphorus concentrations under maximum and minimum extents of ocean anoxia across the SE. This observation may reflect decoupled phosphorus and ocean anoxia cycles, as opposed to their coupled nature in the modern ocean. Our findings point to external stimuli such as sulfate weathering rather than internal oceanic phosphorus-oxygen cycling alone as a possible control on oceanic oxygenation in the Ediacaran. In turn, this may help explain the prolonged rise of atmospheric oxygen levels.


Subject(s)
Oceans and Seas , Phosphorus , Seawater , Atmosphere/chemistry , Carbon Dioxide/metabolism , Carbon Isotopes , Geologic Sediments/chemistry , History, Ancient , Hypoxia/metabolism , Oxygen/analysis , Oxygen/history , Oxygen/metabolism , Phosphorus/analysis , Phosphorus/history , Phosphorus/metabolism , Seawater/chemistry , Sulfates/metabolism , Carbonates/analysis , Carbonates/metabolism , Oxidation-Reduction
2.
Nature ; 566(7743): 205-211, 2019 02.
Article in English | MEDLINE | ID: mdl-30760914

ABSTRACT

Uncertainty in the global patterns of marine nitrogen fixation limits our understanding of the response of the ocean's nitrogen and carbon cycles to environmental change. The geographical distribution of and ecological controls on nitrogen fixation are difficult to constrain with limited in situ measurements. Here we present convergent estimates of nitrogen fixation from an inverse biogeochemical and a prognostic ocean model. Our results demonstrate strong spatial variability in the nitrogen-to-phosphorus ratio of exported organic matter that greatly increases the global nitrogen-fixation rate (because phytoplankton manage with less phosphorus when it is in short supply). We find that the input of newly fixed nitrogen from microbial fixation and external inputs (atmospheric deposition and river fluxes) accounts for up to 50 per cent of carbon export in subtropical gyres. We also find that nitrogen fixation and denitrification are spatially decoupled but that nevertheless nitrogen sources and sinks appear to be balanced over the past few decades. Moreover, we propose a role for top-down zooplankton grazing control in shaping the global patterns of nitrogen fixation. Our findings suggest that biological carbon export in the ocean is higher than expected and that stabilizing nitrogen-cycle feedbacks are weaker than previously thought.


Subject(s)
Aquatic Organisms/metabolism , Nitrogen Fixation , Nitrogen/metabolism , Phytoplankton/metabolism , Zooplankton/metabolism , Animals , Aquatic Organisms/chemistry , Atmosphere/chemistry , Carbon/metabolism , Carbon Sequestration , Feedback , Geographic Mapping , Nitrogen/analysis , Oceans and Seas , Phosphorus/analysis , Phosphorus/metabolism , Phytoplankton/chemistry , Rivers/chemistry , Zooplankton/chemistry
3.
Proc Natl Acad Sci U S A ; 119(48): e2214343119, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36409916

ABSTRACT

Extreme daily values of precipitation (1939-2021), discharge (1991-2021), phosphorus (P) load (1994-2021), and phycocyanin, a pigment of Cyanobacteria (June 1-September 15 of 2008-2021) are clustered as multi-day events for Lake Mendota, Wisconsin. Long-range dependence, or memory, is the shortest for precipitation and the longest for phycocyanin. Extremes are clustered for all variates and those of P load and phycocyanin are most strongly clustered. Extremes of P load are predictable from extremes of precipitation, and precipitation and P load are correlated with later concentrations of phycocyanin. However, time delays from 1 to 60 d were found between P load extremes and the next extreme phycocyanin event within the same year of observation. Although most of the lake's P enters in extreme events, blooms of Cyanobacteria may be sustained by recycling and food web processes.


Subject(s)
Cyanobacteria , Phosphorus , Phosphorus/analysis , Phycocyanin , Lakes/microbiology , Wisconsin
4.
Proc Natl Acad Sci U S A ; 119(26): e2102466119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35733249

ABSTRACT

Severe deterioration of water quality in lakes, characterized by overabundance of algae and declining dissolved oxygen in the deep lake (DOB), was one of the ecological crises of the 20th century. Even with large reductions in phosphorus loading, termed "reoligotrophication," DOB and chlorophyll (CHL) have often not returned to their expected pre-20th-century levels. Concurrently, management of lake health has been confounded by possible consequences of climate change, particularly since the effects of climate are not neatly separable from the effects of eutrophication. Here, using Lake Geneva as an iconic example, we demonstrate a complementary alternative to parametric models for understanding and managing lake systems. This involves establishing an empirically-driven baseline that uses supervised machine learning to capture the changing interdependencies among biogeochemical variables and then combining the empirical model with a more conventional equation-based model of lake physics to predict DOB over decadal time-scales. The hybrid model not only leads to substantially better forecasts, but also to a more actionable description of the emergent rates and processes (biogeochemical, ecological, etc.) that drive water quality. Notably, the hybrid model suggests that the impact of a moderate 3°C air temperature increase on water quality would be on the same order as the eutrophication of the previous century. The study provides a template and a practical path forward to cope with shifts in ecology to manage environmental systems for non-analogue futures.


Subject(s)
Lakes , Water Quality , Ecosystem , Environmental Monitoring , Eutrophication , Lakes/chemistry , Phosphorus/analysis , Switzerland
5.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34937697

ABSTRACT

Planktonic organic matter forms the base of the marine food web, and its nutrient content (C:N:Porg) governs material and energy fluxes in the ocean. Over Earth history, C:N:Porg had a crucial role in marine metazoan evolution and global biogeochemical dynamics, but the geologic history of C:N:Porg is unknown, and it is often regarded constant at the "Redfield" ratio of ∼106:16:1. We calculated C:N:Porg through Phanerozoic time by including nutrient- and temperature-dependent C:N:Porg parameterizations in a model of the long-timescale biogeochemical cycles. We infer a decrease from high Paleozoic C:Porg and N:Porg to present-day ratios, which stems from a decrease in the global average temperature and an increase in seawater phosphate availability. These changes in the phytoplankton's growth environment were driven by various Phanerozoic events: specifically, the middle to late Paleozoic expansion of land plants and the Triassic breakup of the supercontinent Pangaea, which increased continental weatherability and the fluxes of weathering-derived phosphate to the oceans. The resulting increase in the nutrient content of planktonic organic matter likely impacted the evolution of marine fauna and global biogeochemistry.


Subject(s)
Carbon/analysis , Geologic Sediments/chemistry , Nitrogen/analysis , Phosphorus/analysis , Phytoplankton/chemistry , Carbon/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Phytoplankton/growth & development
6.
Proc Natl Acad Sci U S A ; 119(30): e2202268119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858403

ABSTRACT

Considerable attention is given to absolute nutrient levels in lakes, rivers, and oceans, but less is paid to their relative concentrations, their nitrogen:phosphorus (N:P) stoichiometry, and the consequences of imbalanced stoichiometry. Here, we report 38 y of nutrient dynamics in Flathead Lake, a large oligotrophic lake in Montana, and its inflows. While nutrient levels were low, the lake had sustained high total N: total P ratios (TN:TP: 60 to 90:1 molar) throughout the observation period. N and P loading to the lake as well as loading N:P ratios varied considerably among years but showed no systematic long-term trend. Surprisingly, TN:TP ratios in river inflows were consistently lower than in the lake, suggesting that forms of P in riverine loading are removed preferentially to N. In-lake processes, such as differential sedimentation of P relative to N or accumulation of fixed N in excess of denitrification, likely also operate to maintain the lake's high TN:TP ratios. Regardless of causes, the lake's stoichiometric imbalance is manifested in P limitation of phytoplankton growth during early and midsummer, resulting in high C:P and N:P ratios in suspended particulate matter that propagate P limitation to zooplankton. Finally, the lake's imbalanced N:P stoichiometry appears to raise the potential for aerobic methane production via metabolism of phosphonate compounds by P-limited microbes. These data highlight the importance of not only absolute N and P levels in aquatic ecosystems, but also their stoichiometric balance, and they call attention to potential management implications of high N:P ratios.


Subject(s)
Ecosystem , Lakes , Nitrogen , Phosphorus , Phytoplankton , Zooplankton , Animals , China , Environmental Monitoring , Eutrophication , Lakes/chemistry , Lakes/microbiology , Methane/biosynthesis , Nitrogen/analysis , Nitrogen/metabolism , Organophosphonates/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Phytoplankton/growth & development , Phytoplankton/metabolism , Zooplankton/growth & development , Zooplankton/metabolism
7.
Environ Microbiol ; 26(3): e16600, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38482770

ABSTRACT

Microbial community structure and function were assessed in the organic and upper mineral soil across a ~4000-year dune-based chronosequence at Big Bay, New Zealand, where total P declined and the proportional contribution of organic soil in the profile increased with time. We hypothesized that the organic and mineral soils would show divergent community evolution over time with a greater dependency on the functionality of phosphatase genes in the organic soil layer as it developed. The structure of bacterial, fungal, and phosphatase-harbouring communities was examined in both horizons across 3 dunes using amplicon sequencing, network analysis, and qPCR. The soils showed a decline in pH and total phosphorus (P) over time with an increase in phosphatase activity. The organic horizon had a wider diversity of Class A (phoN/phoC) and phoD-harbouring communities and a more complex microbiome, with hub taxa that correlated with P. Bacterial diversity declined in both horizons over time, with enrichment of Planctomycetes and Acidobacteria. More complex fungal communities were evident in the youngest dune, transitioning to a dominance of Ascomycota in both soil horizons. Higher phosphatase activity in older dunes was driven by less diverse P-mineralizing communities, especially in the organic horizon.


Subject(s)
Microbiota , Soil , Soil/chemistry , Phosphorus/analysis , Rainforest , Bacteria/genetics , Microbiota/genetics , Minerals , Phosphoric Monoester Hydrolases/genetics , Soil Microbiology
8.
Biochem Biophys Res Commun ; 733: 150699, 2024 Nov 12.
Article in English | MEDLINE | ID: mdl-39288699

ABSTRACT

Compositional changes in the tracheal and bronchial cartilages can affect respiratory ventilation and lung function. We aimed to elucidate element accumulation in the tracheal and bronchial cartilages of monkeys and divided it into four sites: the tracheal, tracheal bifurcation, left bronchial, and right bronchial cartilages. The elemental content was analyzed using inductively coupled plasma atomic emission spectrometry. The average calcium content was two to three times higher in the tracheal cartilage than in the other three cartilages. The trends of phosphorus and zinc were similar to those of calcium. The average calcium, phosphorus, and zinc cartilage contents were the highest in the tracheal cartilage and decreased in the following order: the left bronchial, right bronchial, and tracheal bifurcation cartilages. These findings revealed that differences existed in element accumulation between different sites within the same airway cartilage and that calcium, phosphorus, and zinc accumulation mainly occurred in the tracheal cartilage. A substantial direct correlation was observed between age and calcium content in the tracheal and bronchial cartilages and all such monkeys with high calcium content were > four years of age. These results suggest that calcium accumulation occurs in the tracheal and bronchial cartilages after reaching a certain age. An extremely substantial direct correlation was observed between calcium and phosphorus contents in the tracheal and bronchial cartilages. This finding is similar to the previously published calcium and phosphorus correlations in several other cartilages, suggesting that the calcium and phosphorus contents of cartilage exist in a certain ratio.


Subject(s)
Bronchi , Calcium , Cartilage , Phosphorus , Trachea , Zinc , Animals , Trachea/metabolism , Bronchi/metabolism , Phosphorus/metabolism , Phosphorus/analysis , Cartilage/metabolism , Zinc/metabolism , Zinc/analysis , Calcium/metabolism , Calcium/analysis , Male , Female
9.
BMC Plant Biol ; 24(1): 837, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242495

ABSTRACT

BACKGROUND: The expansion of bamboo forests increases environmental heterogeneity in tea plantation ecosystems, affecting soil properties and microbial communities. Understanding these impacts is essential for developing sustainable bamboo management and maintaining ecological balance in tea plantations. METHODS: We studied the effect of the continuous expansion of Pleioblastus amarus into tea plantations, by establishing five plot types: pure P. amarus forest area (BF), P. amarus forest interface area (BA), mixed forest interface area (MA), mixed forest center area (TB), and pure tea plantation area (TF). We conducted a comprehensive analysis of soil chemical properties and utilized Illumina sequencing to profile microbial community composition and diversity, emphasizing their responses to bamboo expansion. RESULTS: (1) Bamboo expansion significantly raised soil pH and enhanced levels of organic matter, nitrogen, and phosphorus, particularly noticeable in BA and MA sites. In the TB sites, improvements in soil nutrients were statistically indistinguishable from those in pure tea plantation areas. (2) Continuous bamboo expansion led to significant changes in soil bacterial diversity, especially noticeable between BA and TF sites, while fungal diversity was unaffected. (3) Bamboo expansion substantially altered the composition of less abundant bacterial and fungal communities, which proved more sensitive to changes in soil chemical properties. CONCLUSION: The expansion of bamboo forests causes significant alterations in soil pH and nutrient characteristics, impacting the diversity and composition of soil bacteria in tea plantations. However, as expansion progresses, its long-term beneficial impact on soil quality in tea plantations appears limited.


Subject(s)
Soil Microbiology , Soil , Soil/chemistry , Hydrogen-Ion Concentration , Bacteria/genetics , Bacteria/classification , Microbiota , Nitrogen/analysis , Nitrogen/metabolism , Camellia sinensis/microbiology , Camellia sinensis/growth & development , Forests , Nutrients/analysis , Poaceae/growth & development , Phosphorus/analysis
10.
BMC Plant Biol ; 24(1): 824, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227804

ABSTRACT

The accumulation of secondary metabolites in Panax ginseng Meyer (P. ginseng) exhibits significant geographical variation, normally due to environmental factors. The current study aimed at elucidating the key environmental factors modulating the accumulation of secondary metabolites in P. ginseng. Plant and the associated soil samples were collected from ten geographical locations within the latitudinalrange of 27.09°N - 42.39°N and longitudinal range of 99.28°E - 128.19°E. 12 secondary metabolites in P. ginseng toots were measured. And the correlation between secondary metabolites with a series of soil properties and 7 climatic factors were investigated through Pearson's correlation, mantel test, random forest and pathway analysis. The results revealed that climatic factors were stronger drivers of ginseng secondary metabolite profile than soil nutrients. Specifically, temperature seasonality (TS) and soil available phosphorus (AP) were the most effective environments to have significantly and positively influence on the secondary metabolites of ginseng. This findings contribute to identifying optimal cultivation areas for P. ginseng, and hopefully establishing methods for interfering/shaping microclimate for cultivating high-quality P. ginseng.


Subject(s)
Ginsenosides , Panax , Phosphorus , Seasons , Soil , Temperature , Panax/metabolism , Panax/growth & development , Panax/chemistry , Phosphorus/analysis , Phosphorus/metabolism , Ginsenosides/analysis , Ginsenosides/metabolism , Soil/chemistry
11.
BMC Plant Biol ; 24(1): 408, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755583

ABSTRACT

BACKGROUND: Grazing exclusion is an efficient practice to restore degraded grassland ecosystems by eliminating external disturbances and improving ecosystems' self-healing capacities, which affects the ecological processes of soil-plant systems. Grassland degradation levels play a critical role in regulating these ecological processes. However, the effects of vegetation and soil states at different degradation stages on grassland ecosystem restoration are not fully understood. To better understand this, desert steppe at three levels of degradation (light, moderate, and heavy degradation) was fenced for 6 years in Inner Mongolia, China. Community characteristics were investigated, and nutrient concentrations of the soil (0-10 cm depth) and dominant plants were measured. RESULTS: We found that grazing exclusion increased shoots' carbon (C) concentrations, C/N, and C/P, but significantly decreased shoots' nitrogen (N) and phosphorus (P) concentrations for Stipa breviflora and Cleistogenes songorica. Interestingly, there were no significant differences in nutrient concentrations of these two species among the three degraded desert steppes after grazing exclusion. After grazing exclusion, annual accumulation rates of aboveground C, N, and P pools in the heavily degraded area were the highest, but the aboveground nutrient pools were the lowest among the three degraded grasslands. Similarly, the annual recovery rates of community height, cover, and aboveground biomass in the heavily degraded desert steppe were the highest among the three degraded steppes after grazing exclusion. These results indicate that grazing exclusion is more effective for vegetation restoration in the heavily degraded desert steppe. The soil total carbon, total nitrogen, total phosphorus, available nitrogen, and available phosphorus concentrations in the moderately and heavily degraded desert steppes were significantly decreased after six years of grazing exclusion, whereas these were no changes in the lightly degraded desert steppe. Structural equation model analysis showed that the grassland degradation level mainly altered the community aboveground biomass and aboveground nutrient pool, driving the decrease in soil nutrient concentrations and accelerating nutrient transfer from soil to plant community, especially in the heavily degraded grassland. CONCLUSIONS: Our study emphasizes the importance of grassland degradation level in ecosystem restoration and provides theoretical guidance for scientific formulation of containment policies.


Subject(s)
Grassland , Herbivory , China , Desert Climate , Soil/chemistry , Phosphorus/metabolism , Phosphorus/analysis , Conservation of Natural Resources , Nitrogen/metabolism , Poaceae , Carbon/metabolism , Ecosystem , Nutrients/metabolism , Environmental Restoration and Remediation/methods , Animals
12.
BMC Plant Biol ; 24(1): 684, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020284

ABSTRACT

Malus sieversii, commonly known as wild apples, represents a Tertiary relict plant species and serves as the progenitor of globally cultivated apple varieties. Unfortunately, wild apple populations are facing significant degradation in localized areas due to a myriad of factors. To gain a comprehensive understanding of the nutrient status and spatiotemporal variations of M. sieversii, green leaves were collected in May and July, and the fallen leaves were collected in October. The concentrations of leaf nitrogen (N), phosphorus (P), and potassium (K) were measured, and the stoichiometric ratios as well as nutrient resorption efficiencies were calculated. The study also explored the relative contributions of soil, topographic, and biotic factors to the variation in nutrient traits. The results indicate that as the growing period progressed, the concentrations of N and P in the leaves significantly decreased (P < 0.05), and the concentration of K in October was significantly lower than in May and July. Throughout plant growth, leaf N-P and N-K exhibited hyperallometric relationships, while P-K showed an isometric relationship. Resorption efficiency followed the order of N < P < K (P < 0.05), with all three ratios being less than 1; this indicates that the order of nutrient limitation is K > P > N. The resorption efficiencies were mainly regulated by nutrient concentrations in fallen leaves. A robust spatial dependence was observed in leaf nutrient concentrations during all periods (70.1-97.9% for structural variation), highlighting that structural variation, rather than random factors, dominated the spatial variation. Nutrient resorption efficiencies (NRE, PRE, and KRE) displayed moderate structural variation (30.2-66.8%). The spatial patterns of nutrient traits varied across growth periods, indicating they are influenced by multifactorial elements (in which, soil property showed the highest influence). In conclusion, wild apples manifested differentiated spatiotemporal variability and influencing factors across various leaf nutrient traits. These results provide crucial insights into the spatiotemporal patterns and influencing factors of leaf nutrient traits of M. sieversii at the permanent plot scale for the first time. This work is of great significance for the ecosystem restoration and sustainable management of degrading wild fruit forests.


Subject(s)
Malus , Nitrogen , Phosphorus , Plant Leaves , Potassium , Plant Leaves/metabolism , Malus/metabolism , Malus/growth & development , Malus/physiology , China , Phosphorus/metabolism , Phosphorus/analysis , Nitrogen/metabolism , Potassium/metabolism , Potassium/analysis , Forests , Nutrients/metabolism , Nutrients/analysis , Soil/chemistry , Fruit/growth & development , Fruit/metabolism , Spatio-Temporal Analysis
13.
Appl Environ Microbiol ; 90(1): e0163723, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38112726

ABSTRACT

Dissolved organic phosphorus (DOP) is an important nutrient for phytoplankton growth in oligotrophic oceans. However, little is known about the impact of DOP on phytoplankton growth in eutrophic waters. In the present study, we conducted field monitoring as well as in situ and laboratory experiments in the Pearl River estuary (PRE). Field observations showed an increase in the nitrogen-to-phosphorus ratio and DOP in recent years in the PRE. The phytoplankton community was dominated by nanophytoplankton Cyclotella in the upper and middle estuary, with high concentrations of DOP and light limitation during the ebb stage of the spring to neap tide in summer. The relative abundance of Cyclotella in natural waters was higher after enrichment with estuarine water with a background of 0.40-0.46 µM DOP, even when dissolved inorganic phosphorus was sufficient (0.55-0.76 µM). In addition, the relative abundance of Cyclotella in natural waters was higher after enrichment with phosphoesters. Laboratory culture results also confirmed that phosphoesters can enhance the growth rate of Cyclotella cryptica. Our study highlights that Cyclotella can become the dominant species in estuaries with increased levels of phosphoesters and low and fluctuating light adaptability and under the joint effect of dynamic processes such as upwelling and tides. Our results provide new insights into the role of Cyclotella in biogeochemical cycles affected by DOP utilization and potential applications in relieving the hypoxia of tropical eutrophic estuaries.IMPORTANCEThis study provides evidence that Cyclotella can become the dominant species in estuaries with increased levels of phosphoesters and low and fluctuating light adaptability and under the joint effect of dynamic processes such as upwelling and tides. Our study provides new insights into the role of Cyclotella in biogeochemical cycles affected by dissolved organic phosphorus utilization, especially affected by anthropogenic inputs and climate change. Potential applications include relieving the hypoxia of tropical eutrophic estuaries.


Subject(s)
Diatoms , Dissolved Organic Matter , Humans , Estuaries , Rivers , Phytoplankton , Phosphorus/analysis , Hypoxia , Environmental Monitoring
14.
BMC Microbiol ; 24(1): 304, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39138453

ABSTRACT

BACKGROUND: Ectomycorrhizal (ECM and ECM-like) structures associated with plant root systems are a challenge for scientists. The dispersion pattern of roots within the soil profile and the nutritional conditions are both favourable factors to motivate the plants to make ECM associations. RESULTS: This study discusses the colonization of mycorrhizal associations in Kobresia and Polygonum species including Polygonum viviparum, Kobresia filicina, K. myosuroides, Alnus nitida, Betula pendula, Pinus sylvestris, and Trifolium repens grown naturally in cold stressed soils of Gilgit-Baltistan (high-altitude alpine Deosai plains), Hazara, Swat, Dir, and Bajaur. Sieved soil batches were exposed to +5 °C (control), -10, -20, -30, -40, -50, -125 °C for 5 h, and selected plants were sown to these soils for 10 weeks under favourable conditions for ECM colonization. Ectomycorrhizal associations were examined in the above mentioned plants. Some ECM fungi have dark mycelia that look like the mantle and Hartig net. Examples of these are Kobresia filicina, K. myosuroides, and Polygonum viviparum. Findings of this study revealed that K. myosuroides excelled in ECM root tip length, dry mass, and NH4 concentration at -125 °C. Contrarily, A. nitida demonstrated the lower values, indicated its minimum tolerance. Notably, T. repens boasted the highest nitrogen concentration (18.7 ± 1.31 mg/g), while P. sylvestris led in phosphorus (3.2 ± 0.22 mg/g). The B. pendula showed the highest potassium concentration (9.4 ± 0.66 mg/g), emphasising species-specific nutrient uptake capabilities in extreme cold conditions. The PCA analysis revealed that the parameters, e.g., NH4 in soil mix (NH4), NO3 in soil mix (NO3), phosphorus in soil in species of Polygonum viviparum, Kobresia filicina, K. myosuroides, Alnus nitida, Betula pendula, Pinus sylvestris, and Trifolium repens are most accurately represented in cases of + 5 °C, -10 °C, and -20 °C temperatures. On the other hand, the parameters for ECM root tips (ECM) and Dry Mass (DM) are best described in -40 °C, -50 °C, and - 125 °C temperatures. All parameters have a strong influence on the variability of the system indicated the efficiency of ECM. The heatmap supported the nutrients positively correlated with ECM colonization with the host plants. CONCLUSION: At lower temperatures, hyphae and spores in roots were reduced, while soluble phosphorus concentrations of leaves were increased in cold stress soils. Maximum foliar nutrient concentrations were found in K. myosuroides at the lowest temperature treatments due to efficient functioning and colonization of ECM.


Subject(s)
Cold Temperature , Mycorrhizae , Plant Roots , Mycorrhizae/physiology , Plant Roots/microbiology , Soil Microbiology , Trifolium/microbiology , Trifolium/growth & development , Soil/chemistry , Nutrients/metabolism , Cyperaceae/microbiology , Cyperaceae/growth & development , Stress, Physiological , Symbiosis , Polygonum/microbiology , Polygonum/growth & development , Phosphorus/metabolism , Phosphorus/analysis
15.
Glob Chang Biol ; 30(1): e17001, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37947299

ABSTRACT

With limited phosphorus (P) supplies, increasing P demand, and issues with P runoff and pollution, developing an ability to reuse the large amounts of residual P stored in agricultural soils is increasingly important. In this study, we investigated the potential for residual soil P to maintain crop yields while reducing P applications and losses in Canada. Using a P cycling model coupled with a soil P dynamics model, we analyzed soil P dynamics over 110 years across Canada's provinces. We found that using soil residual P may reduce mineral P demand as large as 132 Gg P year-1 (29%) in Canada, with the highest potential for reducing P applications in the Atlantic provinces, Quebec, Ontario, and British Columbia. Using residual soil P would result in a 21% increase in Canada's cropland P use efficiency. We expected that the Atlantic provinces and Quebec would have the greatest runoff P loss reduction with use of residual soil P, with the average P loss rate decreasing from 4.24 and 1.69 kg ha-1 to 3.45 and 1.38 kg ha-1 , respectively. Ontario, Manitoba, and British Columbia would experience relatively lower reductions in P loss through use of residual soil P, with the average runoff P loss rate decreasing from 0.44, 0.36, and 4.33 kg ha-1 to 0.19, 0.26, and 4.14 kg ha-1 , respectively. Our study highlights the importance of considering residual soil P as a valuable resource and its potential for reducing P pollution.


Subject(s)
Phosphorus , Soil , Phosphorus/analysis , Agriculture , Minerals , Ontario , Fertilizers , Water Movements
16.
Glob Chang Biol ; 30(1): e17108, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273551

ABSTRACT

Future phosphorus (P) shortages could seriously affect terrestrial productivity and food security. We investigated the changes in topsoil available P (AP) and total P (TP) in China's forests, grasslands, paddy fields, and upland croplands during the 1980s-2010s based on substantial repeated soil P measurements (63,220 samples in the 1980s, 2000s, and 2010s) and machine learning techniques. Between the 1980s and 2010s, total soil AP stock increased with a small but significant rate of 0.13 kg P ha-1 year-1 , but total soil TP stock declined substantially (4.5 kg P ha-1 year-1 ) in the four ecosystems. We quantified the P budgets of soil-plant systems by harmonizing P fluxes from various sources for this period. Matching trends of soil contents over the decades with P budgets and fluxes, we found that the P-surplus in cultivated soils (especially in upland croplands) might be overestimated due to the great soil TP pool compared to fertilization and the substantial soil P losses through plant uptake and water erosion that offset the P additions. Our findings of P-deficit in China raise the alarm on the sustainability of future biomass production (especially in forests), highlight the urgency of P recycling in croplands, and emphasize the critical role of country-level basic data in guiding sound policies to tackle the global P crises.


Subject(s)
Ecosystem , Soil , Phosphorus/analysis , Forests , Plants , China
17.
Glob Chang Biol ; 30(1): e17013, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37994377

ABSTRACT

Lakes worldwide are affected by multiple stressors, including climate change. This includes massive loading of both nutrients and humic substances to lakes during extreme weather events, which also may disrupt thermal stratification. Since multi-stressor effects vary widely in space and time, their combined ecological impacts remain difficult to predict. Therefore, we combined two consecutive large enclosure experiments with a comprehensive time-series and a broad-scale field survey to unravel the combined effects of storm-induced lake browning, nutrient enrichment and deep mixing on phytoplankton communities, focusing particularly on potentially toxic cyanobacterial blooms. The experimental results revealed that browning counteracted the stimulating effect of nutrients on phytoplankton and caused a shift from phototrophic cyanobacteria and chlorophytes to mixotrophic cryptophytes. Light limitation by browning was identified as the likely mechanism underlying this response. Deep-mixing increased microcystin concentrations in clear nutrient-enriched enclosures, caused by upwelling of a metalimnetic Planktothrix rubescens population. Monitoring data from a 25-year time-series of a eutrophic lake and from 588 northern European lakes corroborate the experimental results: Browning suppresses cyanobacteria in terms of both biovolume and proportion of the total phytoplankton biovolume. Both the experimental and observational results indicated a lower total phosphorus threshold for cyanobacterial bloom development in clearwater lakes (10-20 µg P L-1 ) than in humic lakes (20-30 µg P L-1 ). This finding provides management guidance for lakes receiving more nutrients and humic substances due to more frequent extreme weather events.


Subject(s)
Cyanobacteria , Phytoplankton , Lakes/microbiology , Humic Substances , Eutrophication , Nutrients , Phosphorus/analysis , China
18.
Glob Chang Biol ; 30(9): e17502, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39252425

ABSTRACT

Priming effects of soil organic matter decomposition are critical to determine carbon budget and turnover in soil. Yet, the overall direction and intensity of soil priming remains under debate. A second-order meta-analysis was performed with 9296-paired observations from 363 primary studies to determine the intensity and general direction of priming effects depending on the compound type, nutrient availability, and ecosystem type. We found that fresh carbon inputs induced positive priming effects (+37%) in 97% of paired observations. Labile compounds induced larger priming effects (+73%) than complex organic compounds (+33%). Nutrients (e.g., N, P) added with organic compounds reduced the intensity of priming effects compared to compounds without N and P, reflecting "nutrient mining from soil organic matter" as one of the main mechanisms of priming effects. Notably, tundra, lakebeds, wetlands, and volcanic soils showed much larger priming effects (+125%) compared to soils under forests, croplands, and grasslands (+24…+32%). Our findings highlight that positive priming effects are predominant in most soils at a global scale. Optimizing strategies to incorporate fresh organic matter and nutrients is urgently needed to offset the priming-induced accelerated organic carbon turnover and possible losses.


Subject(s)
Soil , Soil/chemistry , Carbon/analysis , Ecosystem , Nitrogen/analysis , Phosphorus/analysis
19.
Glob Chang Biol ; 30(6): e17376, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923195

ABSTRACT

A defining feature of the Anthropocene is the distortion of the biosphere phosphorus (P) cycle. A relatively sudden acceleration of input fluxes without a concomitant increase in output fluxes has led to net accumulation of P in the terrestrial-aquatic continuum. Over the past century, P has been mined from geological deposits to produce crop fertilizers. When P inputs are not fully removed with harvest of crop biomass, the remaining P accumulates in soils. This residual P is a uniquely anthropogenic pool of P, and its management is critical for agronomic and environmental sustainability. Managing residual P first requires its quantification-but measuring residual P is challenging. In this review, we synthesize approaches to quantifying residual P, with emphasis on advantages, disadvantages, and complementarity. Common approaches to estimate residual P are mass balances, long-term experiments, soil test P trends and chronosequences, with varying suitability or even limitations to distinct spatiotemporal scales. We demonstrate that individual quantification approaches are (i) constrained, (ii) often complementary, and (iii) may be feasible at only certain time-space scales. While some of these challenges are inherent to the quantification approach, in many cases there are surmountable challenges that can be addressed by unifying existing P pool and flux datasets, standardizing and synchronizing data collection on pools and fluxes, and quantifying uncertainty. Though defined as a magnitude, the distribution and speciation of residual P is relatively less understood but shapes its utilization and environmental impacts. The form of residual P will vary by agroecosystem context due to edaphoclimatic-specific transformation of the accumulated P, which has implications for management (e.g., crop usage) and future policies (e.g., lag times in P loading from non-point sources). Quantifying the uncertainty in measuring residual P holds value beyond scientific understanding, as it supports prioritization of monitoring and management resources and inform policy.


Subject(s)
Phosphorus , Phosphorus/analysis , Soil/chemistry , Environmental Monitoring/methods , Fertilizers/analysis , Ecosystem , Agriculture/methods
20.
Glob Chang Biol ; 30(6): e17379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031669

ABSTRACT

Microbial necromass carbon (MNC) accounts for a large fraction of soil organic carbon (SOC) in terrestrial ecosystems. Yet our understanding of the fate of this large carbon pool under long-term warming is uncertain. Here, we show that 14 years of soil warming (+4°C) in a temperate forest resulted in a reduction in MNC by 11% (0-10 cm) and 33% (10-20 cm). Warming caused a decrease in the content of MNC due to a decline in microbial biomass carbon and reduced microbial carbon use efficiency. This reduction was primarily caused by warming-induced limitations in available soil phosphorus, which, in turn, constrained the production of microbial biomass. Conversely, warming increased the activity of soil extracellular enzymes, specifically N-acetylglucosaminidase and leucine aminopeptidase, which accelerated the decomposition of MNC. These findings collectively demonstrate that decoupling of MNC formation and decomposition underlie the observed MNC loss under climate warming, which could affect SOC content in temperate forest ecosystems more widespread.


Subject(s)
Carbon , Forests , Soil Microbiology , Soil , Soil/chemistry , Carbon/metabolism , Carbon/analysis , Biomass , Climate Change , Phosphorus/metabolism , Phosphorus/analysis , Global Warming
SELECTION OF CITATIONS
SEARCH DETAIL