Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 292
Filter
1.
An Acad Bras Cienc ; 96(suppl 1): e20230273, 2024.
Article in English | MEDLINE | ID: mdl-39292102

ABSTRACT

The high performance of biomass and metabolite biosynthesis by photosynthetic microorganisms is directly influenced by the cultivation system employed. Photobioreactors (PBRs) stand out as controlled and fundamental systems for increasing the production of biocompounds. However, the high costs associated with these systems hinder their viability. Thus, a more practical and economical approach is necessary. Accordingly, this study aimed to design and evaluate low-cost flat-panel photobioreactors on a laboratory scale for the cultivation of photosynthetic microorganisms, using economical materials and instruments. Additionally, internal optimization of the low-cost system was aimed to maximize growth and biomass production. The PBRs were designed and built with uniform dimensions, employing 4 mm translucent glass and agitation through compressors. The internally optimized system (PBR-OII) was equipped with perforated acrylic plates used as static mixers. To evaluate the performance of the low-cost PBR-OII, a comparison was made with the control photobioreactor (PBR-CI), of the same geometry but without internal optimization, using a culture of Synechocystis sp. CACIAM 05 culture. The results showed that the PBR-OII achieved maximum biomass yield and productivity of 6.82 mg/mL and 250 mg/L/day, respectively, values superior to the PBR-CI (1.87 mg/mL and 62 mg/L/day). Additionally, the chlorophyll concentration in the PBR-OII system was 28.89 ± 3.44 µg/mL, while in the control system, the maximum reached was 23.12 ± 1.85 µg/mL. Therefore, low-cost photobioreactors have demonstrated to be an essential tool for significantly increasing biomass production, supporting research, and reducing costs associated with the process, enabling their implementation on a laboratory scale.


Subject(s)
Biomass , Microalgae , Photobioreactors , Photobioreactors/microbiology , Microalgae/growth & development , Synechocystis/growth & development , Synechocystis/metabolism , Biotechnology/instrumentation , Biotechnology/methods , Photosynthesis/physiology , Cyanobacteria/growth & development , Equipment Design
2.
J Environ Manage ; 354: 120439, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401502

ABSTRACT

Cultivating microalgae in wastewater offers various advantages, but it still faces limitations such as bacteria and other impurities in wastewater affecting the growth and purity of microalgae, difficulty in microalgae harvesting, and extracellular products of microalgae affecting effluent quality. In this study, a novel dialysis bag-microalgae photobioreactor (Db-PBR) was developed to achieve wastewater purification and purer bioresource recovery by culturing microalgae in a dialysis bag. The dialysis bag in the Db-PBR effectively captured the microalgae cells and promoted their lipid accumulation, leading to higher biomass (1.53 times of the control) and lipid production (2.50 times of the control). During the stable operation stage of Db-PBR, the average soluble microbial products (SMP) content outside the dialysis bag was 25.83 mg L-1, which was significantly lower than that inside the dialysis bag (185.63 mg L-1), indicating that the dialysis bag effectively intercepted the SMP secreted by microalgae. As a result, the concentration of dissolved organic carbon (DOC) in Db-PBR effluent was significantly lower than that of traditional photobioreactor. Furthermore, benefiting from the dialysis bag in the reactor effectively intercepted the microorganisms in wastewater, significantly improving the purity of the cultured microalgae biomass, which is beneficial for the development of high-value microalgae products.


Subject(s)
Microalgae , Water Purification , Wastewater , Photobioreactors/microbiology , Renal Dialysis , Biomass , Lipids
3.
J Environ Manage ; 332: 117418, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36753845

ABSTRACT

Microalgae cultivation can be used to increase the sustainability of carbon emitting processes, converting the CO2 from exhaust gases into fuels, food and chemicals. Many of the carbon emitting industries operate in a continuous manner, for periods that can span days or months, resulting in a continuous stream of gas emissions. Biogenic CO2 from industrial microbiological processes is one example, since in many cases it becomes unsustainable to stop these processes on a daily or weekly basis. To correctly sequester these emissions, microalgae systems must be operated under continuous constant conditions, requiring photobioreactors (PBRs) that can act as chemostats for long periods of time. However, in order to optimize culture parameters or study metabolic responses, bench-scale setups are necessary. Currently there is a lack of studies and design alternatives using chemostat, since most works focus on batch assays or semi-continuous cultures. Therefore, this work focused on the development of a continuous bench-scale PBR, which combines a retention vessel, a photocollector and a degasser, with an innovative recirculation system, that allows it to operate as an autotrophic chemostat, to study carbon sequestration from a biogenic CO2-rich constant air stream. To assess its applicability, the PBR was used to cultivate the green microalga Haematococcus pluvialis using as sole carbon source the CO2 produced by a coupled heterotrophic bacterial chemostat. An air stream containing ≈0.35 vol% of CO2, was fed to the system, and it was evaluated in terms of stability, carbon fixation and biomass productivity, for dilution rates ranging from 0.1 to 0.5 d-1. The PBR was able to operate under chemostat conditions for more than 100 days, producing a stable culture that generated proportional responses to the stimuli it was subjected to, attaining a maximum biomass productivity of 183 mg/L/d with a carbon fixation efficiency of ≈39% at 0.3 d-1. These results reinforce the effectiveness of the developed PBR system, making it suitable for laboratory-scale studies of continuous photoautotrophic microalgae cultivation.


Subject(s)
Microalgae , Photobioreactors , Photobioreactors/microbiology , Carbon Dioxide , Gases , Biomass , Carbon
4.
J Environ Manage ; 344: 118445, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37354587

ABSTRACT

A comparative study was carried out to assess the effect of two light sources on microalgae cultivation and the treatment of liquid digestate. The R1 photobioreactor operated with LED lightning allowed to achieve moderate nutrient removal rates whereas soluble COD (Chemical Oxygen Demand) was reduced in 90%. After switching this reactor into sunlight, the removal rate of phosphates increased to 66%. However, the greatest removal rate of both nutrients and sCOD of up to 93% was observed in the R2 photobioreactor operated only under sunlight. Microglena sp. was the dominant algae growing in the R1 reactor, and the main bacteria families detected were Chitinophagaceae, Sphingomonadaceae and Xanthobacteraceae. In contrast, Tetradesmus obliquus dominated in the R2 reactor and Rhodanobacteraceae, Chitinophagaceae and A4b were predominant bacteria in this run. Furthermore, much greater biomass productivity as well as overall biomass density was observed in the R2 photobioreactor cultivated exclusively with solar lightning.


Subject(s)
Microalgae , Sunlight , Humans , Lighting , Nutrients , Photobioreactors/microbiology , Biomass
5.
J Environ Manage ; 345: 118894, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37659359

ABSTRACT

Algal-bacterial membrane photobioreactor (AMPBR) is proven as a highly energy-efficient process for treating domestic wastewater. This study compared the application of polymeric micro-membrane (PMM) and a low-cost ceramic membrane (LCM) to the AMPBR process for treating domestic wastewater with low and high organic pollution levels. Experiments were conducted over 57 days using two PMM-AMPBRs and two LCM-AMPBRs, operating on a 12-h dark/light cycle in a continuous mode. Simulated wastewater containing varying levels of chemical oxygen demand (COD) was fed to reactors for a consistent hydraulic residence time (HRT) of 7 d and a flux rate of 100 L/m2/d. PMM and LCM-AMPBRs demonstrated efficient wastewater treatment capabilities, achieving COD removal rates exceeding 94% and 95% for high and low COD loadings, respectively. PMM-AMPBR achieved 54.1% TN removal at low COD loading, while LCM-AMPBR achieved 57.2%. These removal efficiencies decreased to 45.6% and 47.0% under high COD loading. Total Phosphorus (TP) removal reached 29-33% for PMM-AMPBRs and 21-24% for LCM-AMPBRs, irrespective of COD loading. LCM-AMPBRs showed significantly lower fouling frequency than PMM-AMPBRs. The biomass production rate decreased with increasing COD loading and achieved 40 mg/L/d at low COD loading for both AMPBRs. Net energy return (NER) values for both AMPBRs were close to 0.87, indicating them as energy-efficient processes. Considering the cost-effectiveness and comparable performance, LCM-AMPBR could be a viable alternative to PMM-AMPBR for wastewater treatment, particularly under low COD loading conditions.


Subject(s)
Wastewater , Water Purification , Photobioreactors/microbiology , Membranes , Ceramics , Bioreactors , Waste Disposal, Fluid
6.
Biotechnol Bioeng ; 119(3): 907-921, 2022 03.
Article in English | MEDLINE | ID: mdl-34953072

ABSTRACT

Photosynthetic bacteria can be useful biotechnological tools-they produce a variety of valuable products, including high purity hydrogen, and can simultaneously treat recalcitrant wastewaters. However, while photobioreactors have been designed and modeled for photosynthetic algae and cyanobacteria, there has been less work on understanding the effect of light in photosynthetic bacterial fermentations. To design photobioreactors, and processes using these organisms, robust models of light penetration, utilization, and conversion are needed. This stydy uses experimental data from a tubular photobioreactor designed to focus in on light intensity effects, to model the effect of light intensity on the growth of Rhodopseudomonas palustris, a model photosynthetic bacterium. The work demonstrates that growth is controlled by light intensity, and that this organism does experience photolimitation below 200 W/m2 and photoinhibition above 600 W/m2 . This has implications for outdoor applications, as there will be low growth during the periods of limited light, and growth may be inhibited during the light intensive hours of mid-day. Further, the work presents a model for light penetration in cylindrical photobioreactors, which tends to be the most common geometry. The model developed showed good fit to the experimental data for each light intensity investigated, with high R2 values and NRMSE values all below 20%. The work extends the modeling tools for these organisms, and will allow for better photobioreactor design, and the integration of modeling tools in designing processes which use photosynthetic bacteria.


Subject(s)
Rhodopseudomonas , Hydrogen , Photobioreactors/microbiology , Photosynthesis
7.
Biotechnol Bioeng ; 119(6): 1467-1482, 2022 06.
Article in English | MEDLINE | ID: mdl-35211957

ABSTRACT

The cyanobacterium Nostoc sp. BB 92.3. had shown antibacterial activity. A cultivation as biofilm, a self-forming matrix of cells and extracellular polymeric substances, increased the antibacterial effect. A new photobioreactor system was developed that allows a surface-associated cultivation of Nostoc sp. as biofilm. High-density polyethylene carriers operated as a moving bed were selected as surface for biomass immobilization. This system, well established in heterotrophic wastewater treatment, was for the first time used for phototrophic biofilms. The aim was a cultivation on a large scale without inhibiting growth while maximizing immobilization. Cultivation in a small photobioreactor (1.5 L) with different volumetric filling degrees of carriers (13.4%-53.8%) in a batch process achieved immobilization rates of 70%-85% and growth was similar to a no-carrier-control. In a larger photobioreactor (65 L) essentially all of the biomass was immobilized on the carriers and the space-time yield of biomass (0.018 gcell dry weight L-1 day- ​​​​​​​1 ) was competitive compared to phototrophic biofilm cultivations from literature. The use of carriers increased the gas exchange in the reactor by a factor of 2.5-3 but doubled the mixing time. Enriched gassing with carbon dioxide resulted in a short-term increase in growth rate, but unexpectedly it also adversely changed the growth morphology.


Subject(s)
Nostoc , Photobioreactors , Anti-Bacterial Agents , Biofilms , Biomass , Photobioreactors/microbiology
8.
Bioprocess Biosyst Eng ; 45(5): 791-813, 2022 May.
Article in English | MEDLINE | ID: mdl-35303143

ABSTRACT

Phototrophic microorganisms that convert carbon dioxide are being explored for their capacity to solve different environmental issues and produce bioactive compounds for human therapeutics and as food additives. Full-scale phototrophic cultivation of microalgae and cyanobacteria can be done in open ponds or closed photobioreactor systems, which have a broad range of volumes. This review focuses on laboratory-scale photobioreactors and their different designs. Illuminated microtiter plates and microfluidic devices offer an option for automated high-throughput studies with microalgae. Illuminated shake flasks are used for simple uncontrolled batch studies. The application of illuminated bubble column reactors strongly emphasizes homogenous gas distribution, while illuminated flat plate bioreactors offer high and uniform light input. Illuminated stirred-tank bioreactors facilitate the application of very well-defined reaction conditions. Closed tubular photobioreactors as well as open photobioreactors like small-scale raceway ponds and thin-layer cascades are applied as scale-down models of the respective large-scale bioreactors. A few other less common designs such as illuminated plastic bags or aquarium tanks are also used mainly because of their relatively low cost, but up-scaling of these designs is challenging with additional light-driven issues. Finally, this review covers recommendations on the criteria for photobioreactor selection and operation while up-scaling of phototrophic bioprocesses with microalgae or cyanobacteria.


Subject(s)
Cyanobacteria , Microalgae , Biomass , Carbon Dioxide , Humans , Photobioreactors/microbiology
9.
Bioprocess Biosyst Eng ; 45(5): 931-941, 2022 May.
Article in English | MEDLINE | ID: mdl-35235034

ABSTRACT

Productive biofilms are gaining growing interest in research due to their potential of producing valuable compounds and bioactive substances such as antibiotics. This is supported by recent developments in biofilm photobioreactors that established the controlled phototrophic cultivation of algae and cyanobacteria. Cultivation of biofilms can be challenging due to the need of surfaces for biofilm adhesion. The total production of biomass, and thus production of e.g. bioactive substances, within the bioreactor volume highly depends on the available cultivation surface. To achieve an enlargement of surface area for biofilm photobioreactors, biocarriers can be implemented in the cultivation. Thereby, material properties and design of the biocarriers are important for initial biofilm formation and growth of cyanobacteria. In this study, special biocarriers were designed and additively manufactured to investigate different polymeric materials and surface designs regarding biofilm adhesion of the terrestrial cyanobacterium Nostoc flagelliforme (CCAP 1453/33). Properties of 3D-printed materials were characterized by determination of wettability, surface roughness, and density. To evaluate the influence of wettability on biofilm formation, material properties were specifically modified by gas-phase fluorination and biofilm formation was analyzed on biocarriers with basic and optimized geometry in shaking flask cultivation. We found that different polymeric materials revealed no significant differences in wettability and with identical surface design no significant effect on biomass adhesion was observed. However, materials treated with fluorination as well as optimized biocarrier design showed improved wettability and an increase in biomass adhesion per biocarrier surface.


Subject(s)
Cyanobacteria , Photobioreactors , Biofilms , Biomass , Photobioreactors/microbiology , Surface Properties , Wettability
10.
Photosynth Res ; 143(3): 275-286, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31897856

ABSTRACT

The aim of this work was a comparative study of S-repleted and S-depleted photoautotrophic cultures of Chlamydomonas reinhardtii under aerobic and anoxic conditions with the main focus on PSII activity. For that we used photobioreactor with short light path connected on-line to PAM fluorometer and cultivated microalgae in twice concentrated HS medium to avoid any uncontrolled limitation by mineral elements. Photoautotrophic cultures grown under Ar + CO2 gas mixture did not reach the same Chl (a + b) concentration as control culture (grown under air + CO2). At pO2 40% of air saturation (96 µM O2), the actual quantum yield of PSII started to decrease. Under microaerobic conditions when cultures stopped growing, the most significant changes in PSII function were observed. Maximum quantum yield Fv/Fm decreased significantly along with performance index, PIabs. It was accompanied by increase of fluorescence at J point, Vj. Results indicate that microaerobic conditions are stressful for photoautotrophic cultures. Photoautotrophic cultures of microalgae under S-deprivation in aerobic or anaerobic conditions showed similar behavior as photoheterotrophic ones described earlier. However, photoautotrophic cultures during anaerobiosis establishment did not show sharp "switch off" effect of actual quantum yield. We show also that S-deprivation under air or argon as well as the growth under Ar + CO2 cause significant increase of initial rise of fluorescence, which indicates that PSII and oxygen-evolving complex might be disintegrated.


Subject(s)
Autotrophic Processes , Chlamydomonas reinhardtii/metabolism , Hydrogen/metabolism , Phototrophic Processes , Sulfur/deficiency , Anaerobiosis/drug effects , Argon/pharmacology , Atmosphere , Autotrophic Processes/drug effects , Batch Cell Culture Techniques , Carbon Dioxide/pharmacology , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/growth & development , Fluorometry , Oxygen/metabolism , Photobioreactors/microbiology , Phototrophic Processes/drug effects
11.
Biofouling ; 36(2): 183-199, 2020 02.
Article in English | MEDLINE | ID: mdl-32281883

ABSTRACT

Although cyanobacteria are a common group of microorganisms well-suited to utilization in photobioreactors (PBRs), studies of cyanobacteria fouling and its prevention are scarce. Using a cyanobacterium, Anabaena sp. PCC 7120, which had been genetically modified to enhance linalool production, the formation of conditioning films and the effects of these on the physico-chemical surface properties of various PBR materials during initial adhesion and biofilm formation were investigated. The adhesion assay revealed that the overall attachment of Anabaena was substratum dependent and no correlation between the hydrophobicity/roughness of clean material and cell attachment was found. Surface hydrophilicity/hydrophobicity of all the materials changed within 12 h due to formation of conditioning films. ATR-FTIR spectroscopy revealed that the fractional change in protein deposition between 12 to 96 h was consistent with Anabaena cell attachment but polysaccharide deposition was material specific and did not correlate with cell attachment on the PBR materials. Also, the delay in conditioning film proteins on PVC and PTFE indicated that components other than proteins may be responsible for the decrease in contact angles on these surfaces within 12 h. This indicates the important role of the chemical nature of adsorbed conditioning films in determining the initial attachment of Anabaena to PBR materials. The lower rate of attachment of Anabaena on the hydrophilic surfaces (glass and PMMA) between 72 h to 96 h (regime 3) showed that these surfaces could potentially have low fouling characteristics at extended time scales and should be considered for further research.


Subject(s)
Anabaena/growth & development , Bacterial Adhesion , Biofilms/growth & development , Construction Materials/microbiology , Photobioreactors/microbiology , Adsorption , Anabaena/physiology , Hydrophobic and Hydrophilic Interactions , Surface Properties
12.
World J Microbiol Biotechnol ; 36(3): 42, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32130551

ABSTRACT

Photobioreactors (PBRs) are equipment of central importance for the massive cultivation of microalgae, providing controlled conditions for high cell productivity. There are a few popular PBR designs, with contrasting advantages and limitations, such as poor light distribution, mass transfer, or hydrodynamic behavior. Due to the environmental concerns in recent decades and the discovery of new, useful microalgal metabolites, the interest in finding alternatives to solve technological bottlenecks of PBRs has intensified. In this process, new geometries, materials, and modes of light supply were developed, generating a significant scientific and technological output, reported in papers and patents. We present a technological landscape analysis of photobioreactor design, focusing on improvements of the classical geometries and trends in industrial photobioreactors. The analysis of 412 patent documents showed a surge in innovation filing since 2005 and a reduction in the number of new documents along the last decade. The recent efforts in design improvement, the leading countries, institutes and companies that innovate, and the trends in PBR technology are presented and discussed.


Subject(s)
Equipment Design/methods , Microalgae/growth & development , Photobioreactors/microbiology , Biomass , Hydrodynamics , Patents as Topic
13.
Physiol Plant ; 165(3): 476-486, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29345315

ABSTRACT

The development of high-performance photobioreactors equipped with automatic systems for non-invasive real-time monitoring of cultivation conditions and photosynthetic parameters is a challenge in algae biotechnology. Therefore, we developed a chlorophyll (Chl) fluorescence measuring system for the online recording of the light-induced fluorescence rise and the dark relaxation of the flash-induced fluorescence yield (Qa- - re-oxidation kinetics) in photobioreactors. This system provides automatic measurements in a broad range of Chl concentrations at high frequency of gas-tight sampling, and advanced data analysis. The performance of this new technique was tested on the green microalgae Chlamydomonas reinhardtii subjected to a sulfur deficiency stress and to long-term dark anaerobic conditions. More than thousand fluorescence kinetic curves were recorded and analyzed during aerobic and anaerobic stages of incubation. Lifetime and amplitude values of kinetic components were determined, and their dynamics plotted on heatmaps. Out of these data, stress-sensitive kinetic parameters were specified. This implemented apparatus can therefore be useful for the continuous real-time monitoring of algal photosynthesis in photobioreactors.


Subject(s)
Chlorophyll/metabolism , Photobioreactors/microbiology , Photosynthesis/physiology , Chlamydomonas reinhardtii/metabolism , Fluorescence , Kinetics
14.
Appl Microbiol Biotechnol ; 103(8): 3571-3580, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30809712

ABSTRACT

Graesiella emersonii was cultivated in an osmotic membrane photobioreactor (OMPBR) for nutrients removal from synthetic wastewater in continuous mode. At 1.5 days of hydraulic retention time and under continuous illumination, the microalgae removed nitrogen (N) completely at influent NH4+-N concentrations of 4-16 mg/L, with removal rates of 3.03-12.1 mg/L-day. Phosphorus (P) removal in the OMPBR was through biological assimilation as well as membrane rejection, but PO43--P assimilation by microalgae could be improved at higher NH4+-N concentrations. Microalgae biomass composition was affected by N/P ratio in wastewater, and a higher N/P ratio resulted in higher P accumulation in the biomass. The OMPBR accumulated about 0.35 g/L biomass after 12 days of operation under continuous illumination. However, OMPBR operation under 12 h light/12 h dark cycle lowered biomass productivity by 60%, which resulted in 20% decrease in NH4+-N removal and nearly threefold increase in PO43--P accumulation in the OMPBR. Prolonged dark phase also affected carbohydrate accumulation in biomass, although its effects on lipid and protein accumulation were negligible. The microalgae also exhibited high tendency to aggregate and settle, which could be attributed to reduction in cell surface charge and enrichment of soluble algal products in the OMPBR. Due to a relatively shorter operating period, membrane biofouling and salt accumulation did not influence the permeate flux significantly. These results improve the understanding of the effects of N/P ratio and light/dark cycle on biomass accumulation and nutrients removal in the OMPBR.


Subject(s)
Microalgae/growth & development , Nutrients/isolation & purification , Photobioreactors/microbiology , Photoperiod , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/instrumentation , Biofouling , Biomass , Carbohydrate Metabolism , Chlorophyta/growth & development , Chlorophyta/metabolism , Membranes, Artificial , Microalgae/metabolism , Nitrogen/chemistry , Nitrogen/isolation & purification , Nitrogen/metabolism , Nutrients/chemistry , Nutrients/metabolism , Osmosis , Phosphorus/chemistry , Phosphorus/isolation & purification , Phosphorus/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
15.
Prep Biochem Biotechnol ; 49(3): 255-269, 2019.
Article in English | MEDLINE | ID: mdl-30794071

ABSTRACT

The main focus of the work is to study Chlorella pyrenoidosa mediated photoautotrophic production of lipid in a bubble column photobioreactor using CO2 as carbon source under natural diurnal outdoor sunlight. The limiting and inhibiting concentrations of CO2 in sparging gas, nitrogen inhibition, reversibility of the CO2 inhibition on growth, and lipid production have been investigated under natural sunlight. A process model coupled with light distribution inside the culture has been developed considering different concentration of dissolved CO2 and urea, repression of nitrogen on lipid production under natural sunlight diurnal in nature in a bubble column reactor. The biomass titer of 4.6 g/L with 10% CO2 has been achieved within 5 days of culture under sunlight. A two stage photoautotrophic lipid production strategy in a sintered disc bubble column photobioreactor under natural sunlight has been developed. 30% (w/w-DCW) lipid within 5 days of lipid induction period has been achieved. The biomass productivity of 0.91 ± 0.01 gm/L/day in growth period with sufficient urea and lipid productivity of 410 ± 12 mg/L/day in last 2 days of urea starvation period have been achieved in outdoor photoautotrophic cultivation under natural sunlight using CO2 as carbon source.


Subject(s)
Biofuels/microbiology , Chlorella/metabolism , Fatty Acids/biosynthesis , Photobioreactors/microbiology , Carbon Dioxide/metabolism , Models, Biological , Phosphates/metabolism , Sunlight , Urea/metabolism
16.
Article in English | MEDLINE | ID: mdl-30663543

ABSTRACT

The aim of this study was to evaluate the mitigation of greenhouse gasses generated in the anaerobic digestion process of physicochemical sludges by evaluating the effect of CO2 supply and light intensity requirements on the growth of microalga Chlorella spp. and measuring the consumption of CO2. The best conditions at a laboratory scale were performed in an airlift photobioreactor (PBR) at pilot-scale plant (26 L) during 60 days with a CO2 supply of 2% v v-1 from an electric generator coupled to an anaerobic digestion of physicochemical sludge process. The maximum %CO2 consumed was 91.92% which was reached in the seventh supply cycle and biomass production was 2.18 g L-1. The results obtained showed that airlift-type PBRs are a suitable complement for anaerobic digestion of physicochemical sludge technologies in order to reduce emissions of greenhouse gases produced during the combustion of biogas.


Subject(s)
Biofuels/analysis , Carbon Dioxide/analysis , Chlorella/growth & development , Greenhouse Gases/analysis , Photobioreactors/microbiology , Sewage/chemistry , Anaerobiosis , Biomass
17.
Biotechnol Bioeng ; 115(7): 1694-1704, 2018 07.
Article in English | MEDLINE | ID: mdl-29537063

ABSTRACT

Marine macroalgae are a potential feedstock for biorefineries that can reduce dependence on fossil fuels and contribute to bioeconomy. New knowledge and technologies for efficient conversion of solar energy into macroalgae biomass are needed to increase biomass yields and energy conversion efficiency. In this work, we show that the green macroalgae from Ulva sp. can grow under the pulsed light in a photobioreactor with higher exergy conversion efficiency in comparison to cultivation under constant light with the same intensity. In the tested frequencies, 1-40 Hz and duty cycles (DC) 1-100%, DC has a stronger impact on the growth rate than frequency. The efficiency of light transformation into biomass increased with decreasing DC. Pulsating with DC 20% led to 60% of the biomass chemical energy yield for the respective constant light (DC 100%). Models of Ulva sp. growth rate and exergy conversion efficiency as a function of pulsating light parameters were developed. These results open new directions to enhance solar to chemical energy conversion through macroalgae by controlling the light distribution in the macroalgal biomass.


Subject(s)
Biomass , Energy Metabolism , Light , Photobioreactors/microbiology , Ulva/growth & development , Ulva/radiation effects
18.
Biotechnol Lett ; 40(2): 309-314, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29189926

ABSTRACT

OBJECTIVES: To prove the possibility of efficient starch photofermentation in co-culture of heterotrophic and phototrophic bacteria over prolonged period. RESULTS: Repeated batch photofermentation of starch was demonstrated in co-culture Clostridium butyricum and Rhodobacter sphaeroides under microaerobic conditions. It continued 15 months without addition of new inoculum or pH regulation when using 4-5 g starch l-1 and 0.04 g yeast extract l-1. The complete degradation of starch without volatile fatty acids accumulation was shown in this co-culture. The average H2 yield of 5.2 mol/mol glucose was much higher than that in Clostridium monoculture. The species composition of co-culture was studied by q-PCR assay. The concentration of Clostridium cells in prolonged co-culture was lower than in monoculture and even in a single batch co-culture. This means that Clostridia growth was significantly limited whereas starch hydrolysis still took place. CONCLUSION: The prolonged repeated batch photofermentation of starch by co-culture C. butyricum and R. sphaeroides provided efficient H2 production without accumulation of organic acids under conditions of Clostridia limitation.


Subject(s)
Batch Cell Culture Techniques/methods , Clostridium butyricum/metabolism , Hydrogen , Photobioreactors/microbiology , Rhodobacter sphaeroides/metabolism , Coculture Techniques/methods , Fermentation , Hydrogen/analysis , Hydrogen/metabolism , Kinetics , Photochemical Processes , Starch/metabolism
19.
Mar Drugs ; 16(9)2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30150548

ABSTRACT

A native strain of the heterocytous cyanobacterium Trichormus variabilis VRUC 168 was mass cultivated in a low-cost photobioreactor for a combined production of Polyunsaturated Fatty Acids (PUFA) and Exopolymeric Substances (EPS) from the same cyanobacterial biomass. A sequential extraction protocol was optimized leading to high yields of Released EPS (REPS) and PUFA, useful for nutraceutical products and biomaterials. REPS were extracted and characterized by chemical staining, Reversed Phase-High-Performance Liquid Chromatography (RP-HPLC), Fourier Transform Infrared Spectroscopy (FT-IR) and other spectroscopic techniques. Due to their gelation property, REPS were used to produce a photo-polymerizable hybrid hydrogel (REPS-Hy) with addition of polyethylene glycol diacrylated (PEGDa). REPS-Hy was stable over time and resistant to dehydration and spontaneous hydrolysis. The rheological and functional properties of REPS-Hy were studied. The enzyme carrier ability of REPS-Hy was assessed using the detoxification enzyme thiosulfate:cyanide sulfur transferase (TST), suggesting the possibility to use REPS-Hy as an enzymatic hydrogel system. Finally, REPS-Hy was used as a scaffold for culturing human mesenchymal stem cells (hMSCs). The cell seeding onto the REPS-Hy and the cell embedding into 3D-REPS-Hy demonstrated a scaffolding property of REPS-Hy with non-cytotoxic effect, suggesting potential applications of cyanobacteria REPS for producing enzyme- and cell-carrier systems.


Subject(s)
Biocompatible Materials/metabolism , Cell Culture Techniques/methods , Cyanobacteria/metabolism , Dietary Supplements , Drug Carriers/chemistry , Biomass , Cell Line , Fatty Acids, Unsaturated/biosynthesis , Humans , Hydrogels/chemistry , Mesenchymal Stem Cells , Photobioreactors/microbiology , Polyethylene Glycols/chemistry , Spectroscopy, Fourier Transform Infrared , Tissue Scaffolds/chemistry
20.
Ecotoxicol Environ Saf ; 152: 1-7, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29355771

ABSTRACT

In this lab-scale study, the feasibility of using kenaf fibers as moving bed biofilm carriers in hybrid microalgal membrane photobioreactors (HMPBR) in organic matter and atrazine elimination from real secondary effluent was evaluated. For evaluating the kinetics of biofilm substrate consumption, an experimental model was proposed. Inoculation of wastewater samples with free carriers resulted in the greater removal of target pollutants. Removal efficiency of atrazine and chemical oxygen demand (COD) increased to 27% and 16%, with respect to the control, respectively. The total biomass accumulation in HMPBR exceeded 5g/L, and the microalgae tended to aggregate and attached to biofilm carriers. The removal efficiency of HMPBR improved significantly via inoculation of kenaf fiber carriers with bioremediation microalgal strains (p < 0.01). A lower stabilization ratio (VSS/TSS) was also recorded. The biomass in HMPBR included more lipids and carbohydrates. The results revealed that kenaf fibers could improve and upgrade the biological activity of different wastewater treatment applications, considering the great potential of biofilm carriers and their effluent quality.


Subject(s)
Atrazine/analysis , Biofilms/growth & development , Hibiscus/chemistry , Microalgae/growth & development , Photobioreactors/microbiology , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Biomass , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL