Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.830
Filter
1.
J Neurophysiol ; 131(2): 216-224, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38116608

ABSTRACT

Repeated hypoxic episodes can produce a sustained (>60 min) increase in neural drive to the diaphragm. The requirement of repeated hypoxic episodes (vs. a single episode) to produce phrenic motor facilitation (pMF) can be removed by allosteric modulation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors using ampakines. We hypothesized that the ampakine-hypoxia interaction resulting in pMF requires that ampakine dosing precedes the onset of hypoxia. Phrenic nerve recordings were made from urethane-anesthetized, mechanically ventilated, and vagotomized adult male Sprague-Dawley rats during isocapnic conditions. Ampakine CX717 (15 mg/kg iv) was given immediately before (n = 8), during (n = 8), or immediately after (n = 8) a 5-min hypoxic episode (arterial oxygen partial pressure 40-45 mmHg). Ampakine before hypoxia (Aprior) resulted in a sustained increase in inspiratory phrenic burst amplitude (i.e., pMF) reaching +70 ± 21% above baseline (BL) after 60 min. This was considerably greater than corresponding values in the groups receiving ampakine during hypoxia (+28 ± 47% above BL, P = 0.005 vs. Aprior) or after hypoxia (+23 ± 40% above BL, P = 0.005 vs. Aprior). Phrenic inspiratory burst rate, heart rate, and systolic, diastolic, and mean arterial pressure (mmHg) were similar across the three treatment groups (all P > 0.3, treatment effect). We conclude that the presentation order of ampakine and hypoxia impacts the magnitude of pMF, with ampakine pretreatment evoking the strongest response. Ampakine pretreatment may have value in the context of hypoxia-based neurorehabilitation strategies.NEW & NOTEWORTHY Phrenic motor facilitation (pMF) is evoked after repeated episodes of brief hypoxia. pMF can also be induced when an allosteric modulator of AMPA receptors (ampakine) is intravenously delivered immediately before a single brief hypoxic episode. Here we show that ampakine delivery before hypoxia (vs. during or after hypoxia) evokes the largest pMF with minimal impact on arterial blood pressure and heart rate. Ampakine pretreatment may have value in the context of hypoxia-based neurorehabilitation strategies.


Subject(s)
Hypoxia , Urethane , Rats , Animals , Male , Rats, Sprague-Dawley , Anesthetics, Intravenous , Phrenic Nerve/physiology
2.
J Neurophysiol ; 131(6): 1188-1199, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38691529

ABSTRACT

Prolonged inhibition of respiratory neural activity elicits a long-lasting increase in phrenic nerve amplitude once respiratory neural activity is restored. Such long-lasting facilitation represents a form of respiratory motor plasticity known as inactivity-induced phrenic motor facilitation (iPMF). Although facilitation also occurs in inspiratory intercostal nerve activity after diminished respiratory neural activity (iIMF), it is of shorter duration. Atypical PKC activity in the cervical spinal cord is necessary for iPMF and iIMF, but the site and specific isoform of the relevant atypical PKC are unknown. Here, we used RNA interference to test the hypothesis that the zeta atypical PKC isoform (PKCζ) within phrenic motor neurons is necessary for iPMF but PKCζ within intercostal motor neurons is unnecessary for transient iIMF. Intrapleural injections of siRNAs targeting PKCζ (siPKCζ) to knock down PKCζ mRNA within phrenic and intercostal motor neurons were made in rats. Control rats received a nontargeting siRNA (NTsi) or an active siRNA pool targeting a novel PKC isoform, PKCθ (siPKCθ), which is required for other forms of respiratory motor plasticity. Phrenic nerve burst amplitude and external intercostal (T2) electromyographic (EMG) activity were measured in anesthetized and mechanically ventilated rats exposed to 30 min of respiratory neural inactivity (i.e., neural apnea) created by modest hypocapnia (20 min) or a similar recording duration without neural apnea (time control). Phrenic burst amplitude was increased in rats treated with NTsi (68 ± 10% baseline) and siPKCθ (57 ± 8% baseline) 60 min after neural apnea vs. time control rats (-3 ± 3% baseline), demonstrating iPMF. In contrast, intrapleural siPKCζ virtually abolished iPMF (5 ± 4% baseline). iIMF was transient in all groups exposed to neural apnea; however, intrapleural siPKCζ attenuated iIMF 5 min after neural apnea (50 ± 21% baseline) vs. NTsi (97 ± 22% baseline) and siPKCθ (103 ± 20% baseline). Neural inactivity elevated the phrenic, but not intercostal, responses to hypercapnia, an effect that was blocked by siPKCζ. We conclude that PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient iIMF.NEW & NOTEWORTHY We report important new findings concerning the mechanisms regulating a form of spinal neuroplasticity elicited by prolonged inhibition of respiratory neural activity, inactivity-induced phrenic motor facilitation (iPMF). We demonstrate that the atypical PKC isoform PKCζ within phrenic motor neurons is necessary for long-lasting iPMF, whereas intercostal motor neuron PKCζ contributes to, but is not necessary for, transient inspiratory intercostal facilitation. Our findings are novel and advance our understanding of mechanisms contributing to phrenic motor plasticity.


Subject(s)
Motor Neurons , Phrenic Nerve , Protein Kinase C , Rats, Sprague-Dawley , Animals , Phrenic Nerve/physiology , Protein Kinase C/metabolism , Protein Kinase C/physiology , Motor Neurons/physiology , Male , Rats , Neuronal Plasticity/physiology
3.
Artif Organs ; 48(3): 274-284, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37246826

ABSTRACT

BACKGROUND: Ventilator-induced diaphragm dysfunction occurs rapidly following the onset of mechanical ventilation and has significant clinical consequences. Phrenic nerve stimulation has shown promise in maintaining diaphragm function by inducing diaphragm contractions. Non-invasive stimulation is an attractive option as it minimizes the procedural risks associated with invasive approaches. However, this method is limited by sensitivity to electrode position and inter-individual variability in stimulation thresholds. This makes clinical application challenging due to potentially time-consuming calibration processes to achieve reliable stimulation. METHODS: We applied non-invasive electrical stimulation to the phrenic nerve in the neck in healthy volunteers. A closed-loop system recorded the respiratory flow produced by stimulation and automatically adjusted the electrode position and stimulation amplitude based on the respiratory response. By iterating over electrodes, the optimal electrode was selected. A binary search method over stimulation amplitudes was then employed to determine an individualized stimulation threshold. Pulse trains above this threshold were delivered to produce diaphragm contraction. RESULTS: Nine healthy volunteers were recruited. Mean threshold stimulation amplitude was 36.17 ± 14.34 mA (range 19.38-59.06 mA). The threshold amplitude for reliable nerve capture was moderately correlated with BMI (Pearson's r = 0.66, p = 0.049). Repeating threshold measurements within subjects demonstrated low intra-subject variability of 2.15 ± 1.61 mA between maximum and minimum thresholds on repeated trials. Bilateral stimulation with individually optimized parameters generated reliable diaphragm contraction, resulting in significant inhaled volumes following stimulation. CONCLUSION: We demonstrate the feasibility of a system for automatic optimization of electrode position and stimulation parameters using a closed-loop system. This opens the possibility of easily deployable individualized stimulation in the intensive care setting to reduce ventilator-induced diaphragm dysfunction.


Subject(s)
Diaphragm , Phrenic Nerve , Humans , Phrenic Nerve/physiology , Respiration, Artificial/adverse effects , Electrodes, Implanted , Electric Stimulation
4.
J Physiol ; 601(12): 2513-2532, 2023 06.
Article in English | MEDLINE | ID: mdl-36815402

ABSTRACT

Spinal cord hemisection at C2 (C2 SH), sparing the dorsal column is widely used to investigate the effects of reduced phrenic motor neuron (PhMN) activation on diaphragm muscle (DIAm) function, with reduced DIAm activity on the injured side during eupnoea. Following C2 SH, recovery of DIAm EMG activity may occur spontaneously over subsequent days/weeks. Various strategies have been effective at improving the incidence and magnitude of DIAm recovery during eupnoea, but little is known about the effects of C2 SH on transdiaphragmatic pressure (Pdi ) during other ventilatory and non-ventilatory behaviours. We employ SPG302, a novel type of pegylated benzothiazole derivative, to assess whether enhancing synaptogenesis (i.e., enhancing spared local connections) will improve the incidence and the magnitude of recovery of DIAm EMG activity and Pdi function 14 days post-C2 SH. In anaesthetised Sprague-Dawley rats, DIAm EMG and Pdi were assessed during eupnoea, hypoxia/hypercapnia and airway occlusion prior to surgery (C2 SH or sham), immediately post-surgery and at 14 days post-surgery. In C2 SH rats, 14 days of DMSO (vehicle) or SPG302 treatments (i.p. injection) occurred. At the terminal experiment, maximum Pdi was evoked by bilateral phrenic nerve stimulation. We show that significant EMG and Pdi deficits are apparent in C2 SH compared with sham rats immediately after surgery. In C2 SH rats treated with SPG302, recovery of eupneic, hypoxia/hypercapnia and occlusion DIAm EMG was enhanced compared with vehicle rats after 14 days. Treatment with SPG302 also ameliorated Pdi deficits following C2 SH. In summary, SPG302 is an exciting new therapy to explore for use in spinal cord injuries. KEY POINTS: Despite advances in our understanding of the effects of cervical hemisection (C2 SH) on diaphragm muscle (DIAm) EMG activity, very little is understood about the impact of C2 SH on the gamut of ventilatory and non-ventilatory transdiaphragmatic pressures (Pdi ). Recovery of DIAm activity following C2 SH is improved using a variety of approaches, but very few pharmaceuticals have been shown to be effective. One way of improving DIAm recovery is to enhance the amount of latent local spared connections onto phrenic motor neurons. A novel pegylated benzothiazole derivative enhances synaptogenesis in a variety of neurodegenerative conditions. Here, using a novel therapeutic SPG302, we show that 14 days of treatment with SPG302 ameliorated DIAm EMG and Pdi deficits compared with vehicle controls. Our results show that SPG302 is a compound with very promising potential for use in improving functional outcomes post-spinal cord injury.


Subject(s)
Cervical Cord , Spinal Cord Injuries , Rats , Animals , Diaphragm/physiology , Rats, Sprague-Dawley , Hypercapnia , Spinal Cord Injuries/drug therapy , Hypoxia , Polyethylene Glycols/pharmacology , Polyethylene Glycols/therapeutic use , Phrenic Nerve/physiology , Recovery of Function/physiology
5.
J Neurophysiol ; 129(1): 144-158, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36416447

ABSTRACT

Phrenic motoneurons (PhrMNs) innervate diaphragm myofibers. Located in the ventral gray matter (lamina IX), PhrMNs form a column extending from approximately the third to sixth cervical spinal segment. Phrenic motor output and diaphragm activation are impaired in many neuromuscular diseases, and targeted delivery of drugs and/or genetic material to PhrMNs may have therapeutic application. Studies of phrenic motor control and/or neuroplasticity mechanisms also typically require targeting of PhrMNs with drugs, viral vectors, or tracers. The location of the phrenic motoneuron pool, however, poses a challenge. Selective PhrMN targeting is possible with molecules that move retrogradely upon uptake into phrenic axons subsequent to diaphragm or phrenic nerve delivery. However, nonspecific approaches that use intrathecal or intravenous delivery have considerably advanced the understanding of PhrMN control. New opportunities for targeted PhrMN gene expression may be possible with intersectional genetic methods. This article provides an overview of methods for targeting the phrenic motoneuron pool for studies of PhrMNs in health and disease.


Subject(s)
Gene Transfer Techniques , Motor Neurons , Rats , Animals , Rats, Sprague-Dawley , Motor Neurons/physiology , Diaphragm/innervation , Phrenic Nerve/physiology
6.
J Neurophysiol ; 129(4): 799-806, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36883762

ABSTRACT

Inflammation undermines neuroplasticity, including serotonin-dependent phrenic long-term facilitation (pLTF) following moderate acute intermittent hypoxia (mAIH: 3, 5-min episodes, arterial Po2: 40-50 mmHg; 5-min intervals). Mild inflammation elicited by a low dose of the TLR-4 receptor agonist, lipopolysaccharide (LPS; 100 µg/kg, ip), abolishes mAIH-induced pLTF by unknown mechanisms. In the central nervous system, neuroinflammation primes glia, triggering ATP release and extracellular adenosine accumulation. As spinal adenosine 2 A (A2A) receptor activation impairs mAIH-induced pLTF, we hypothesized that spinal adenosine accumulation and A2A receptor activation are necessary in the mechanism whereby LPS impairs pLTF. We report that 24 h after LPS injection in adult male Sprague Dawley rats: 1) adenosine levels increase in ventral spinal segments containing the phrenic motor nucleus (C3-C5; P = 0.010; n = 7/group) and 2) cervical spinal A2A receptor inhibition (MSX-3, 10 µM, 12 µL intrathecal) rescues mAIH-induced pLTF. In LPS vehicle-treated rats (saline, ip), MSX-3 enhanced pLTF versus controls (LPS: 110 ± 16% baseline; controls: 53 ± 6%; P = 0.002; n = 6/group). In LPS-treated rats, pLTF was abolished as expected (4 ± 6% baseline; n = 6), but intrathecal MSX-3 restored pLTF to levels equivalent to MSX-3-treated control rats (120 ± 14% baseline; P < 0.001; n = 6; vs. LPS controls with MSX-3: P = 0.539). Thus, inflammation abolishes mAIH-induced pLTF by a mechanism that requires increased spinal adenosine levels and A2A receptor activation. As repetitive mAIH is emerging as a treatment to improve breathing and nonrespiratory movements in people with spinal cord injury or ALS, A2A inhibition may offset undermining effects of neuroinflammation associated with these neuromuscular disorders.NEW & NOTEWORTHY Mild inflammation undermines motor plasticity elicited by mAIH. In a model of mAIH-induced respiratory motor plasticity (phrenic long-term facilitation; pLTF), we report that inflammation induced by low-dose lipopolysaccharide undermines mAIH-induced pLTF by a mechanism requiring increased cervical spinal adenosine and adenosine 2 A receptor activation. This finding advances the understanding of mechanisms impairing neuroplasticity, potentially undermining the ability to compensate for the onset of lung/neural injury or to harness mAIH as a therapeutic modality.


Subject(s)
Lipopolysaccharides , Long-Term Potentiation , Rats , Male , Animals , Rats, Sprague-Dawley , Lipopolysaccharides/pharmacology , Adenosine/pharmacology , Neuroinflammatory Diseases , Hypoxia , Inflammation , Phrenic Nerve/physiology , Spinal Cord
7.
J Neurophysiol ; 129(2): 455-464, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36695529

ABSTRACT

Moderate acute intermittent hypoxia (mAIH) elicits a form of phrenic motor plasticity known as phrenic long-term facilitation (pLTF), which requires spinal 5-HT2 receptor activation, ERK/MAP kinase signaling, and new brain-derived neurotrophic factor (BDNF) synthesis. New BDNF protein activates TrkB receptors that normally signal through PKCθ to elicit pLTF. Phrenic motor plasticity elicited by spinal drug administration (e.g., BDNF) is referred to by a more general term: phrenic motor facilitation (pMF). Although mild systemic inflammation elicited by a low lipopolysaccharide (LPS) dose (100 µg/kg; 24 h prior) undermines mAIH-induced pLTF upstream from BDNF protein synthesis, it augments pMF induced by spinal BDNF administration through unknown mechanisms. Here, we tested the hypothesis that mild inflammation shifts BDNF/TrkB signaling from PKCθ to alternative pathways that enhance pMF. We examined the role of three known signaling pathways associated with TrkB (MEK/ERK MAP kinase, PI3 kinase/Akt, and PKCθ) in BDNF-induced pMF in anesthetized, paralyzed, and ventilated Sprague Dawley rats 24 h post-LPS. Spinal PKCθ inhibitor (TIP) attenuated early BDNF-induced pMF (≤30 min), with minimal effect 60-90 min post-BDNF injection. In contrast, MEK inhibition (U0126) abolished BDNF-induced pMF at 60 and 90 min. PI3K/Akt inhibition (PI-828) had no effect on BDNF-induced pMF at any time. Thus, whereas BDNF-induced pMF is exclusively PKCθ-dependent in normal rats, MEK/ERK is recruited by neuroinflammation to sustain, and even augment downstream plasticity. Because AIH is being developed as a therapeutic modality to restore breathing in people living with multiple neurological disorders, it is important to understand how inflammation, a common comorbidity in many traumatic or degenerative central nervous system disorders, impacts phrenic motor plasticity.NEW & NOTEWORTHY We demonstrate that even mild systemic inflammation shifts signaling mechanisms giving rise to BDNF-induced phrenic motor plasticity. This finding has important experimental, biological, and translational implications, particularly since BDNF-dependent spinal plasticity is being translated to restore breathing and nonrespiratory movements in diverse clinical disorders, such as spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS).


Subject(s)
Brain-Derived Neurotrophic Factor , Spinal Cord , Rats , Animals , Rats, Sprague-Dawley , Spinal Cord/physiology , Brain-Derived Neurotrophic Factor/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lipopolysaccharides , Hypoxia/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Inflammation/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/pharmacology , Phrenic Nerve/physiology , Neuronal Plasticity
8.
Biomed Eng Online ; 22(1): 5, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36717872

ABSTRACT

BACKGROUND: Every year, more than 2.5 million critically ill patients in the ICU are dependent on mechanical ventilation. The positive pressure in the lungs generated by the ventilator keeps the diaphragm passive, which can lead to a loss of myofibers within a short time. To prevent ventilator-induced diaphragmatic dysfunction (VIDD), phrenic nerve stimulation may be used. OBJECTIVE: The goal of this study is to show the feasibility of transesophageal phrenic nerve stimulation (TEPNS). We hypothesize that selective phrenic nerve stimulation can efficiently activate the diaphragm with reduced co-stimulations. METHODS: An in vitro study in saline solution combined with anatomical findings was performed to investigate relevant stimulation parameters such as inter-electrode spacing, range to target site, or omnidirectional vs. sectioned electrodes. Subsequently, dedicated esophageal electrodes were inserted into a pig and single stimulation pulses were delivered simultaneously with mechanical ventilation. Various stimulation sites and response parameters such as transdiaphragmatic pressure or airway flow were analyzed to establish an appropriate stimulation setting. RESULTS: Phrenic nerve stimulation with esophageal electrodes has been demonstrated. With a current amplitude of 40 mA, similar response figures of the diaphragm activation as compared to conventional stimulation with needle electrodes at 10mA were observed. Directed electrodes best aligned with the phrenic nerve resulted in up to 16.9 % higher amplitude at the target site in vitro and up to 6 cmH20 higher transdiaphragmatic pressure in vivo as compared to omnidirectional electrodes. The activation efficiency was more sensitive to the stimulation level inside the esophagus than to the inter-electrode spacing. Most effective and selective stimulation was achieved at the level of rib 1 using sectioned electrodes 40 mm apart. CONCLUSION: Directed transesophageal phrenic nerve stimulation with single stimuli enabled diaphragm activation. In the future, this method might keep the diaphragm active during, and even support, artificial ventilation. Meanwhile, dedicated sectioned electrodes could be integrated into gastric feeding tubes.


Subject(s)
Diaphragm , Phrenic Nerve , Animals , Swine , Phrenic Nerve/physiology , Feasibility Studies , Diaphragm/innervation , Diaphragm/physiology , Respiration, Artificial , Electrodes , Electric Stimulation
9.
Medicina (Kaunas) ; 59(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37893463

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects both the upper and lower motor neurons in the nervous system, causing muscle weakness and severe disability. The progressive course of the disease reduces the functional capacity of the affected patients, limits daily activities, and leads to complete dependence on caregivers, ultimately resulting in a fatal outcome. Respiratory dysfunction mostly occurs later in the disease and is associated with a worse prognosis. Forty-six participants were included in our study, with 23 patients in the ALS group and 23 individuals in the control group. The ultrasound examination of the phrenic nerve (PN) was performed by two authors using a high-resolution "Philips EPIQ 7" ultrasound machine with a linear 4-18 MHz transducer. Our study revealed that the phrenic nerve is significantly smaller on both sides in ALS patients compared to the control group (p < 0.001). Only one significant study on PN ultrasound in ALS, conducted in Japan, also showed significant results (p < 0.00001). These small studies are particularly promising, as they suggest that ultrasound findings could serve as an additional diagnostic tool for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnostic imaging , Phrenic Nerve/physiology , Prognosis , Muscle Weakness/complications
10.
J Physiol ; 600(10): 2515-2533, 2022 05.
Article in English | MEDLINE | ID: mdl-35348218

ABSTRACT

Acute intermittent hypoxia (AIH) elicits long-term facilitation (LTF) of respiration. Although LTF is observed when CO2 is elevated during AIH in awake humans, the influence of CO2 on corticospinal respiratory motor plasticity is unknown. Thus, we tested the hypotheses that acute intermittent hypercapnic-hypoxia (AIHH): (1) enhances cortico-phrenic neurotransmission (reflecting volitional respiratory control); and (2) elicits ventilatory LTF (reflecting automatic respiratory control). Eighteen healthy adults completed four study visits. Day 1 consisted of anthropometry and pulmonary function testing. On Days 2, 3 and 4, in a balanced alternating sequence, participants received: AIHH, poikilocapnic AIH, and normocapnic-normoxia (Sham). Protocols consisted of 15, 60 s exposures with 90 s normoxic intervals. Transcranial (TMS) and cervical (CMS) magnetic stimulation were used to induce diaphragmatic motor-evoked potentials and compound muscle action potentials, respectively. Respiratory drive was assessed via mouth occlusion pressure (P0.1 ), and minute ventilation measured at rest. Dependent variables were assessed at baseline and 30-60 min after exposures. Increases in TMS-evoked diaphragm potential amplitudes were observed following AIHH vs. Sham (+28 ± 41%, P = 0.003), but not after AIH. No changes were observed in CMS-evoked diaphragm potential amplitudes. Mouth occlusion pressure also increased after AIHH (+21 ± 34%, P = 0.033), but not after AIH. Ventilatory LTF was not observed after any treatment. We demonstrate that AIHH elicits central neural mechanisms of respiratory motor plasticity and increases resting respiratory drive in awake humans. These findings may have important implications for neurorehabilitation after spinal cord injury and other neuromuscular disorders compromising breathing. KEY POINTS: The occurrence of respiratory long-term facilitation following acute exposure to intermittent hypoxia is believed to be dependent upon CO2 regulation - mechanisms governing the critical role of CO2 have seldom been explored. We tested the hypothesis that acute intermittent hypercapnic-hypoxia (AIHH) enhances cortico-phrenic neurotransmission in awake healthy humans. The amplitude of diaphragmatic motor-evoked potentials induced by transcranial magnetic stimulation was increased after AIHH, but not the amplitude of compound muscle action potentials evoked by cervical magnetic stimulation. Mouth occlusion pressure (P0.1 , an indicator of neural respiratory drive) was also increased after AIHH, but not tidal volume or minute ventilation. Thus, moderate AIHH elicits central neural mechanisms of respiratory motor plasticity, without measurable ventilatory long-term facilitation in awake humans.


Subject(s)
Carbon Dioxide , Hypercapnia , Adult , Animals , Diaphragm/physiology , Humans , Hypoxia , Neuronal Plasticity , Phrenic Nerve/physiology , Rats , Rats, Sprague-Dawley
11.
Thorax ; 77(8): 834-838, 2022 08.
Article in English | MEDLINE | ID: mdl-35459747

ABSTRACT

This study characterised the hemidiaphragm elevation on 3-month interval chest X-rays (CXRs) of patients post COVID-19 pneumonia. 467 CXRs were screened; 19 (4.1%) had an elevated hemidiaphragm. There were 15 (3.2%) patients of interest with new hemidiaphragm elevation, persisting on average 7 months post COVID-19 diagnosis. Symptomatic patients underwent diaphragm ultrasound (n=12), pulmonary function test (n=10), muscle function test (n=6) and neurophysiology (n=5), investigating phrenic nerve function. Ultrasound demonstrated reduced/paradoxical diaphragmatic movements in eight; four of eight had reduced thickening fraction. Neurophysiology peripheral limb studies did not support the differential diagnoses of critical illness neuropathy/myopathy. We propose that, in selected patients, COVID-19 may cause phrenic nerve mononeuritis.


Subject(s)
COVID-19 , Mononeuropathies , COVID-19/complications , COVID-19 Testing , Diaphragm , Humans , Mononeuropathies/diagnosis , Mononeuropathies/etiology , Phrenic Nerve/physiology
12.
Respir Res ; 23(1): 357, 2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36528761

ABSTRACT

BACKGROUND: Rapid magnetic stimulation (RMS) of the phrenic nerves may serve to attenuate diaphragm atrophy during mechanical ventilation. With different coil shapes and stimulation location, inspiratory responses and side-effects may differ. This study aimed to compare the inspiratory and sensory responses of three different RMS-coils either used bilaterally on the neck or on the chest, and to determine if ventilation over 10 min can be achieved without muscle fatigue and coils overheating. METHODS: Healthy participants underwent bilateral anterior 1-s RMS on the neck (RMSBAMPS) (N = 14) with three different pairs of magnetic coils (parabolic, D-shape, butterfly) at 15, 20, 25 and 30 Hz stimulator-frequency and 20% stimulator-output with + 10% increments. The D-shape coil with individual optimal stimulation settings was then used to ventilate participants (N = 11) for up to 10 min. Anterior RMS on the chest (RMSaMS) (N = 8) was conducted on an optional visit. Airflow was assessed via pneumotach and transdiaphragmatic pressure via oesophageal and gastric balloon catheters. Perception of air hunger, pain, discomfort and paresthesia were measured with a numerical scale. RESULTS: Inspiration was induced via RMSBAMPS in 86% of participants with all coils and via RMSaMS in only one participant with the parabolic coil. All coils produced similar inspiratory and sensory responses during RMSBAMPS with the butterfly coil needing higher stimulator-output, which resulted in significantly larger discomfort ratings at maximal inspiratory responses. Ten of 11 participants achieved 10 min of ventilation without decreases in minute ventilation (15.7 ± 4.6 L/min). CONCLUSIONS: RMSBAMPS was more effective than RMSaMS, and could temporarily ventilate humans seemingly without development of muscular fatigue. Trial registration This study was registered on clinicaltrials.gov (NCT04176744).


Subject(s)
Phrenic Nerve , Respiration, Artificial , Humans , Diaphragm/physiology , Magnetic Phenomena , Muscle Fatigue/physiology , Phrenic Nerve/physiology , Respiration, Artificial/adverse effects
13.
Artif Organs ; 46(10): 1988-1997, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35377472

ABSTRACT

BACKGROUND: Diaphragm muscle atrophy during mechanical ventilation begins within 24 h and progresses rapidly with significant clinical consequences. Electrical stimulation of the phrenic nerves using invasive electrodes has shown promise in maintaining diaphragm condition by inducing intermittent diaphragm muscle contraction. However, the widespread application of these methods may be limited by their risks as well as the technical and environmental requirements of placement and care. Non-invasive stimulation would offer a valuable alternative method to maintain diaphragm health while overcoming these limitations. METHODS: We applied non-invasive electrical stimulation to the phrenic nerve in the neck in healthy volunteers. Respiratory pressure and flow, diaphragm electromyography and mechanomyography, and ultrasound visualization were used to assess the diaphragmatic response to stimulation. The electrode positions and stimulation parameters were systematically varied in order to investigate the influence of these parameters on the ability to induce diaphragm contraction with non-invasive stimulation. RESULTS: We demonstrate that non-invasive capture of the phrenic nerve is feasible using surface electrodes without the application of pressure, and characterize the stimulation parameters required to achieve therapeutic diaphragm contractions in healthy volunteers. We show that an optimal electrode position for phrenic nerve capture can be identified and that this position does not vary as head orientation is changed. The stimulation parameters required to produce a diaphragm response at this site are characterized and we show that burst stimulation above the activation threshold reliably produces diaphragm contractions sufficient to drive an inspired volume of over 600 ml, indicating the ability to produce significant diaphragmatic work using non-invasive stimulation. CONCLUSION: This opens the possibility of non-invasive systems, requiring minimal specialist skills to set up, for maintaining diaphragm function in the intensive care setting.


Subject(s)
Diaphragm , Phrenic Nerve , Critical Care , Electric Stimulation , Humans , Phrenic Nerve/physiology , Respiration, Artificial/adverse effects , Ventilators, Mechanical/adverse effects
14.
Echocardiography ; 39(1): 132-135, 2022 01.
Article in English | MEDLINE | ID: mdl-34913199

ABSTRACT

Abnormal diaphragmatic motion (ADM) due to phrenic nerve injury is a recognized complication of cardiac surgery and several diagnostic techniques can be used to determine the diagnosis. Due to its relationship with the diaphragm, cardiac kinetics is affected by the abnormal movement of the diaphragm in cases of left hemidiaphragm paralysis. The authors present a case of diaphragmatic paralysis in which the initial diagnosis is made through echocardiography.


Subject(s)
Cardiac Surgical Procedures , Respiratory Paralysis , Cardiac Surgical Procedures/adverse effects , Diaphragm/diagnostic imaging , Diaphragm/innervation , Diaphragm/surgery , Humans , Phrenic Nerve/diagnostic imaging , Phrenic Nerve/injuries , Phrenic Nerve/physiology , Respiratory Paralysis/diagnostic imaging , Respiratory Paralysis/etiology , Ultrasonography
15.
J Neurophysiol ; 126(6): 2091-2103, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34788165

ABSTRACT

Phrenic afferents project to brainstem areas responsible for cardiorespiratory control and the mid-cervical spinal cord containing the phrenic motor nucleus. Our purpose was to quantify the impact of small- and large-diameter phrenic afferent activation on phrenic motor output. Anesthetized and ventilated rats received unilateral phrenic nerve stimulation while contralateral phrenic motor output and blood pressure were recorded. Twelve currents of 40-Hz inspiratory-triggered stimulation were delivered (20 s on, 5 min off) to establish current response curves. Stimulation pulse width was varied to preferentially activate large-diameter phrenic afferents (narrow pulse width) and recruit small-diameter fibers (wide pulse width). Contralateral phrenic amplitude was elevated immediately poststimulation at currents above 35 µA for wide and 70 µA for narrow pulse stimulation when compared with animals not receiving stimulation (time controls). Wide pulse width stimulation also increased phrenic burst frequency at currents ≥35 µA, caused a transient decrease in mean arterial blood pressure at currents ≥50 µA, and resulted in a small change in heart rate at 300 µA. Unilateral dorsal rhizotomy attenuated stimulation-induced cardiorespiratory responses indicating that phrenic afferent activation is required. Additional analyses compared phrenic motor amplitude with output before stimulation and showed that episodic activation of phrenic afferents with narrow pulse stimulation can induce short-term plasticity. We conclude that the activation of phrenic afferents 1) enhances contralateral phrenic motor amplitude when large-diameter afferents are activated, and 2) when small-diameter fibers are recruited, the amplitude response is associated with changes in burst frequency and cardiovascular parameters.NEW & NOTEWORTHY Acute, inspiratory-triggered stimulation of phrenic afferents increases contralateral phrenic motor amplitude in adult rats. When small-diameter afferents are recruited, the amplitude response is accompanied by an increase in phrenic burst frequency, a transient decrease in mean arterial blood pressure, and a slight increase in heart rate. Repeated episodes of large-diameter phrenic afferent activation may also be capable of inducing short-term plasticity.


Subject(s)
Electrophysiological Phenomena/physiology , Hemodynamics/physiology , Inhalation/physiology , Neuronal Plasticity/physiology , Neurons, Afferent/physiology , Phrenic Nerve/physiology , Afferent Pathways/physiology , Animals , Arterial Pressure/physiology , Blood Gas Analysis , Female , Heart Rate/physiology , Male , Rats , Rats, Sprague-Dawley
16.
J Neurophysiol ; 126(3): 777-790, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34260289

ABSTRACT

Plasticity is a hallmark of the respiratory neural control system. Phrenic long-term facilitation (pLTF) is one form of respiratory plasticity characterized by persistent increases in phrenic nerve activity following acute intermittent hypoxia (AIH). Although there is evidence that key steps in the cellular pathway giving rise to pLTF are localized within phrenic motor neurons (PMNs), the impact of AIH on the strength of breathing-related synaptic inputs to PMNs remains unclear. Furthermore, the functional impact of AIH is enhanced by repeated/daily exposure to AIH (dAIH). Here, we explored the effects of AIH versus 2 wk of dAIH preconditioning on spontaneous and evoked phrenic responses in anesthetized, paralyzed, and mechanically ventilated rats. Evoked phrenic potentials were elicited by respiratory cycle-triggered lateral funiculus stimulation at the C2 spinal level delivered before and 60 min post-AIH (or the equivalent in time controls). Charge-balanced biphasic pulses (100 µs/phase) of progressively increasing intensity (100-700 µA) were delivered during the inspiratory and expiratory phases of the respiratory cycle. Although robust pLTF (∼60% from baseline) was observed after a single exposure to moderate AIH (3 × 5 min; 5-min intervals), there was no effect on evoked phrenic responses, contrary to our initial hypothesis. However, in rats preconditioned with dAIH, baseline phrenic nerve activity and evoked responses were increased, suggesting that repeated exposure to AIH enhances functional synaptic strength when assessed using this technique. The impact of daily AIH preconditioning on synaptic inputs to PMNs raises interesting questions that require further exploration.NEW & NOTEWORTHY Two weeks of daily acute intermittent hypoxia (dAIH) preconditioning enhanced stimulus-evoked phrenic responses to lateral funiculus stimulation (targeting respiratory bulbospinal projection to phrenic motor neurons). Furthermore, dAIH preconditioning enhanced baseline phrenic motor output responses to maximal chemoreflex activation in intact rats.


Subject(s)
Hypoxia/physiopathology , Motor Neurons/physiology , Neuronal Plasticity , Phrenic Nerve/physiology , Animals , Evoked Potentials , Male , Phrenic Nerve/cytology , Phrenic Nerve/physiopathology , Rats , Rats, Sprague-Dawley
17.
J Neurophysiol ; 125(4): 1146-1156, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33566744

ABSTRACT

Moderate acute intermittent hypoxia (mAIH; 35-55 mmHg PaO2) elicits phrenic long-term facilitation (pLTF) by a mechanism that requires activation of Gq protein-coupled serotonin type 2 receptors, MEK/ERK MAP kinase, and NADPH oxidase activity and is constrained by cAMP-PKA signaling. In contrast, severe AIH (sAIH; 25-35 mmHg PaO2) elicits Gs protein-coupled adenosine type 2 A receptor-dependent pLTF. Another Gs protein-coupled receptor, serotonin 7 receptors, elicits phrenic motor facilitation (pMF) by a mechanism that requires exchange protein activated by cyclic AMP (EPAC) and phosphatidylinositol 3-kinase/Akt (PI3K/Akt) activation and is constrained by NADPH oxidase activity. Here, we tested the hypothesis that the same downstream signaling mechanisms giving rise to serotonin 7 (vs. serotonin 2) receptor-induced pMF underlie sAIH-induced pLTF. In anesthetized rats, sAIH-induced pLTF was compared after pretreatment with intrathecal (C4) injections of inhibitors for: 1) EPAC (ESI-05); 2) MEK/ERK (UO126); 3) PKA (KT-5720); 4) PI3K/Akt (PI828); and 5) NADPH oxidase (apocynin). In partial agreement with our hypothesis, sAIH-induced pLTF was abolished by ESI-05 and PI828 and marginally enhanced by apocynin but, surprisingly, was abolished by UO126 and attenuated by KT-5720. Mechanisms of sAIH-induced pLTF reflect elements of both Gq and Gs pathways to pMF, likely as a consequence of the complex, cross-talk interactions between them.NEW & NOTEWORTHY Distinct mechanisms give rise to pLTF induced by moderate and severe AIH. We demonstrate that, unlike moderate AIH, severe AIH-induced pLTF requires EPAC and PI3K/Akt and is marginally constrained by NADPH oxidase activity. Surprisingly, sAIH-induced pLTF requires MEK/ERK activity similar to moderate AIH-induced pLTF and is reduced by PKA inhibition. We suggest sAIH-induced pLTF arises from complex interactions between dominant mechanisms characteristic of moderate versus severe AIH-induced pLTF.


Subject(s)
Hypoxia/metabolism , Hypoxia/physiopathology , Motor Neurons/physiology , Neuronal Plasticity/physiology , Phrenic Nerve/physiology , Signal Transduction/physiology , Acute Disease , Animals , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley
18.
J Neurophysiol ; 126(4): 1420-1429, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34495779

ABSTRACT

Repeated short episodes of hypoxia produce a sustained increase in phrenic nerve output lasting well beyond acute intermittent hypoxia (AIH) exposure (i.e., phrenic long-term facilitation; pLTF). Pretreatment with ampakines, drugs which allosterically modulate AMPA receptors, enables a single brief episode of hypoxia to produce pLTF, lasting up to 90 min after hypoxia. Here, we tested the hypothesis that ampakine pretreatment would enhance the magnitude of pLTF evoked by repeated bouts of hypoxia. Phrenic nerve output was recorded in urethane-anesthetized, mechanically ventilated, and vagotomized adult male Sprague-Dawley rats. Initial experiments demonstrated that ampakine CX717 (15 mg/kg iv) caused an acute increase in phrenic nerve inspiratory burst amplitude reaching 70 ± 48% baseline (BL) after 2 min (P = 0.01). This increased bursting was not sustained (2 ± 32% BL at 60 min, P = 0.9). When CX717 was delivered 2 min before a single episode of isocapnic hypoxia (5 min, [Formula: see text] = 44 ± 9 mmHg), facilitation of phrenic nerve burst amplitude occurred (96 ± 62% BL at 60 min, P < 0.001). However, when CX717 was given 2 min before three, 5-min hypoxic episodes ([Formula: see text] = 45 ± 6 mmHg) pLTF was attenuated and did not reach statistical significance (24 ± 29% BL, P = 0.08). In the absence of CX717 pretreatment, pLTF was observed after three (74 ± 33% BL at 60 min, P < 0.001) but not one episode of hypoxia (1 ± 8% BL at 60 min, P = 0.9). We conclude that pLTF is not enhanced when ampakine pretreatment is followed by repeated bouts of hypoxia. Rather, the combination of ampakine and a single hypoxic episode appears to be ideal for producing sustained increase in phrenic motor output.NEW & NOTEWORTHY Pretreatment with ampakine CX717 created conditions that enabled an acute bout of moderate hypoxia to evoke phrenic motor facilitation, but this response was not observed when ampakine pretreatment was followed by intermittent hypoxia. Thus, in anesthetized and spinal intact rats, the combination of ampakine and one bout of hypoxia appears ideal for triggering respiratory neuroplasticity.


Subject(s)
Hypoxia/physiopathology , Isoxazoles/pharmacology , Neuronal Plasticity/drug effects , Phrenic Nerve/drug effects , Phrenic Nerve/physiology , Receptors, AMPA/drug effects , Animals , Isoxazoles/administration & dosage , Male , Rats , Rats, Sprague-Dawley , Time Factors
19.
J Neurophysiol ; 126(3): 709-722, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34288779

ABSTRACT

Intrapleural injection of cholera toxin B conjugated to saporin (CTB-SAP) mimics respiratory motor neuron death and respiratory deficits observed in rat models of neuromuscular diseases. Seven-day CTB-SAP rats elicit enhanced phrenic long-term facilitation (pLTF) primarily through TrkB and PI3K/Akt-dependent mechanisms [i.e., Gs-pathway, which can be initiated by adenosine 2A (A2A) receptors in naïve rats], whereas 28-day CTB-SAP rats elicit moderate pLTF though BDNF- and MEK-/ERK-dependent mechanisms [i.e., Gq-pathway, which is typically initiated by serotonin (5-HT) receptors in naïve rats]. Here, we tested the hypothesis that pLTF following CTB-SAP is 1) A2A receptor-dependent at 7 days and 2) 5-HT receptor-dependent at 28 days. Adult Sprague-Dawley male rats were anesthetized, paralyzed, ventilated, and exposed to acute intermittent hypoxia (AIH; 3-, 5-min bouts of 10.5% O2) following bilateral, intrapleural injections at 7 days and 28 days of 1) CTB-SAP (25 µg) or 2) unconjugated CTB and SAP (control). Intrathecal C4 delivery included either the 1) A2A receptor antagonist (MSX-3; 10 µM; 12 µL) or 2) 5-HT receptor antagonist (methysergide; 20 mM; 15 µL). pLTF was abolished with A2A receptor inhibition in 7-day, not 28-day, CTB-SAP rats versus controls (P < 0.05), whereas pLTF was abolished following 5-HT receptor inhibition in 28-day, not 7-day, CTB-SAP rats versus controls (P < 0.05). In addition, 5-HT2A receptor expression was unchanged in CTB-SAP rats versus controls, whereas 5-HT2B receptor expression was decreased in CTB-SAP rats versus controls (P < 0.05). This study furthers our understanding of the contribution of differential receptor activation to pLTF and its implications for breathing following respiratory motor neuron death.NEW & NOTEWORTHY The current study investigates underlying receptor-dependent mechanisms contributing to phrenic long-term facilitation (pLTF) following CTB-SAP-induced respiratory motor neuron death at 7 days and 28 days. We found that A2A receptors are required for enhanced pLTF in 7-day CTB-SAP rats, whereas 5-HT receptors are required for moderate pLTF in 28-day CTB-SAP rats. Targeting these time-dependent mechanisms have implications for breathing maintenance over the course of many neuromuscular diseases.


Subject(s)
Phrenic Nerve/metabolism , Receptor, Adenosine A2A/metabolism , Receptor, trkB/metabolism , Receptors, Serotonin/metabolism , Synapses/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cholera Toxin/toxicity , Extracellular Signal-Regulated MAP Kinases/metabolism , Long-Term Potentiation , Male , Motor Neurons/drug effects , Motor Neurons/metabolism , Motor Neurons/physiology , Phosphatidylinositol 3-Kinases/metabolism , Phrenic Nerve/cytology , Phrenic Nerve/physiology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Respiration , Saporins/toxicity , Synapses/physiology
20.
Exp Physiol ; 106(9): 2002-2012, 2021 09.
Article in English | MEDLINE | ID: mdl-34180081

ABSTRACT

NEW FINDINGS: What is the central question of this study? Would ovariectomy cause prolonged changes in ventilation and sustained loss of acute, intermittent hypoxia-induced neuroplasticity or would these outcomes be restored with time? What is the main finding and its importance? Our main findings demonstrate that ovariectomy elicits minimal alteration in overall breathing function but impairs acute, intermittent hypoxia-induced plasticity for ≤ 12 weeks. ABSTRACT: Sex hormones are necessary to enable respiratory neuroplasticity, including phrenic long-term facilitation (pLTF), a form of respiratory motor plasticity elicited by acute, intermittent hypoxia (AIH). Female rats exhibit a progressive increase in phrenic nerve amplitude after AIH characteristic of pLTF only during pro-oestrus, the stage of the oestrous cycle notable for elevated circulating oestradiol levels. Removal of the ovaries [ovariectomy (OVX)], the primary source of circulating oestradiol, also eliminates AIH-induced pLTF after 1 week. Ovariectomy is used routinely as a model to examine the impact of sex hormones on CNS structure and function, but the long-term impact of OVX is rarely examined. Extra-ovarian sites of oestradiol synthesis, including multiple CNS sites, have been identified and might possess the capacity to restore oestradiol levels, in part, over time, impacting respiratory function and the expression of respiratory neuroplasticity. We examined both ventilation in awake, freely behaving female rats, using barometric plethysmography, and the expression of AIH-induced pLTF in anaesthetized, ventilated female rats 2 and 12 weeks after OVX and compared them with age-matched ovarian-intact female rats. Our findings indicate that chronic OVX had little impact on baseline breathing or in the response to respiratory challenge (10% O2 , 5% CO2 , balance N2 ) during plethysmography. However, OVX rats at both 2 and 12 weeks demonstrated a persistent loss of AIH-induced pLTF relative to control animals (P < 0.01), suggesting that other sources of oestradiol synthesis were insufficient to restore pLTF. These data are consistent with our previous work indicating that oestradiol plays a key role in expression of AIH-induced respiratory neuroplasticity.


Subject(s)
Phrenic Nerve , Respiration , Animals , Female , Humans , Hypoxia , Long-Term Potentiation , Ovariectomy , Phrenic Nerve/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL