Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Nucleic Acids Res ; 50(5): 2536-2548, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35137186

ABSTRACT

DNA replication occurring in S-phase is critical for the maintenance of the cell fate from one generation to the next, and requires the duplication of epigenetic information. The integrity of the epigenome is, in part, insured by the recycling of parental histones and de novo deposition of newly synthesized histones. While the histone variants have revealed important functions in epigenetic regulations, the deposition in chromatin during S-phase of newly synthesized histone variants remains unclear. The identification of histone variants of H3 and unique features of Physarum polycephalum provides a powerful system for investigating de novo deposition of newly synthesized histones by tracking the incorporation of exogenous histones within cells. The analyses revealed that the rate of deposition of H3.1 and H3.3 is anticorrelated as S-phase progresses, H3.3 is predominately produced and utilized in early S and dropped throughout S-phase, while H3.1 behaved in the opposite way. Disturbing the expression of H3 variants by siRNAs revealed mutual compensation of histone transcripts. Interestingly, the incorporation of pre-formed constrained histone complexes showed that tetramers of H3/H4 are more efficiently utilized by the cell than dimers. These results support the model whereby the histone variant distribution is established upon replication and new histone deposition.


Subject(s)
Histones , Physarum polycephalum , Cell Cycle/genetics , Chromatin/genetics , DNA Replication/genetics , Histones/genetics , Histones/metabolism , Nucleosomes , Physarum polycephalum/genetics , Physarum polycephalum/metabolism
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33619174

ABSTRACT

The concept of memory is traditionally associated with organisms possessing a nervous system. However, even very simple organisms store information about past experiences to thrive in a complex environment-successfully exploiting nutrient sources, avoiding danger, and warding off predators. How can simple organisms encode information about their environment? We here follow how the giant unicellular slime mold Physarum polycephalum responds to a nutrient source. We find that the network-like body plan of the organism itself serves to encode the location of a nutrient source. The organism entirely consists of interlaced tubes of varying diameters. Now, we observe that these tubes grow and shrink in diameter in response to a nutrient source, thereby imprinting the nutrient's location in the tube diameter hierarchy. Combining theoretical model and experimental data, we reveal how memory is encoded: a nutrient source locally releases a softening agent that gets transported by the cytoplasmic flows within the tubular network. Tubes receiving a lot of softening agent grow in diameter at the expense of other tubes shrinking. Thereby, the tubes' capacities for flow-based transport get permanently upgraded toward the nutrient location, redirecting future decisions and migration. This demonstrates that nutrient location is stored in and retrieved from the networks' tube diameter hierarchy. Our findings explain how network-forming organisms like slime molds and fungi thrive in complex environments. We here identify a flow networks' version of associative memory-very likely of relevance for the plethora of living flow networks as well as for bioinspired design.


Subject(s)
Cytoplasm/metabolism , Models, Biological , Physarum polycephalum/metabolism
3.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674565

ABSTRACT

The nucleosome is composed of histones and DNA. Prior to their deposition on chromatin, histones are shielded by specialized and diverse proteins known as histone chaperones. They escort histones during their entire cellular life and ensure their proper incorporation in chromatin. Physarum polycephalum is a Mycetozoan, a clade located at the crown of the eukaryotic tree. We previously found that histones, which are highly conserved between plants and animals, are also highly conserved in Physarum. However, histone chaperones differ significantly between animal and plant kingdoms, and this thus probed us to further study the conservation of histone chaperones in Physarum and their evolution relative to animal and plants. Most of the known histone chaperones and their functional domains are conserved as well as key residues required for histone and chaperone interactions. Physarum is divergent from yeast, plants and animals, but PpHIRA, PpCABIN1 and PpSPT6 are similar in structure to plant orthologues. PpFACT is closely related to the yeast complex, and the Physarum genome encodes the animal-specific APFL chaperone. Furthermore, we performed RNA sequencing to monitor chaperone expression during the cell cycle and uncovered two distinct patterns during S-phase. In summary, our study demonstrates the conserved role of histone chaperones in handling histones in an early-branching eukaryote.


Subject(s)
Histones , Physarum polycephalum , Animals , Histones/metabolism , Physarum polycephalum/genetics , Physarum polycephalum/metabolism , Histone Chaperones/metabolism , Saccharomyces cerevisiae/metabolism , Chromatin/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
4.
BMC Biotechnol ; 21(1): 28, 2021 03 27.
Article in English | MEDLINE | ID: mdl-33773573

ABSTRACT

BACKGROUND: Microbial polysaccharides have been reported to possess remarkable bioactivities. Physarum polycephalum is a species of slime mold for which the microplasmodia are capable of rapid growth and can produce a significant amount of cell wall-less biomass. There has been a limited understanding of the polysaccharides produced by microplasmodia of slime molds, including P. polycephalum. Thus, the primary objectives of this research were first to chemically characterize the exopolysaccharides (EPS) and intracellular polysaccharides (IPS) of P. polycephalum microplasmodia and then to evaluate their cytotoxicity against several cancer cell lines. RESULTS: The yields of the crude EPS (4.43 ± 0.44 g/l) and partially purified (deproteinated) EPS (2.95 ± 0.85 g/l) were comparable (p > 0.05) with the respective crude IPS (3.46 ± 0.36 g/l) and partially purified IPS (2.45 ± 0.36 g/l). The average molecular weight of the EPS and IPS were 14,762 kDa and 1788 kDa. The major monomer of the EPS was galactose (80.22%), while that of the IPS was glucose (84.46%). Both crude and purified IPS samples showed significantly higher cytotoxicity toward Hela cells, especially the purified sample and none of the IPSs inhibited normal cells. Only 38.42 ± 2.84% Hela cells remained viable when treated with the partially purified IPS (1 mg/ml). However, although only 34.76 ± 6.58% MCF-7 cells were viable when exposed to the crude IPS, but the partially purified IPS displayed non-toxicity to MCF-7 cells. This suggested that the cytotoxicity toward MCF-7 would come from some component associated with the crude IPS sample (e.g. proteins, peptides or ion metals) and the purification process would have either completely removed or reduced amount of that component. Cell cycle analysis by flow cytometry suggested that the mechanism of the toxicity of the crude IPS toward MCF-7 and the partially purified IPS toward Hela cells was due to apoptosis. CONCLUSIONS: The EPS and IPS of P. polycephalum microplasmodia had different chemical properties including carbohydrate, protein and total sulfate group contents, monosaccharide composition and molecular weights, which led to different cytotoxicity activities. The crude and partially purified IPSs would be potential materials for further study relating to cancer treatment.


Subject(s)
Physarum polycephalum/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , HeLa Cells , Humans , MCF-7 Cells , Molecular Weight , Physarum polycephalum/metabolism , Polysaccharides/metabolism
5.
Lett Appl Microbiol ; 67(4): 370-376, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29989191

ABSTRACT

In this study, a glutathione S-transferase gene (gst) from sensitive Physarum polycephalum was selected for its ability to detect nanosized TiO2 (nTiO2 ) exposure under dark conditions. The concentration of nTiO2 (25, 40 and 60 nm) for subsequent assays was first determined (5-18 mg ml-1 ) and total GST enzyme activity of P. polycephalum was confirmed to be increased 6-44 fold in groups treated with nTiO2 . Second, an RNA-seq study was performed to identify candidate gst genes before isolation of an optimum gst gene of P. polycephalum (Ppgst), which encoded 223 amino acids. Third, the transcriptional level of the Ppgst gene was further confirmed to be positively correlated with nTiO2 exposure within the concentration range of (5-15 mg ml-1 ) by qPCR. In conclusion, these results indicated that the transcriptional level of Ppgst can reflect nTiO2 exposure, suggesting that it may be employed as a new biomarker for nTiO2 pollution under dark conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study identifies a new gst gene for indicating nanosized TiO2 under dark conditions and provides a new option for detection of nanosized TiO2 pollution under dark conditions.


Subject(s)
Environmental Pollutants/analysis , Glutathione Transferase/metabolism , Metal Nanoparticles/analysis , Physarum polycephalum/metabolism , Titanium/analysis , Amino Acid Sequence/genetics , Biomarkers , Glutathione Transferase/genetics , Physarum polycephalum/genetics
6.
Ecotoxicol Environ Saf ; 154: 108-117, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29454986

ABSTRACT

Nano-sized TiO2 (nTiO2) exerts an oxidative effect on cells upon exposure to solar or UV irradiation and ecotoxicity of the nTiO2 is an urgent concern. Little information is available regarding the effect of TiO2 on cells under dark conditions. Metabolomics is a unique approach to the discovery of biomarkers of nTiO2 cytotoxicity, and leads to the identification of perturbed metabolic pathways and the mechanism underlying nTiO2 toxicity. In the present study, gas chromatography mass spectrometry (GC/MS)-based metabolomics was performed to investigate the effect of nTiO2 on sensitive cells (P. polycephalum macroplasmodium) under dark conditions. According to the multivariate pattern recognition analysis, at least 60 potential metabolic biomarkers related to sugar metabolism, amino acid metabolism, nucleotide metabolism, polyamine biosynthesis, and secondary metabolites pathways were significantly perturbed by nTiO2. Notably, many metabolic biomarkers and pathways were related to anti-oxidant mechanisms in the living organism, suggesting that nTiO2 may induce oxidative stress, even under dark conditions. This speculation was further validated by the biochemical levels of reactive oxygen species (ROS), 8-hydroxy-2-deoxyguanosine (8-OHdG), and total soluble phenols (TSP). We inferred that the oxidative stress might be related to nTiO2-induced imbalance of cellular ROS. To the best of our knowledge, the present study is the first to investigate the nTiO2-induced metabolic perturbations in slime mold, provide a new perspective of the mechanism underlying nTiO2 toxicity under dark conditions, and show that metabolomics can be employed as a rapid, reliable and powerful tool to investigate the interaction among organisms, the environment, and nanomaterials.


Subject(s)
Metabolome/drug effects , Nanoparticles/toxicity , Oxidative Stress/drug effects , Physarum polycephalum/drug effects , Titanium/toxicity , Biomarkers/metabolism , Darkness , Gas Chromatography-Mass Spectrometry , Humans , Metabolomics , Physarum polycephalum/metabolism , Reactive Oxygen Species/metabolism
7.
J Math Biol ; 74(3): 567-581, 2017 02.
Article in English | MEDLINE | ID: mdl-27289474

ABSTRACT

Optimization of fluid transport in the slime mold Physarum polycephalum has been the subject of several modeling efforts in recent literature. Existing models assume that the tube adaptation mechanism in P. polycephalum's tubular network is controlled by the sheer amount of fluid flow through the tubes. We put forward the hypothesis that the controlling variable may instead be the flow's pressure gradient along the tube. We carry out the stability analysis of such a revised mathematical model for a parallel-edge network, proving that the revised model supports the global flow-optimizing behavior of the slime mold for a substantially wider class of response functions compared to previous models. Simulations also suggest that the same conclusion may be valid for arbitrary network topologies.


Subject(s)
Models, Biological , Physarum polycephalum/metabolism , Adaptation, Physiological , Biological Transport/physiology
8.
Chromosoma ; 123(6): 577-85, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24951952

ABSTRACT

The addition of hydroxyurea after the onset of S phase allows replication to start and permits the successive detecting of replication-dependent joint DNA molecules and chicken foot structures in the synchronous nuclei of Physarum polycephalum. We find evidence for a very high frequency of reversed replication forks upon replication stress. The formation of these reversed forks is dependent on the presence of joint DNA molecules, the impediment of the replication fork progression by hydroxyurea, and likely on the propensity of some replication origins to reinitiate replication to counteract the action of this compound. As hydroxyurea treatment enables us to successively detect the appearance of joint DNA molecules and then of reversed replication forks, we propose that chicken foot structures are formed both from the regression of hydroxyurea-frozen joint DNA molecules and from hydroxyurea-stalled replication forks. These experiments underscore the transient nature of replication fork regression, which becomes detectable due to the hydroxyurea-induced slowing down of replication fork progression.


Subject(s)
DNA Replication/drug effects , Physarum polycephalum/genetics , S Phase/genetics , Stress, Physiological/genetics , DNA, Cruciform , DNA, Protozoan/metabolism , Homologous Recombination , Hydroxyurea/pharmacology , Physarum polycephalum/drug effects , Physarum polycephalum/metabolism , S Phase/drug effects
9.
BMC Biotechnol ; 15: 67, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26231053

ABSTRACT

BACKGROUND: The myxomycete Physarum polycephalum appears to have remarkable potential as a lipid source for biodiesel production. The present study evaluated the use of rice bran as a carbon source and determined the medium components for optimum growth and lipid production for this organism. RESULTS: Optimization of medium components by response surface methodology showed that rice bran and yeast extract had significant influences on lipid and biomass production. The optimum medium consisted of 37.5 g/L rice bran, 0.79 g/L yeast extract and 12.5 g/L agar, and this yielded 7.5 g/L dry biomass and 0.9 g/L lipid after 5 days. The biomass and lipid production profiles revealed that these parameters increased over time and reached their maximum values (10.5 and 1.26 g/L, respectively) after 7 days. Physarum polycephalum growth decreased on the spent medium but using the latter increased total biomass and lipid concentrations to 14.3 and 1.72 g/L, respectively. CONCLUSIONS: An effective method for inoculum preparation was developed for biomass and lipid production by P. polycephalum on a low-cost medium using rice bran as the main carbon source. These results also demonstrated the feasibility of scaling up and reusing the medium for additional biomass and lipid production.


Subject(s)
Biomass , Lipids/biosynthesis , Oryza/metabolism , Physarum polycephalum/metabolism , Biofuels , Carbon/metabolism , Dietary Fiber/metabolism , Fermentation , Oryza/growth & development , Physarum polycephalum/growth & development
10.
Nucleic Acids Res ; 41(4): 2228-38, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23303778

ABSTRACT

We used a novel single-cell strategy to examine the fate of histones during G(2)-phase. Consistent with previous results, we find that in G(2)-phase, the majority of nuclear histones are assembled into chromatin, whereas a small fraction comprises an unassembled pool. Small increases in the amount of histones within the free pool affect the extent of exchange, suggesting that the free pool is in dynamic equilibrium with chromatin proteins. Unexpectedly, acetylated H4 is preferentially partitioned to the unassembled pool. Although an increase in global histone acetylation did not affect overall nucleosome dynamics, an H4 containing lysine to glutamine substitutions as mimics of acetylation significantly increased the rate of exchange, but did not affect the acetylation state of neighbouring nucleosomes. Interestingly, transcribed regions are particularly predisposed to exchange on incorporation of H4 acetylation mimics compared with surrounding regions. Our results support a model whereby histone acetylation on K8 and K16 specifically marks nucleosomes for eviction, with histones being rapidly deacetylated on reassembly.


Subject(s)
Histones/metabolism , Nucleosomes/metabolism , Acetylation , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatin Assembly and Disassembly , DNA Replication , G2 Phase , Physarum polycephalum/metabolism , Single-Cell Analysis
11.
Biofizika ; 59(5): 933-40, 2014.
Article in Russian | MEDLINE | ID: mdl-25730976

ABSTRACT

Using the Physarum polycephalum, plasmodium, a giant amoeboid cell with the strongly pronounced auto-oscillatory mode of motility, which exhibits regularities of motile behavior common with those of tissue cells and has the same signal systems, the possibility of the participation of phosphatidylinositol-4,5-bisphosphate in the regulation of the contractile activity has been studied. The effect of neomycin as a substrate inhibitor of phospholipase C, which binds with high affinity to phosphatidylinositol-4,5-bisphosphate in the membrane, on force oscillations generated by plasmodial strands under isometric conditions and after the addition of the protein kinase C inhibitors staurosporine, UCN-01, and Ro-318220, separatelyand in combination with the calmodulin inhibitor calmidazolium has been examined. It has been shown that neomycin at pH 7.0 and concentrations of 0.1-5.0 mM stops contractile oscillations for 10-30 min but then they begin to gradually restore; the oscillation period at the initial stage of the restoration is.shorter than it was earlier and then increases due to the elongation of the contraction phase. Analysis of data obtained is in favor of the assumption that the plasmodial membrane contains MARCKS-like proteins and protein kinase C-controlled pools of phosphatidylinositol-4,5-bisphosphate, which can participate in the generation of auto-oscillations observed in the plasmodium.


Subject(s)
Biological Clocks/physiology , Carrier Proteins/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Physarum polycephalum/metabolism , Protozoan Proteins/metabolism , Biological Clocks/drug effects , Enzyme Inhibitors/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Myristoylated Alanine-Rich C Kinase Substrate , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Type C Phospholipases/antagonists & inhibitors , Type C Phospholipases/metabolism
12.
Biofizika ; 59(6): 1143-50, 2014.
Article in Russian | MEDLINE | ID: mdl-25715623

ABSTRACT

In this study the experimental dependencies of the velocity of shuttle endoplasmic motion in the isolated plasmodial strand of Physarum polycephalum obtained by laser Doppler microscopy are presented. The spectral analysis of the time dependencies of the endoplasm allows obtaining two distinct harmonic components. Influence of KCN and SHAM--inhibitors of cellular respiration--leads to a complete cessation of endoplasmic motion in the strand. After removal of the inhibitors the respiratory system becomes normal, gradually restoring the activity of both harmonic oscillation sources. Based on the spectral analysis the simulated time-dependent velocity of the endoplasmic motion is rather good consistent with experimental data.


Subject(s)
Biological Clocks/physiology , Cytoplasmic Streaming/physiology , Cytosol/metabolism , Models, Biological , Physarum polycephalum/metabolism , Biological Clocks/drug effects , Cytoplasmic Streaming/drug effects , Enzyme Inhibitors/pharmacology , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Physarum polycephalum/cytology , Potassium Cyanide/pharmacology , Salicylamides/pharmacology
13.
Phys Rev Lett ; 111(13): 138701, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-24116821

ABSTRACT

It has been hypothesized that topological structures of biological transport networks are consequences of energy optimization. Motivated by experimental observation, we propose that adaptation dynamics may underlie this optimization. In contrast to the global nature of optimization, our adaptation dynamics responds only to local information and can naturally incorporate fluctuations in flow distributions. The adaptation dynamics minimizes the global energy consumption to produce optimal networks, which may possess hierarchical loop structures in the presence of strong fluctuations in flow distribution. We further show that there may exist a new phase transition as there is a critical open probability of sinks, above which there are only trees for network structures whereas below which loops begin to emerge.


Subject(s)
Adaptation, Physiological , Blood Vessels/metabolism , Models, Biological , Physarum polycephalum/metabolism , Biological Transport , Computer Simulation , Energy Metabolism , Models, Cardiovascular , Monte Carlo Method , Selection, Genetic
14.
RNA Biol ; 10(9): 1549-56, 2013.
Article in English | MEDLINE | ID: mdl-23899506

ABSTRACT

The pentatricopeptide repeat modules of PPR proteins are key to their sequence-specific binding to RNAs. Gene families encoding PPR proteins are greatly expanded in land plants where hundreds of them participate in RNA maturation, mainly in mitochondria and chloroplasts. Many plant PPR proteins contain additional carboxyterminal domains and have been identified as essential factors for specific events of C-to-U RNA editing, which is abundant in the two endosymbiotic plant organelles. Among those carboxyterminal domain additions to plant PPR proteins, the so-called DYW domain is particularly interesting given its similarity to cytidine deaminases. The frequency of organelle C-to-U RNA editing and the diversity of DYW-type PPR proteins correlate well in plants and both were recently identified outside of land plants, in the protist Naegleria gruberi. Here we present a systematic survey of PPR protein genes and report on the identification of additional DYW-type PPR proteins in the protists Acanthamoeba castellanii, Malawimonas jakobiformis, and Physarum polycephalum. Moreover, DYW domains were also found in basal branches of multi-cellular lineages outside of land plants, including the alga Nitella flexilis and the rotifers Adineta ricciae and Philodina roseola. Intriguingly, the well-characterized and curious patterns of mitochondrial RNA editing in the slime mold Physarum also include examples of C-to-U changes. Finally, we identify candidate sites for mitochondrial RNA editing in Malawimonas, further supporting a link between DYW-type PPR proteins and C-to-U editing, which may have remained hitherto unnoticed in additional eukaryote lineages.


Subject(s)
Embryophyta/genetics , Eukaryota , Plant Proteins/metabolism , RNA Editing , RNA-Binding Proteins/metabolism , Acanthamoeba castellanii/genetics , Acanthamoeba castellanii/metabolism , Embryophyta/metabolism , Naegleria/genetics , Nitella/genetics , Nitella/metabolism , Organelles/genetics , Organelles/metabolism , Phylogeny , Physarum polycephalum/genetics , Physarum polycephalum/metabolism , Plant Proteins/genetics , Prokaryotic Cells/metabolism , Protein Structure, Tertiary , RNA-Binding Proteins/genetics
15.
Proc Natl Acad Sci U S A ; 107(10): 4607-11, 2010 Mar 09.
Article in English | MEDLINE | ID: mdl-20142479

ABSTRACT

A fundamental question in nutritional biology is how distributed systems maintain an optimal supply of multiple nutrients essential for life and reproduction. In the case of animals, the nutritional requirements of the cells within the body are coordinated by the brain in neural and chemical dialogue with sensory systems and peripheral organs. At the level of an insect society, the requirements for the entire colony are met by the foraging efforts of a minority of workers responding to cues emanating from the brood. Both examples involve components specialized to deal with nutrient supply and demand (brains and peripheral organs, foragers and brood). However, some of the most species-rich, largest, and ecologically significant heterotrophic organisms on earth, such as the vast mycelial networks of fungi, comprise distributed networks without specialized centers: How do these organisms coordinate the search for multiple nutrients? We address this question in the acellular slime mold Physarum polycephalum and show that this extraordinary organism can make complex nutritional decisions, despite lacking a coordination center and comprising only a single vast multinucleate cell. We show that a single slime mold is able to grow to contact patches of different nutrient quality in the precise proportions necessary to compose an optimal diet. That such organisms have the capacity to maintain the balance of carbon- and nitrogen-based nutrients by selective foraging has considerable implications not only for our understanding of nutrient balancing in distributed systems but for the functional ecology of soils, nutrient cycling, and carbon sequestration.


Subject(s)
Carbohydrates/pharmacokinetics , Physarum polycephalum/growth & development , Physarum polycephalum/metabolism , Proteins/pharmacokinetics , Animals , Carbon/metabolism , Carbon/pharmacokinetics , Cytoplasmic Streaming/physiology , Models, Biological , Nitrogen/metabolism , Nitrogen/pharmacokinetics , Nutritional Physiological Phenomena , Physarum polycephalum/physiology
16.
Indian J Exp Biol ; 51(1): 81-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23441483

ABSTRACT

Leaf extracts of C. vamana, endemic to Kerala state in India, were found to inhibit cell cycle progression in synchronous cultures of P. polycephalum in a concentration and phase-specific manner. Crude alkaloid extract (CAE) elicited maximum cell cycle delays in comparison to soxhletted chloroform, acetone and aqueous extracts. Total alkaloid content of CAE was found to be 64.9 mg/g. CAE showed lowest DPPH radical scavenging activity. Other extracts with higher free radical scavenging activity exhibited lesser cell cycle inhibiting potential. Upto 21% decrease in nuclear DNA was observed in CAE treated samples. However, genotoxicity as evidenced by comet assay was not observed. The extracts were also found to be non-toxic to human RBCs at the highest concentration tested (750 microg/mL). CAE treatment completely suppressed a 63 kDa polypeptide with a concomitant, but weak induction of a 60 kDa polypeptide suggesting that these may be cell cycle related. CAE was found to possess potent antiproliferative activity against PBLs. The study clearly demonstrates the cell cycle inhibitory activity of C. vamana leaf extracts, with CAE being the most potent of them.


Subject(s)
Curcuma/metabolism , Physarum polycephalum/metabolism , Plant Extracts/pharmacology , Alkaloids/pharmacology , Biphenyl Compounds/pharmacology , Cell Cycle , Cell Nucleus/metabolism , Cell Proliferation , Comet Assay/methods , DNA Damage , Dose-Response Relationship, Drug , Flow Cytometry/methods , Free Radicals/chemistry , Humans , Lymphocytes/cytology , Mitosis , Models, Biological , Picrates/pharmacology , Plant Leaves/metabolism
17.
Biochim Biophys Acta Gen Subj ; 1867(6): 130343, 2023 06.
Article in English | MEDLINE | ID: mdl-36933625

ABSTRACT

BACKGROUND: Physarum polycephalum is an unusual macroscopic myxomycete expressing a large range of glycosyl hydrolases. Among them, enzymes from the GH18 family can hydrolyze chitin, an important structural component of the cell walls in fungi and in the exoskeleton of insects and crustaceans. METHODS: Low stringency sequence signature search in transcriptomes was used to identify GH18 sequences related to chitinases. Identified sequences were expressed in E. coli and corresponding structures modelled. Synthetic substrates and in some cases colloidal chitin were used to characterize activities. RESULTS: Catalytically functional hits were sorted and their predicted structures compared. All share the TIM barrel structure of the GH18 chitinase catalytic domain, optionally fused to binding motifs, such as CBM50, CBM18, and CBM14, involved in sugar recognition. Assessment of the enzymatic activities following deletion of the C-terminal CBM14 domain of the most active clone evidenced a significant contribution of this extension to the chitinase activity. A classification based on module organization, functional and structural criteria of characterized enzymes was proposed. CONCLUSIONS: Physarum polycephalum sequences encompassing a chitinase like GH18 signature share a modular structure involving a structurally conserved catalytic TIM barrels decorated or not by a chitin insertion domain and optionally surrounded by additional sugar binding domains. One of them plays a clear role in enhancing activities toward natural chitin. GENERAL SIGNIFICANCE: Myxomycete enzymes are currently poorly characterized and constitute a potential source for new catalysts. Among them glycosyl hydrolases have a strong potential for valorization of industrial waste as well as in therapeutic field.


Subject(s)
Chitinases , Myxomycetes , Physarum polycephalum , Chitinases/genetics , Chitinases/chemistry , Physarum polycephalum/metabolism , Myxomycetes/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Chitin/chemistry , Sugars
18.
RNA ; 16(3): 482-8, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20106952

ABSTRACT

The mitochondrial genome of Physarum polycephalum encodes five tRNAs, four of which are edited by nucleotide insertion. Two of these tRNAs, tRNA(met1) and tRNA(met2), contain predicted mismatches at the beginning (proximal end) of the acceptor stem. In addition, the putative 5' end of tRNA(met2) overlaps the 3' end of a small, abundant, noncoding RNA, which we term ppoRNA. These anomalies led us to hypothesize that these two Physarum mitochondrial tRNAs undergo additional editing events. Here, we show that tRNA(met1) and tRNA(met2) each has a nonencoded G at its 5' end. In contrast to the other nucleotides that are added to Physarum mitochondrial RNAs, these extra G residues are likely added post-transcriptionally based on (1) the absence of added G in precursor transcripts containing inserted C and AA residues, (2) the presence of potential intermediates characteristic of 5' replacement editing, and (3) preferential incorporation of GTP into tRNA molecules under conditions that do not support transcription. This is the first report of both post-transcriptional nucleotide insertions and the addition of single Gs in P. polycephalum mitochondrial transcripts. We postulate that tRNA(met1) and tRNA(met2) are acted upon by an activity similar to that present in the mitochondria of certain other amoebozoons and chytrid fungi, suggesting that enzymes that repair the 5' end of tRNAs may be widespread.


Subject(s)
Mitochondria/metabolism , Physarum polycephalum/genetics , Physarum polycephalum/metabolism , RNA Editing , RNA Processing, Post-Transcriptional , RNA, Transfer, Met/metabolism , RNA/metabolism , Base Sequence , Mitochondria/genetics , RNA/genetics , RNA, Mitochondrial , RNA, Protozoan/genetics , RNA, Protozoan/metabolism , RNA, Transfer, Met/genetics
19.
Elife ; 112022 02 23.
Article in English | MEDLINE | ID: mdl-35195068

ABSTRACT

In multicellular organisms, the specification, coordination, and compartmentalization of cell types enable the formation of complex body plans. However, some eukaryotic protists such as slime molds generate diverse and complex structures while remaining in a multinucleate syncytial state. It is unknown if different regions of these giant syncytial cells have distinct transcriptional responses to environmental encounters and if nuclei within the cell diversify into heterogeneous states. Here, we performed spatial transcriptome analysis of the slime mold Physarum polycephalum in the plasmodium state under different environmental conditions and used single-nucleus RNA-sequencing to dissect gene expression heterogeneity among nuclei. Our data identifies transcriptome regionality in the organism that associates with proliferation, syncytial substructures, and localized environmental conditions. Further, we find that nuclei are heterogenous in their transcriptional profile and may process local signals within the plasmodium to coordinate cell growth, metabolism, and reproduction. To understand how nuclei variation within the syncytium compares to heterogeneity in single-nucleus cells, we analyzed states in single Physarum amoebal cells. We observed amoebal cell states at different stages of mitosis and meiosis, and identified cytokinetic features that are specific to nuclei divisions within the syncytium. Notably, we do not find evidence for predefined transcriptomic states in the amoebae that are observed in the syncytium. Our data shows that a single-celled slime mold can control its gene expression in a region-specific manner while lacking cellular compartmentalization and suggests that nuclei are mobile processors facilitating local specialized functions. More broadly, slime molds offer the extraordinary opportunity to explore how organisms can evolve regulatory mechanisms to divide labor, specialize, balance competition with cooperation, and perform other foundational principles that govern the logic of life.


Subject(s)
Giant Cells/physiology , Physarum polycephalum/metabolism , Single-Cell Analysis , Transcriptome , Gene Expression Regulation , RNA-Seq
20.
Sci Rep ; 12(1): 2995, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35194142

ABSTRACT

The maternal/uniparental inheritance of mitochondria is controlled by the selective elimination of paternal/uniparental mitochondria and digestion of their mitochondrial DNA (mtDNA). In isogamy, the selective digestion of mtDNA in uniparental mitochondria is initiated after mating and is completed prior to the elimination of mitochondria, but the molecular mechanism of the digestion of uniparental mtDNA remains unknown. In this study, we developed a semi-in vitro assay for DNase, wherein the digestion of mitochondrial nucleoids (mt-nucleoids) was microscopically observed using isolated mitochondria from Physarum polycephalum and the DNase involved in uniparental inheritance was characterized. When myxamoebae of AI35 and DP246 are crossed, mtDNA and mt-nucleoid from only the DP246 parent are digested. The digestion of mt-nucleoids was observed in zygotes 3 h after plating for mating. During the digestion of mt-nucleoids, mitochondrial membrane integrity was maintained. In the semi-in vitro assay, the digestion of mt-nucleoids was only observed in the presence of Mg2+ at pH 7.5-9.0. Moreover, such Mg2+-dependent DNase activity was specifically detected in mitochondria isolated from zygotes 3 h after plating for mating. Therefore, Mg2+-dependent DNase is potentially involved in uniparental inheritance. Our findings provide insights into the DNase involved in uniparental inheritance and its regulatory mechanism.


Subject(s)
DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Deoxyribonucleases/metabolism , Deoxyribonucleases/physiology , Magnesium/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Physarum polycephalum/genetics , Physarum polycephalum/metabolism , Zygote , Hydrogen-Ion Concentration , Mitochondria/enzymology , Mitochondrial Membranes/metabolism , Physarum polycephalum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL