Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
J Biol Chem ; 300(2): 105590, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141759

ABSTRACT

Far-red light photoacclimation, or FaRLiP, is a facultative response exhibited by some cyanobacteria that allows them to absorb and utilize lower energy light (700-800 nm) than the wavelengths typically used for oxygenic photosynthesis (400-700 nm). During this process, three essential components of the photosynthetic apparatus are altered: photosystem I, photosystem II, and the phycobilisome. In all three cases, at least some of the chromophores found in these pigment-protein complexes are replaced by chromophores that have red-shifted absorbance relative to the analogous complexes produced in visible light. Recent structural and spectroscopic studies have elucidated important features of the two photosystems when altered to absorb and utilize far-red light, but much less is understood about the modified phycobiliproteins made during FaRLiP. We used single-particle, cryo-EM to determine the molecular structure of a phycobiliprotein core complex comprising allophycocyanin variants that absorb far-red light during FaRLiP in the marine cyanobacterium Synechococcus sp. PCC 7335. The structure reveals the arrangement of the numerous red-shifted allophycocyanin variants and the probable locations of the chromophores that serve as the terminal emitters in this complex. It also suggests how energy is transferred to the photosystem II complexes produced during FaRLiP. The structure additionally allows comparisons with other previously studied allophycocyanins to gain insights into how phycocyanobilin chromophores can be tuned to absorb far-red light. These studies provide new insights into how far-red light is harvested and utilized during FaRLiP, a widespread cyanobacterial photoacclimation mechanism.


Subject(s)
Acclimatization , Bacterial Proteins , Models, Molecular , Phycobiliproteins , Red Light , Synechococcus , Photosystem II Protein Complex/metabolism , Synechococcus/chemistry , Synechococcus/metabolism , Phycobiliproteins/chemistry , Acclimatization/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cryoelectron Microscopy , Protein Structure, Tertiary
2.
Chembiochem ; 25(11): e202400068, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38623786

ABSTRACT

Far-red and near-infrared fluorescent proteins have regions of maximum transmission in most tissues and can be widely used as fluorescent biomarkers. We report that fluorescent phycobiliproteins originating from the phycobilisome core subunit ApcF2 can covalently bind biliverdin, named BDFPs. To further improve BDFPs, we conducted a series of studies. Firstly, we mutated K53Q and T144A of BDFPs to increase their effective brightness up to 190 % in vivo. Secondly, by homochromatic tandem fusion of high-brightness BDFPs to achieve monomerization, which increases the effective brightness by up to 180 % in vivo, and can effectively improve the labeling effect. By combining the above two approaches, the brightness of the tandem BDFPs was much improved compared with that of the previously reported fluorescent proteins in a similar spectral range. The tandem BDFPs were expressed stably while maintaining fluorescence in mammalian cells and Caenorhabditis elegans. They were also photostable and resistant to high temperature, low pH, and chemical denaturation. The tandem BDFPs advantages were proved in applications as biomarkers for imaging in super-resolution microscopy.


Subject(s)
Caenorhabditis elegans , Luminescent Proteins , Animals , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Caenorhabditis elegans/metabolism , Humans , Phycobiliproteins/chemistry , Phycobiliproteins/metabolism , Biliverdine/chemistry , Biliverdine/metabolism , Fluorescent Dyes/chemistry , HEK293 Cells
3.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000294

ABSTRACT

Vivid-colored phycobiliproteins (PBPs) have emerging potential as food colors and alternative proteins in the food industry. However, enhancing their application potential requires increasing stability, cost-effective purification processes, and consumer acceptance. This narrative review aimed to highlight information regarding the critical aspects of PBP research that is needed to improve their food industry potential, such as stability, food fortification, development of new PBP-based food products, and cost-effective production. The main results of the literature review show that polysaccharide and protein-based encapsulations significantly improve PBPs' stability. Additionally, while many studies have investigated the ability of PBPs to enhance the techno-functional properties, like viscosity, emulsifying and stabilizing activity, texture, rheology, etc., of widely used food products, highly concentrated PBP food products are still rare. Therefore, much effort should be invested in improving the stability, yield, and sensory characteristics of the PBP-fortified food due to the resulting unpleasant sensory characteristics. Considering that most studies focus on the C-phycocyanin from Spirulina, future studies should concentrate on less explored PBPs from red macroalgae due to their much higher production potential, a critical factor for positioning PBPs as alternative proteins.


Subject(s)
Food Industry , Phycobiliproteins , Phycobiliproteins/chemistry , Food Industry/methods , Food Coloring Agents/chemistry , Humans
4.
World J Microbiol Biotechnol ; 40(9): 272, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030303

ABSTRACT

Microalgae are a source of a wide variety of commodities, including particularly valuable pigments. The typical pigments present in microalgae are the chlorophylls, carotenoids, and phycobiliproteins. However, other types of pigments, of the family of water-soluble polyphenols, usually encountered in terrestrial plants, have been recently reported in microalgae. Among such microalgal polyphenols, many flavonoids have a yellowish hue, and are used as natural textile dyes. Besides being used as natural colorants, for example in the food or cosmetic industry, microalgal pigments also possess many bioactive properties, making them functional as nutraceutical or pharmaceutical agents. Each type of pigment, with its own chemical structure, fulfills particular biological functions. Considering both eukaryotes and prokaryotes, some species within the four most promising microalgae groups (Cyanobacteria, Rhodophyta, Chlorophyta and Heterokontophyta) are distinguished by their high contents of specific added-value pigments. To further enhance microalgae pigment contents during autotrophic cultivation, a review is made of the main related strategies adopted during the last decade, including light adjustments (quantity and quality, and the duration of the photoperiod cycle), and regard to mineral medium characteristics (salinity, nutrients concentrations, presence of inductive chemicals). In contrast to what is usually observed for growth-related pigments, accumulation of non-photosynthetic pigments (polyphenols and secondary carotenoids) requires particularly stressful conditions. Finally, pigment enrichment is also made possible with two new cutting-edge technologies, via the application of metallic nanoparticles or magnetic fields.


Subject(s)
Microalgae , Pigments, Biological , Microalgae/metabolism , Microalgae/chemistry , Pigments, Biological/chemistry , Carotenoids/chemistry , Carotenoids/metabolism , Carotenoids/analysis , Phycobiliproteins/chemistry , Phycobiliproteins/metabolism , Cyanobacteria/metabolism , Cyanobacteria/chemistry , Rhodophyta/chemistry , Rhodophyta/metabolism , Chlorophyta/chemistry , Chlorophyta/metabolism , Chlorophyll/analysis , Polyphenols/analysis , Polyphenols/chemistry , Polyphenols/metabolism , Culture Media/chemistry
5.
Int J Mol Sci ; 24(11)2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37298688

ABSTRACT

The phycobilisome (PBS) is the major light-harvesting apparatus in cyanobacteria and red algae. It is a large multi-subunit protein complex of several megadaltons that is found on the stromal side of thylakoid membranes in orderly arrays. Chromophore lyases catalyse the thioether bond between apoproteins and phycobilins of PBSs. Depending on the species, composition, spatial assembly, and, especially, the functional tuning of different phycobiliproteins mediated by linker proteins, PBSs can absorb light between 450 and 650 nm, making them efficient and versatile light-harvesting systems. However, basic research and technological innovations are needed, not only to understand their role in photosynthesis but also to realise the potential applications of PBSs. Crucial components including phycobiliproteins, phycobilins, and lyases together make the PBS an efficient light-harvesting system, and these provide a scheme to explore the heterologous synthesis of PBS. Focusing on these topics, this review describes the essential components needed for PBS assembly, the functional basis of PBS photosynthesis, and the applications of phycobiliproteins. Moreover, key technical challenges for heterologous biosynthesis of phycobiliproteins in chassis cells are discussed.


Subject(s)
Phycobilisomes , Rhodophyta , Phycobilisomes/chemistry , Phycobilisomes/metabolism , Phycobilins , Phycobiliproteins/chemistry , Phycobiliproteins/metabolism , Photosynthesis , Rhodophyta/chemistry
6.
Proc Natl Acad Sci U S A ; 115(15): E3342-E3350, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29588417

ABSTRACT

The mechanisms controlling excitation energy transport (EET) in light-harvesting complexes remain controversial. Following the observation of long-lived beats in 2D electronic spectroscopy of PC645, vibronic coherence, the delocalization of excited states between pigments supported by a resonant vibration, has been proposed to enable direct excitation transport from the highest-energy to the lowest-energy pigments, bypassing a collection of intermediate states. Here, we instead show that for phycobiliprotein PC645 an incoherent vibronic transport mechanism is at play. We quantify the solvation dynamics of individual pigments using ab initio quantum mechanics/molecular mechanics (QM/MM) nuclear dynamics. Our atomistic spectral densities reproduce experimental observations ranging from absorption and fluorescence spectra to the timescales and selectivity of down-conversion observed in transient absorption measurements. We construct a general model for vibronic dimers and establish the parameter regimes of coherent and incoherent vibronic transport. We demonstrate that direct down-conversion in PC645 proceeds incoherently, enhanced by large reorganization energies and a broad collection of high-frequency vibrations. We suggest that a similar incoherent mechanism is appropriate across phycobiliproteins and represents a potential design principle for nanoscale control of EET.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Phycobiliproteins/chemistry , Energy Transfer , Fluorescence , Light , Light-Harvesting Protein Complexes/metabolism , Molecular Dynamics Simulation , Photosynthesis , Phycobiliproteins/metabolism , Pigments, Biological/chemistry , Pigments, Biological/metabolism , Quantum Theory , Vibration
7.
Molecules ; 25(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32859046

ABSTRACT

The freezing-thawing method had been reported to be the best phycobiliprotein extraction technique. However, optimum parameters of this extraction method for Arthrospira sp. (one of the major phycobiliprotein sources) still remained unclear. Hence, this study aimed to optimize the freezing-thawing parameters of phycobiliprotein extraction in Arthrospira sp. (UPMC-A0087). The optimization of the freezing-thawing method was conducted using different solvents, biomass/solvent ratios, temperatures, time intervals and freezing-thawing cycles. The extracted phycobiliproteins were quantified using a spectrophotometric assay. Double distilled water (pH 7) with a 0.50% w/v biomass/solvent ratio was the most efficient solvent in extracting high concentrations and purity of phycobiliproteins from Arthrospira sp. In addition, the combination of freezing at -80 °C (2 h) and thawing at 25 °C (24 h) appeared to be the optimum temperature and extraction time to obtain the highest amount of phycobiliproteins. A minimum of one cycle of freezing and thawing was sufficient for extracting high concentrations of phycobiliproteins. The findings from this study could reduce the cost and labor needed for extracting high quality phycobiliproteins. It also allowed the harvesting of large amounts of valuable phycobiliproteins.


Subject(s)
Bacterial Proteins , Biomass , Phycobiliproteins , Spirulina/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Freezing , Phycobiliproteins/chemistry , Phycobiliproteins/isolation & purification
8.
Chembiochem ; 20(21): 2777-2783, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31145526

ABSTRACT

Biliproteins have extended the spectral range of fluorescent proteins into the far-red (FR) and near-infrared (NIR) regions. These FR and NIR fluorescent proteins are suitable for the bioimaging of mammalian tissues and are indispensable for multiplex labeling. Their application, however, presents considerable challenges in increasing their brightness, while maintaining emission in FR regions and oligomerization of monomers. Two fluorescent biliprotein triads, termed BDFP1.2/1.6:3.3:1.2/1.6, are reported. In mammalian cells, these triads not only have extremely high brightness in the FR region, but also have monomeric oligomerization. The BDFP1.2 and BDFP1.6 domains covalently bind to biliverdin, which is accessible in most cells. The BDFP3.3 domain noncovalently binds phycoerythrobilin that is added externally. A new method of replacing phycoerythrobilin with proteolytically digested BDFP3.3 facilitates this labeling. BDFP3.3 has a very high fluorescence quantum yield of 66 %, with maximal absorbance at λ=608 nm and fluorescence at λ=619 nm. In BDFP1.2/1.6:3.3:1.2/1.6, the excitation energy that is absorbed in the red region by phycoerythrobilin in the BDFP3.3 domain is transferred to biliverdin in the two BDFP1.2 or BDFP1.6 domains and fluoresces at λ≈670 nm. The combination of BDFP3.3 and BDFP1.2/1.6:3.3:1.2/1.6 can realize dual-color labeling. Labeling various proteins by fusion to these new fluorescent biliproteins is demonstrated in prokaryotic and mammalian cells.


Subject(s)
Bacterial Proteins/chemistry , Fluorescence , Luminescent Proteins/chemistry , Phycobilins/chemistry , Phycobiliproteins/chemistry , Phycoerythrin/chemistry , Staining and Labeling/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line, Tumor , Circular Dichroism/methods , Fluorescence Resonance Energy Transfer/methods , HEK293 Cells , HeLa Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence/methods , Phycobilins/genetics , Phycobilins/metabolism , Phycobiliproteins/genetics , Phycobiliproteins/metabolism , Phycoerythrin/genetics , Phycoerythrin/metabolism , Spectrometry, Fluorescence/methods , Synechococcus/chemistry , Synechococcus/genetics , Synechococcus/metabolism
9.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1877-1886, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28782566

ABSTRACT

Biliproteins have extended the spectral range of fluorescent proteins into the region of maximal transmission of most tissues and are favorable for multiplexing, but their application presents considerable challenges. Their fluorescence derives from open-chain tetrapyrrole chromophores which often require the introduction of dedicated reductases and lyases. In addition, their fluorescence yield generally decreases with increasing wavelengths and depends strongly on the state of the binding protein. We report fluorescent biliproteins, termed BDFPs, that are derived from the phycobilisome core subunit, ApcF2: this subunit is induced in the thermophilic cyanobacterium, Chroococcidiopsis thermalis, by far-red light and binds phycocyanobilin non-covalently. The BDFPs obtained by molecular evolution of ApcF2 bind the more readily accessible biliverdin covalently while retaining the red-shifted fluorescence in the near-infrared spectral region (~710nm). They are small monomers (~15kDa) and not only show excellent photostability, but are also thermostable up to 80°C, tolerate acid down to pH2 and high concentrations of denaturants. The result indicates far-red adapting cyanobacteria as a useful source for designing extremely red-shifted fluorescent markers. In vivo performance of BDFPs as biomarkers in conventional and super-resolution microscopy, alone or fused to target proteins, is exemplified in several mammalian cells, including, human cell lines, in the nematode, Caenorhabditis elegans and, at low pH, in Lactobacillus lactis.


Subject(s)
Bacterial Proteins/chemistry , Phycobiliproteins/chemistry , Phycobilisomes/metabolism , Bacterial Proteins/metabolism , Cyanobacteria/chemistry , Fluorescence , Humans , Light , Phycobiliproteins/metabolism , Phycobilisomes/chemistry , Spectrometry, Fluorescence
10.
J Struct Biol ; 204(3): 519-522, 2018 12.
Article in English | MEDLINE | ID: mdl-30287387

ABSTRACT

Small, ultra-red fluorescence protein (smURFP) introduces the non-native biliverdin (BV) chromophore to phycobiliproteins (PBPs), allowing them to be used as transgenic labels for in vivo mammalian imaging. Presently, no structural information exists for PBPs bound to the non-native BV chromophore, which limits the further development of smURFP and related proteins as imaging labels or indicators. Here we describe the first crystal structure of a PBP bound to BV. The structures of smURFP-Y56R with BV and smURFP-Y56F without BV reveal unique oligomerization interfaces different from those in wild-type PBPs bound to native chromophores. Our structures suggest that the oligomerization interface affects the BV binding site, creating a link between oligomerization and chromophorylation that we confirmed through site-directed mutagenesis and that may help guide efforts to improve the notorious chromophorylation of smURFP and other PBPs engineered to bind BV.


Subject(s)
Biliverdine/chemistry , Luminescent Measurements/methods , Luminescent Proteins/chemistry , Phycobiliproteins/chemistry , Biliverdine/metabolism , Binding Sites/genetics , Crystallization , Crystallography, X-Ray , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Phycobiliproteins/metabolism , Protein Binding , Protein Multimerization , Spectrometry, Fluorescence , Red Fluorescent Protein
11.
J Biol Chem ; 292(8): 3089-3098, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28073912

ABSTRACT

Auxiliary metabolic genes (AMG) are commonly found in the genomes of phages that infect cyanobacteria and increase the fitness of the cyanophage. AMGs are often homologs of host genes, and also typically related to photosynthesis. For example, the ΦcpeT gene in the cyanophage P-HM1 encodes a putative phycobiliprotein lyase related to cyanobacterial T-type lyases, which facilitate attachment of linear tetrapyrrole chromophores to Cys-155 of phycobiliprotein ß-subunits, suggesting that ΦCpeT may also help assemble light-harvesting phycobiliproteins during infection. To investigate this possibility, we structurally and biochemically characterized recombinant ΦCpeT. The solved crystal structure of ΦCpeT at 1.8-Å resolution revealed that the protein adopts a similar fold as the cyanobacterial T-type lyase CpcT from Nostoc sp. PCC7120 but overall is more compact and smaller. ΦCpeT specifically binds phycoerythrobilin (PEB) in vitro leading to a tight complex that can also be formed in Escherichia coli when it is co-expressed with genes encoding PEB biosynthesis (i.e. ho1 and pebS). The formed ΦCpeT·PEB complex was very stable as the chromophore was not lost during chromatography and displayed a strong red fluorescence with a fluorescence quantum yield of ΦF = 0.3. This complex was not directly able to transfer PEB to the host phycobiliprotein ß-subunit. However, it could assist the host lyase CpeS in its function by providing a pool of readily available PEB, a feature that might be important for fast phycobiliprotein assembly during phage infection.


Subject(s)
Bacteriophages/chemistry , Lyases/chemistry , Phycobiliproteins/chemistry , Viral Proteins/chemistry , Bacteriophages/metabolism , Crystallography, X-Ray , Lyases/metabolism , Models, Molecular , Nostoc/chemistry , Nostoc/enzymology , Nostoc/metabolism , Phycobilins/metabolism , Phycobiliproteins/metabolism , Phycoerythrin/metabolism , Prochlorococcus/virology , Protein Conformation , Viral Proteins/metabolism
12.
Photosynth Res ; 135(1-3): 149-163, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28540588

ABSTRACT

Plants and algae have developed various light-harvesting mechanisms for optimal delivery of excitation energy to the photosystems. Cryptophyte algae have evolved a novel soluble light-harvesting antenna utilizing phycobilin pigments to complement the membrane-intrinsic Chl a/c-binding LHC antenna. This new antenna consists of the plastid-encoded ß-subunit, a relic of the ancestral phycobilisome, and a novel nuclear-encoded α-subunit unique to cryptophytes. Together, these proteins form the active α1ß·α2ß-tetramer. In all cryptophyte algae investigated so far, the α-subunits have duplicated and diversified into a large gene family. Although there is transcriptional evidence for expression of all these genes, the X-ray structures determined to date suggest that only two of the α-subunit genes might be significantly expressed at the protein level. Using proteomics, we show that in phycoerythrin 545 (PE545) of Guillardia theta, the only cryptophyte with a sequenced genome, all 20 α-subunits are expressed when the algae grow under white light. The expression level of each protein depends on the intensity of the growth light, but there is no evidence for a specific light-dependent regulation of individual members of the α-subunit family under the growth conditions applied. GtcpeA10 seems to be a special member of the α-subunit family, because it consists of two similar N- and C-terminal domains, which likely are the result of a partial tandem gene duplication. The proteomics data of this study have been deposited to the ProteomeXchange Consortium and have the dataset identifiers PXD006301 and 10.6019/PXD006301.


Subject(s)
Cryptophyta/metabolism , Cryptophyta/radiation effects , Light-Harvesting Protein Complexes/metabolism , Light , Phycobiliproteins/metabolism , Plant Proteins/metabolism , Proteomics/methods , Acclimatization/radiation effects , Amino Acid Sequence , Cells, Cultured , Cryptophyta/growth & development , Light-Harvesting Protein Complexes/chemistry , Models, Genetic , Models, Molecular , Photosynthesis/radiation effects , Phycobiliproteins/chemistry , Plant Proteins/chemistry , Protein Subunits/chemistry , Protein Subunits/metabolism , Spectrometry, Fluorescence , Temperature
13.
Phys Chem Chem Phys ; 20(33): 21404-21416, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30105318

ABSTRACT

The light-harvesting mechanisms of cryptophyte antenna complexes have attracted considerable attention due to their ability to exhibit maximal photosynthetic activity under very low-light conditions and to display several colors, as well as the observation of vibronic coherent features in their two-dimensional electronic spectra. However, detailed investigations on the interplay between the protein environment and their light-harvesting properties are hampered by the uncertainty related to the protonation state of the underlying bilin pigments. Here we study the protonation preferences of four types of bilin pigments including 15,16-dihydrobiliverdin (DBV), phycoerythrobilin (PEB), phycocyanobilin (PCB) and mesobiliverdin (MBV), which are found in phycoerythrin PE545 and phycocyanin PC577, PC612, PC630 and PC645 complexes. We apply quantum chemical calculations coupled to continuum solvation calculations to predict the intrinsic acidity of bilins in aqueous solution, and then combine molecular dynamics simulations with empirical pKa estimates to investigate the impact of the local protein environment on the acidity of the pigments. We also report measurements of the absorption spectra of the five complexes in a wide range of pH in order to validate our simulations and investigate possible changes in the light harvesting properties of the complexes in the range of physiological pH found in the lumen (pH ∼ 5-7). The results suggest a pKa > 7 for DBV and MBV pigments in the α polypeptide chains of PE545 and PC630/PC645 complexes, which are not coordinated to a negatively charged amino acid. For the other PEB, DBV and PCB pigments, which interact with a Glu or Asp side chain, higher pKa values (pKa > 8) are estimated. Overall, the results support a preferential population of the fully protonated state for bilins in cryptophyte complexes under physiological conditions regardless of the specific type of pigment and local protein environment.


Subject(s)
Phycobilins/chemistry , Phycobiliproteins/chemistry , Protons , Cryptophyta/chemistry , Hydrogen-Ion Concentration , Light , Models, Chemical , Molecular Dynamics Simulation , Phycobilins/radiation effects , Phycobiliproteins/radiation effects , Quantum Theory , Thermodynamics
14.
Proc Natl Acad Sci U S A ; 112(52): 15880-5, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26669441

ABSTRACT

Photosynthesis relies on energy transfer from light-harvesting complexes to reaction centers. Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, attach to the membrane via the multidomain core-membrane linker, L(CM). The chromophore domain of L(CM) forms a bottleneck for funneling the harvested energy either productively to reaction centers or, in case of light overload, to quenchers like orange carotenoid protein (OCP) that prevent photodamage. The crystal structure of the solubly modified chromophore domain from Nostoc sp. PCC7120 was resolved at 2.2 Å. Although its protein fold is similar to the protein folds of phycobiliproteins, the phycocyanobilin (PCB) chromophore adopts ZZZssa geometry, which is unknown among phycobiliproteins but characteristic for sensory photoreceptors (phytochromes and cyanobacteriochromes). However, chromophore photoisomerization is inhibited in L(CM) by tight packing. The ZZZssa geometry of the chromophore and π-π stacking with a neighboring Trp account for the functionally relevant extreme spectral red shift of L(CM). Exciton coupling is excluded by the large distance between two PCBs in a homodimer and by preservation of the spectral features in monomers. The structure also indicates a distinct flexibility that could be involved in quenching. The conclusions from the crystal structure are supported by femtosecond transient absorption spectra in solution.


Subject(s)
Bacterial Proteins/metabolism , Nostoc/metabolism , Phycobiliproteins/metabolism , Phycobilisomes/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , Energy Transfer/radiation effects , Kinetics , Light , Models, Molecular , Mutation , Nostoc/genetics , Nostoc/radiation effects , Photosynthesis/radiation effects , Phycobiliproteins/chemistry , Phycobiliproteins/genetics , Protein Folding , Protein Multimerization , Protein Structure, Tertiary , Spectrophotometry/methods
15.
Biochim Biophys Acta Bioenerg ; 1858(4): 318-324, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28131736

ABSTRACT

The structure of phycobiliproteins of the cyanobacterium Acaryochloris marina was investigated in buffer solution at physiological temperatures, i.e. under the same conditions applied in spectroscopic experiments, using small angle neutron scattering. The scattering data of intact phycobiliproteins in buffer solution containing phosphate can be well described using a cylindrical shape with a length of about 225Å and a diameter of approximately 100Å. This finding is qualitatively consistent with earlier electron microscopy studies reporting a rod-like shape of the phycobiliproteins with a length of about 250 (M. Chen et al., FEBS Letters 583, 2009, 2535) or 300Å (J. Marquart et al., FEBS Letters 410, 1997, 428). In contrast, phycobiliproteins dissolved in buffer lacking phosphate revealed a splitting of the rods into cylindrical subunits with a height of 28Å only, but also a pronounced sample aggregation. Complementary small angle neutron and X-ray scattering experiments on phycocyanin suggest that the cylindrical subunits may represent either trimeric phycocyanin or trimeric allophycocyanin. Our findings are in agreement with the assumption that a phycobiliprotein rod with a total height of about 225Å can accommodate seven trimeric phycocyanin subunits and one trimeric allophycocyanin subunit, each of which having a height of about 28Å. The structural information obtained by small angle neutron and X-ray scattering can be used to interpret variations in the low-energy region of the 4.5K absorption spectra of phycobiliproteins dissolved in buffer solutions containing and lacking phosphate, respectively.


Subject(s)
Cyanobacteria/chemistry , Energy Transfer , Scattering, Small Angle , Neutron Diffraction , Phycobiliproteins/chemistry , X-Ray Diffraction
16.
Biochim Biophys Acta Bioenerg ; 1858(4): 325-335, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28188780

ABSTRACT

The cold adaptation mechanism of phycobiliproteins, the major photosynthetic pigment-proteins in cyanobacteria and red algae, has rarely been studied. Here we reported the biochemical, structural, and molecular dynamics simulation study of the C-phycocyanin from Arctic cyanobacterial strain Pseudanabaena sp. LW0831. We characterized the phycobilisome components of LW0831 and obtained their gene sequences. Compared to the mesophilic counterpart from Arthrospira platensis (Ar-C-PC), LW0831 C-phycocyanin (Ps-C-PC) has a decreased thermostability (∆Tm of -16°C), one of the typical features of cold-adapted enzymes. To uncover its structural basis, we resolved the crystal structure of Ps-C-PC 1 at 2.04Å. Consistent with the decrease in thermostability, comparative structural analyses revealed decreased intra-trimer and inter-trimer interactions in Ps-C-PC 1, compared to Ar-C-PC. However, comparative molecular dynamics simulations indicated that Ps-C-PC 1 shows similar flexibilities to Ar-C-PC for both the (αß)3 trimer and (αß)6 hexamer. Therefore, the optimization mode is clearly different from cold-adapted enzymes, which usually have increased flexibilities. Detailed analyses demonstrated different optimization modes for the α and ß subunits and it was revealed that hydrophobic interactions are key to this difference, though salt bridges, hydrogen bonds, and surface hydrophobicity are also involved. This study is the first report of the structure of cold-adapted phycobiliproteins and provides insights into the cold-adaptation strategies of non-enzyme proteins.


Subject(s)
Cyanobacteria/chemistry , Photosynthesis , Phycobiliproteins/chemistry , Phycocyanin/chemistry , Protein C/chemistry , Cold Temperature , Crystallization , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Stability
17.
J Am Chem Soc ; 139(23): 7803-7814, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28521106

ABSTRACT

There have been numerous efforts, both experimental and theoretical, that have attempted to parametrize model Hamiltonians to describe excited state energy transfer in photosynthetic light harvesting systems. The Frenkel exciton model, with its set of electronically coupled two level chromophores that are each linearly coupled to dissipative baths of harmonic oscillators, has become the workhorse of this field. The challenges to parametrizing such Hamiltonians have been their uniqueness, and physical interpretation. Here we present a computational approach that uses accurate first-principles electronic structure methods to compute unique model parameters for a collection of local minima that are sampled with molecular dynamics and QM geometry optimization enabling the construction of an ensemble of local models that captures fluctuations as these systems move between local basins of inherent structure. The accuracy, robustness, and reliability of the approach is demonstrated in an application to the phycobiliprotein light harvesting complexes from cryptophyte algae. Our computed Hamiltonian ensemble provides a first-principles description of inhomogeneous broadening processes, and a standard approximate non-Markovian reduced density matrix dynamics description is used to estimate lifetime broadening contributions to the spectral line shape arising from electronic-vibrational coupling. Despite the overbroadening arising from this approximate line shape theory, we demonstrate that our model Hamiltonian ensemble approach is able to provide a reliable fully first-principles method for computation of spectra and can distinguish the influence of different chromophore protonation states in experimental results. A key feature in the dynamics of these systems is the excitation of intrachromophore vibrations upon electronic excitation and energy transfer. We demonstrate that the Hamiltonian ensemble approach provides a reliable first-principles description of these contributions that have been detailed in recent broad-band pump-probe and two-dimensional electronic spectroscopy experiments.


Subject(s)
Cryptophyta/chemistry , Light-Harvesting Protein Complexes/metabolism , Molecular Dynamics Simulation , Phycobiliproteins/metabolism , Quantum Theory , Cryptophyta/metabolism , Light-Harvesting Protein Complexes/chemistry , Phycobiliproteins/chemistry
18.
Nat Methods ; 11(9): 923-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25108686

ABSTRACT

We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast global conformational change that arises within picoseconds and precedes the propagation of heat through the protein. This provides direct structural evidence for a 'protein quake': the hypothesis that proteins rapidly dissipate energy through quake-like structural motions.


Subject(s)
Energy Transfer/radiation effects , Lasers , Phycobiliproteins/radiation effects , Phycobiliproteins/ultrastructure , Scattering, Small Angle , X-Ray Diffraction/methods , Phycobiliproteins/chemistry , Protein Conformation/radiation effects , Radiation Dosage
19.
Photosynth Res ; 133(1-3): 225-234, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28560566

ABSTRACT

The cyanobacterium Acaryochloris marina developed two types of antenna complexes, which contain chlorophyll-d (Chl d) and phycocyanobilin (PCB) as light-harvesting pigment molecules, respectively. The latter membrane-extrinsic complexes are denoted as phycobiliproteins (PBPs). Spectral hole burning was employed to study excitation energy transfer and electron-phonon coupling in PBPs. The data reveal a rich spectral substructure with a total of four low-energy electronic states whose absorption bands peak at 633, 644, 654, and at about 673 nm. The electronic states at ~633 and 644 nm can be tentatively attributed to phycocyanin (PC) and allophycocyanin (APC), respectively. The remaining low-energy electronic states including the terminal emitter at 673 nm may be associated with different isoforms of PC, APC, or the linker protein. Furthermore, the hole burning data reveal a large number of excited state vibrational frequencies, which are characteristic for the chromophore PCB. In summary, the results are in good agreement with the low-energy level structure of PBPs and electron-phonon coupling parameters reported by Gryliuk et al. (BBA 1837:1490-1499, 2014) based on difference fluorescence line-narrowing experiments.


Subject(s)
Cyanobacteria/metabolism , Energy Transfer , Phycobiliproteins/metabolism , Vibration , Phycobiliproteins/chemistry , Spectrometry, Fluorescence , Temperature
20.
Proc Natl Acad Sci U S A ; 111(26): E2666-75, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24979784

ABSTRACT

Observation of coherent oscillations in the 2D electronic spectra (2D ES) of photosynthetic proteins has led researchers to ask whether nontrivial quantum phenomena are biologically significant. Coherent oscillations have been reported for the soluble light-harvesting phycobiliprotein (PBP) antenna isolated from cryptophyte algae. To probe the link between spectral properties and protein structure, we determined crystal structures of three PBP light-harvesting complexes isolated from different species. Each PBP is a dimer of αß subunits in which the structure of the αß monomer is conserved. However, we discovered two dramatically distinct quaternary conformations, one of which is specific to the genus Hemiselmis. Because of steric effects emerging from the insertion of a single amino acid, the two αß monomers are rotated by ∼73° to an "open" configuration in contrast to the "closed" configuration of other cryptophyte PBPs. This structural change is significant for the light-harvesting function because it disrupts the strong excitonic coupling between two central chromophores in the closed form. The 2D ES show marked cross-peak oscillations assigned to electronic and vibrational coherences in the closed-form PC645. However, such features appear to be reduced, or perhaps absent, in the open structures. Thus cryptophytes have evolved a structural switch controlled by an amino acid insertion to modulate excitonic interactions and therefore the mechanisms used for light harvesting.


Subject(s)
Cryptophyta/genetics , Evolution, Molecular , Models, Molecular , Mutagenesis, Insertional/genetics , Phycobiliproteins/genetics , Amino Acid Sequence , Base Sequence , Crystallography, X-Ray , Dimerization , Molecular Sequence Data , Phycobiliproteins/chemistry , Protein Conformation , Sequence Analysis, DNA , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL