Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Plant Cell ; 34(5): 1709-1723, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35234248

ABSTRACT

Plant pathogenic bacteria have developed effectors to manipulate host cell functions to facilitate infection. A certain number of effectors use the conserved ubiquitin-proteasome system in eukaryotic to proteolyze targets. The proteasome utilization mechanism is mainly mediated by ubiquitin interaction with target proteins destined for degradation. Phyllogens are a family of protein effectors produced by pathogenic phytoplasmas that transform flowers into leaves in diverse plants. Here, we present a noncanonical mechanism for phyllogen action that involves the proteasome and is ubiquitin-independent. Phyllogens induce proteasomal degradation of floral MADS-box transcription factors (MTFs) in the presence of RADIATION-SENSITIVE23 (RAD23) shuttle proteins, which recruit ubiquitinated proteins to the proteasome. Intracellular localization analysis revealed that phyllogen induced colocalization of MTF with RAD23. The MTF/phyllogen/RAD23 ternary protein complex was detected not only in planta but also in vitro in the absence of ubiquitin, showing that phyllogen directly mediates interaction between MTF and RAD23. A Lys-less nonubiquitinated phyllogen mutant induced degradation of MTF or a Lys-less mutant of MTF. Furthermore, the method of sequential formation of the MTF/phyllogen/RAD23 protein complex was elucidated, first by MTF/phyllogen interaction and then RAD23 recruitment. Phyllogen recognized both the evolutionarily conserved tetramerization region of MTF and the ubiquitin-associated domain of RAD23. Our findings indicate that phyllogen functionally mimics ubiquitin as a mediator between MTF and RAD23.


Subject(s)
Phytoplasma , Saccharomyces cerevisiae Proteins , Flowers/metabolism , Phytoplasma/metabolism , Plants/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin/metabolism
2.
J Biol Chem ; 299(4): 103052, 2023 04.
Article in English | MEDLINE | ID: mdl-36813236

ABSTRACT

Phytoplasmas are insect-borne bacterial pathogens capable of secreting effectors into host cells and interfering with host plant defense response processes. Previous studies have found that the Candidatus Phytoplasma tritici effector SWP12 binds to and destabilizes the wheat transcription factor TaWRKY74, increasing wheat susceptibility to phytoplasmas. Here, we used a Nicotiana benthamiana transient expression system to identify two key functional sites of SWP12 and screened a series of truncated mutants and amino acid substitution mutants to determine whether they inhibit Bax-induced cell death. Using a subcellular localization assay and online structure analysis websites, we found that structure rather than intracellular localization probably affects the function of SWP12. D33A and P85H are two inactive substitution mutants, neither of which interacts with TaWRKY74, and P85H does not inhibit Bax-induced cell death, suppress flg22-triggered reactive oxygen species (ROS) bursts, degrade TaWRKY74, or promote phytoplasma accumulation. D33A can weakly suppress Bax-induced cell death and flg22-triggered ROS bursts and degrade a portion of TaWRKY74 and weakly promote phytoplasma accumulation. S53L, CPP, and EPWB are three SWP12 homolog proteins from other phytoplasmas. Sequence analysis revealed that D33 was conserved in these proteins, and they exhibited the same polarity at P85. Transient expression in N. benthamiana showed that these proteins could inhibit Bax-induced cell death and suppress ROS bursts. Our findings clarified that P85 and D33 of SWP12 play critical and minor roles, respectively, in suppressing the plant defense response and that they play a preliminary role in determining the functions of homologous proteins.


Subject(s)
Phytoplasma , Phytoplasma/chemistry , Phytoplasma/metabolism , Bacterial Proteins/metabolism , Amino Acids/metabolism , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism , Plants/metabolism , Plant Diseases/microbiology
3.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901925

ABSTRACT

Phytoplasmas are uncultivable, phloem-limited, phytopathogenic bacteria that represent a major threat to agriculture worldwide. Phytoplasma membrane proteins are in direct contact with hosts and presumably play a crucial role in phytoplasma spread within the plant as well as by the insect vector. Three highly abundant types of immunodominant membrane proteins (IDP) have been identified within the phytoplasmas: immunodominant membrane protein (Imp), immunodominant membrane protein A (IdpA), and antigenic membrane protein (Amp). Although recent results indicate that Amp is involved in host specificity by interacting with host proteins such as actin, little is known about the pathogenicity of IDP in plants. In this study, we identified an antigenic membrane protein (Amp) of rice orange leaf phytoplasma (ROLP), which interacts with the actin of its vector. In addition, we generated Amp-transgenic lines of rice and expressed Amp in tobacco leaves by the potato virus X (PVX) expression system. Our results showed that the Amp of ROLP can induce the accumulation of ROLP and PVX in rice and tobacco plants, respectively. Although several studies have reported interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins, this example demonstrates that Amp protein can not only interact with the actin protein of its insect vector but can also directly inhibit host defense responses to promote the infection. The function of ROLP Amp provides new insights into the phytoplasma-host interaction.


Subject(s)
Oryza , Phytoplasma , Actins/metabolism , Phytoplasma/metabolism , Oryza/metabolism , Membrane Proteins/metabolism , Virulence , Plants/metabolism , Nicotiana/metabolism , Plant Leaves/metabolism , Plant Diseases/microbiology
4.
Planta ; 256(2): 43, 2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35842878

ABSTRACT

MAIN CONCLUSION: Loss of CALS7 appears to confer increased susceptibility to phytoplasma infection in Arabidopsis, altering expression of genes involved in sugar metabolism and membrane transport. Callose deposition around sieve pores, under control of callose synthase 7 (CALS7), has been interpreted as a mechanical response to limit pathogen spread in phytoplasma-infected plants. Wild-type and Atcals7ko mutants were, therefore, employed to unveil the mode of involvement of CALS7 in the plant's response to phytoplasma infection. The fresh weights of healthy and CY-(Chrysanthemum Yellows) phytoplasma-infected Arabidopsis wild type and mutant plants indicated two superimposed effects of the absence of CALS7: a partial impairment of photo-assimilate transport and a stimulated phytoplasma proliferation as illustrated by a significantly increased phytoplasma titre in Atcal7ko mutants. Further studies solely dealt with the effects of CALS7 absence on phytoplasma growth. Phytoplasma infection affected sieve-element substructure to a larger extent in mutants than in wild-type plants, which was also true for the levels of some free carbohydrates. Moreover, infection induced a similar upregulation of gene expression of enzymes involved in sucrose cleavage (AtSUS5, AtSUS6) and transmembrane transport (AtSWEET11) in mutants and wild-type plants, but an increased gene expression of carbohydrate transmembrane transporters (AtSWEET12, AtSTP13, AtSUC3) in infected mutants only. It remains still unclear how the absence of AtCALS7 leads to gene upregulation and how an increased intercellular mobility of carbohydrates and possibly effectors contributes to a higher susceptibility. It is also unclear if modified sieve-pore structures in mutants allow a better spread of phytoplasmas giving rise to higher titre.


Subject(s)
Arabidopsis , Chrysanthemum , Phytoplasma , Arabidopsis/metabolism , Chrysanthemum/genetics , Phytoplasma/metabolism , Phytoplasma Disease , Plants
5.
Int J Mol Sci ; 23(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35163732

ABSTRACT

Witches'-broom (WB, excessive initiation, and outgrowth of axillary buds) is one of the remarkable symptoms in plants caused by phytoplasmas, minute wall-less intracellular bacteria. In healthy plants, axillary bud initiation and outgrowth are regulated by an intricate interplay of nutrients (such as sugars), hormones, and environmental factors. However, how these factors are involved in the induction of WB by phytoplasma is poorly understood. We postulated that the WB symptom is a manifestation of the pathologically induced redistribution of sugar and phytohormones. Employing potato purple top phytoplasma and its alternative host tomato (Solanum lycopersicum), sugar metabolism and transportation, and the spatiotemporal distribution of phytohormones were investigated. A transmission electron microscopy (TEM) analysis revealed that starch breakdown was inhibited, resulting in the degradation of damaged chloroplasts, and in turn, premature leaf senescence. In the infected source leaves, two marker genes encoding asparagine synthetase (Sl-ASN) and trehalose-6-phosphate synthase (Sl-TPS) that induce early leaf senescence were significantly up-regulated. However, the key gibberellin biosynthesis gene that encodes ent-kaurene synthase (Sl-KS) was suppressed. The assessment of sugar content in various infected tissues (mature leaves, stems, roots, and leaf axils) indicated that sucrose transportation through phloem was impeded, leading to sucrose reallocation into the leaf axils. Excessive callose deposition and the resulting reduction in sieve pore size revealed by aniline blue staining and TEM provided additional evidence to support impaired sugar transport. In addition, a spatiotemporal distribution study of cytokinin and auxin using reporter lines detected a cytokinin signal in leaf axils where the axillary buds initiated. However, the auxin responsive signal was rarely present in such leaf axils, but at the tips of the newly elongated buds. These results suggested that redistributed sucrose as well as cytokinin in leaf axils triggered the axillary bud initiation, and auxin played a role in the bud elongation. The expression profiles of genes encoding squamosa promoter-binding proteins (Sl-SBP1), and BRANCHED1 (Sl-BRC1a and Sl-BRC1b) that control axillary bud release, as determined by quantitative reverse transcription (qRT)-PCR, indicated their roles in WB induction. However, their interactions with sugars and cytokinins require further study. Our findings provide a comprehensive insight into the mechanisms by which phytoplasmas induce WB along with leaf chlorosis, little leaf, and stunted growth.


Subject(s)
Phytoplasma , Solanum lycopersicum , Chloroplasts/metabolism , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Solanum lycopersicum/metabolism , Phytoplasma/metabolism , Phytoplasma Disease , Plant Growth Regulators/metabolism , Plant Senescence , Starch , Sucrose , Sugars/metabolism
6.
BMC Genomics ; 21(1): 483, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32664853

ABSTRACT

BACKGROUND: Among several TF families unique to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important. Chinese jujube (Ziziphus jujuba Mill.) is a popular fruit tree species in Asia, and its fruits are rich in sugar, vitamin C and so on. Analysis of the bZIP gene family of jujube has not yet been reported. In this study, ZjbZIPs were identified firstly, their expression patterns were further studied in different tissues and in response to various abiotic and phytoplasma stresses, and their protein-protein interactions were also analyzed. RESULTS: At the whole genome level, 45 ZjbZIPs were identified and classified into 14 classes. The members of each class of bZIP subfamily contain a specific conserved domain in addition to the core bZIP conserved domain, which may be related to its biological function. Relative Synonymous Codon Usage (RSCU) analysis displayed low values of NTA and NCG codons in ZjbZIPs, which would be beneficial to increase the protein production and also indicated that ZjbZIPs were at a relative high methylation level. The paralogous and orthologous events occurred during the evolutionary process of ZjbZIPs. Thirty-four ZjbZIPs were mapped to but not evenly distributed among 10 pseudo- chromosomes. 30 of ZjbZIP genes showed diverse tissue-specific expression in jujube and wild jujube trees, indicating that these genes may have multiple functions. Some ZjbZIP genes were specifically analyzed and found to play important roles in the early stage of fruit development. Moreover, some ZjbZIPs that respond to phytoplasma invasion and abiotic stress environmental conditions, such as salt and low temperature, were found. Based on homology comparisons, prediction analysis and yeast two-hybrid, a protein interaction network including 42 ZjbZIPs was constructed. CONCLUSIONS: The bioinformatics analyses of 45 ZjbZIPs were implemented systematically, and their expression profiles in jujube and wild jujube showed that many genes might play crucial roles during fruit ripening and in the response to phytoplasma and abiotic stresses. The protein interaction networks among ZjbZIPs could provide useful information for further functional studies.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Ziziphus/genetics , Basic-Leucine Zipper Transcription Factors/isolation & purification , Basic-Leucine Zipper Transcription Factors/metabolism , Chromosome Mapping , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study/methods , Phylogeny , Phytoplasma/metabolism , Stress, Physiological/genetics , Ziziphus/classification
7.
J Exp Bot ; 70(15): 3737-3755, 2019 08 07.
Article in English | MEDLINE | ID: mdl-30972422

ABSTRACT

Phytoplasmas reside exclusively in sieve tubes, tubular arrays of sieve element-companion cell complexes. Hence, the cell biology of sieve elements may reveal (ultra)structural and functional conditions that are of significance for survival, propagation, colonization, and effector spread of phytoplasmas. Electron microscopic images suggest that sieve elements offer facilities for mobile and stationary stages in phytoplasma movement. Stationary stages may enable phytoplasmas to interact closely with diverse sieve element compartments. The unique, reduced sieve element outfit requires permanent support by companion cells. This notion implies a future focus on the molecular biology of companion cells to understand the sieve element-phytoplasma inter-relationship. Supply of macromolecules by companion cells is channelled via specialized symplasmic connections. Ca2+-mediated gating of symplasmic corridors is decisive for the communication within and beyond the sieve element-companion cell complex and for the dissemination of phytoplasma effectors. Thus, Ca2+ homeostasis, which affects sieve element Ca2+ signatures and induces a range of modifications, is a key issue during phytoplasma infection. The exceptional physical and chemical environment in sieve elements seems an essential, though not the only factor for phytoplasma survival.


Subject(s)
Calcium/metabolism , Phytoplasma/metabolism , Plant Leaves/metabolism , Biological Transport/physiology , Microscopy, Electron/methods , Phytoplasma/ultrastructure , Plant Leaves/ultrastructure
8.
Int J Mol Sci ; 21(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878312

ABSTRACT

Flavescence dorée (FD) is a severe epidemic disease of grapevines caused by FD phytoplasma (FDP) transmitted by the leafhopper vector Scaphoideus titanus. The recent sequencing of the 647-kbp FDP genome highlighted an unusual number of genes encoding ATP-dependent zinc proteases FtsH, which have been linked to variations in the virulence of "Candidatus Phytoplasma mali" strains. The aims of the present study were to predict the FtsH repertoire of FDP, to predict the functional domains and topologies of the encoded proteins in the phytoplasma membrane and to measure the expression profiles in different hosts. Eight complete ftsH genes have been identified in the FDP genome. In addition to ftsH6, which appeared to be the original bacterial ortholog, the other seven gene copies were clustered on a common distinct phylogenetic branch, suggesting intra-genome duplication of ftsH. The expression of these proteins, quantified in plants and insect vectors in natural and experimental pathosystems, appeared to be modulated in a host-dependent manner. Two of the eight FtsH C-tails were predicted by Phobius software to be extracellular and, therefore, in direct contact with the host cellular content. As phytoplasmas cannot synthesize amino acids, our data raised questions regarding the involvement of FtsH in the adaptation to hosts via potentially enhanced recycling of phytoplasma cellular proteins and host protein degradation.


Subject(s)
Insecta/metabolism , Phytoplasma/metabolism , Plants/metabolism , Animals , Genome, Plant/genetics , Software , Virulence
9.
Microbiology (Reading) ; 162(8): 1267-1273, 2016 08.
Article in English | MEDLINE | ID: mdl-27384683

ABSTRACT

Phytoplasmas are plant-pathogenic, phloem-colonizing, cell wall-less microorganisms that are primarily dependent on insect transmission for their spread and survival. The life cycle of phytoplasmas involves replication in insects and host plants. Until recently, phytoplasmas have resisted all attempts at cultivation in cell-free media, making these pathogens poorly characterized on a physiological and biochemical basis. However, host-pathogen relationships can be studied by investigating immunodominant membrane proteins (IDPs), which are located on the exterior surfaces of phytoplasma cells and are the most abundant proteins of the cell membrane. These membrane proteins come in direct contact with both insect and plant hosts and are thought to play a crucial role in phytoplasma spread both within the plant and by insect vectors. Therefore, there is great interest in studying this class of proteins. We summarize and discuss important investigations about these membrane proteins, which have already provided a better understanding of the host-phytoplasma relationship.


Subject(s)
Bacterial Proteins/metabolism , Cell Membrane/metabolism , Immunodominant Epitopes/metabolism , Membrane Proteins/metabolism , Phytoplasma/metabolism , Plant Diseases/microbiology , Amino Acid Sequence/genetics , Animals , Bacterial Proteins/genetics , Host-Pathogen Interactions , Immunodominant Epitopes/genetics , Insecta/microbiology , Membrane Proteins/genetics , Phytoplasma/genetics , Plants/microbiology , Protein Structure, Tertiary
10.
J Exp Bot ; 67(14): 4415-25, 2016 07.
Article in English | MEDLINE | ID: mdl-27279277

ABSTRACT

Phytoplasmas are bacterial phytopathogens that release virulence effectors into sieve cells and act systemically to affect the physiological and morphological state of host plants to promote successful pathogenesis. We show here that transgenic Nicotiana benthamiana lines expressing the secreted effector SAP11 from Candidatus Phytoplasma mali exhibit an altered aroma phenotype. This phenomenon is correlated with defects in the development of glandular trichomes and the biosynthesis of 3-isobutyl-2-methoxypyrazine (IBMP). IBMP is a volatile organic compound (VOC) synthesized by an O-methyltransferase, via a methylation step, from a non-volatile precursor, 3-isobutyl-2-hydroxypyrazine (IBHP). Based on comparative and functional genomics analyses, NbOMT1, which encodes an O-methyltransferase, was found to be highly suppressed in SAP11-transgenic plants. We further silenced NbOMT1 through virus-induced gene silencing and demonstrated that this enzyme influenced the accumulation of IBMP in N. benthamiana In vitro biochemical analyses also showed that NbOMT1 can catalyse IBHP O-methylation in the presence of S-adenosyl-L-methionine. Our study suggests that the phytoplasma effector SAP11 has the ability to modulate host VOC emissions. In addition, we also demonstrated that SAP11 destabilized TCP transcription factors and suppressed jasmonic acid responses in N. benthamiana These findings provide valuable insights into understanding how phytoplasma effectors influence plant volatiles.


Subject(s)
Methyltransferases/metabolism , Nicotiana/microbiology , Phytoplasma/metabolism , Plant Proteins/metabolism , Pyrazines/metabolism , Blotting, Western , Methyltransferases/genetics , Phylogeny , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Nicotiana/metabolism , Trichomes/metabolism , Trichomes/physiology
11.
Plant J ; 78(4): 541-54, 2014 May.
Article in English | MEDLINE | ID: mdl-24597566

ABSTRACT

Plant pathogens alter the course of plant developmental processes, resulting in abnormal morphology in infected host plants. Phytoplasmas are unique plant-pathogenic bacteria that transform plant floral organs into leaf-like structures and cause the emergence of secondary flowers. These distinctive symptoms have attracted considerable interest for many years. Here, we revealed the molecular mechanisms of the floral symptoms by focusing on a phytoplasma-secreted protein, PHYL1, which induces morphological changes in flowers that are similar to those seen in phytoplasma-infected plants. PHYL1 is a homolog of the phytoplasmal effector SAP54 that also alters floral development. Using yeast two-hybrid and in planta transient co-expression assays, we found that PHYL1 interacts with and degrades the floral homeotic MADS domain proteins SEPALLATA3 (SEP3), APETALA1 (AP1) and CAULIFLOWER (CAL). This degradation of MADS domain proteins was dependent on the ubiquitin-proteasome pathway. The expression of floral development genes downstream of SEP3 and AP1 was disrupted in 35S::PHYL1 transgenic plants. PHYL1 was genetically and functionally conserved among other phytoplasma strains and species. We designate PHYL1, SAP54 and their homologs as members of the phyllody-inducing gene family of 'phyllogens'.


Subject(s)
Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , Flowers/metabolism , MADS Domain Proteins/metabolism , Phytoplasma/metabolism , Plant Leaves/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Bacterial Proteins/genetics , Base Sequence , Flowers/genetics , Flowers/ultrastructure , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Host-Pathogen Interactions , Immunoblotting , MADS Domain Proteins/genetics , Microscopy, Confocal , Microscopy, Electron, Scanning , Molecular Sequence Data , Phytoplasma/genetics , Plant Leaves/genetics , Plant Leaves/ultrastructure , Plants, Genetically Modified , Protein Binding , Proteolysis , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism , Two-Hybrid System Techniques
12.
BMC Microbiol ; 15: 82, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25879952

ABSTRACT

BACKGROUND: Flavescence dorée (FD) of grapevine is a phloem bacterial disease that threatens European vineyards. The disease is associated with a non-cultivable mollicute, a phytoplasma that is transmitted by the grapevine leafhopper Scaphoideus titanus in a persistent, propagative manner. The specificity of insect transmission is presumably mediated through interactions between the host tissues and phytoplasma surface proteins comprising the so-called variable membrane proteins (Vmps). Plant spiroplasmas and phytoplasmas share the same ecological niches, the phloem sieve elements of host plants and the hemocoel of insect vectors. Unlike phytoplasmas, however, spiroplasmas, and Spiroplasma citri in particular, can be grown in cell-free media and genetically engineered. As a new approach for studying phytoplasmas-insect cell interactions, we sought to mimic phytoplasmas through the construction of recombinant spiroplasmas exhibiting FD phytoplasma Vmps at the cell surface. RESULTS: Here, we report the expression of the FD phytoplasma VmpA in S. citri. Transformation of S. citri with plasmid vectors in which the vmpA coding sequence was under the control of the S. citri tuf gene promoter resulted in higher accumulation of VmpA than with the native promoter. Expression of VmpA at the spiroplasma surface was achieved by fusing the vmpA coding sequence to the signal peptide sequence of the S. citri adhesin ScARP3d, as revealed by direct colony immunoblotting and immunogold labelling electron microscopy. Anchoring of VmpA to the spiroplasma membrane was further demonstrated by Triton X-114 protein partitioning and Western immunoblotting. Using the same strategy, the secretion of free, functionally active ß-lactamase (used as a model protein) into the culture medium by recombinant spiroplasmas was achieved. CONCLUSIONS: Construction of recombinant spiroplasmas harbouring the FD phytoplasma variable membrane protein VmpA at their surface was achieved, which provides a new biological approach for studying interactions of phytoplasma surface proteins with host cells. Likewise, the secretion of functional ß-lactamase by recombinant spiroplasmas established the considerable promise of the S. citri expression system for delivering phytoplasma effector proteins into host cells.


Subject(s)
Adhesins, Bacterial/genetics , Bacterial Proteins/genetics , Hemiptera/microbiology , Insect Vectors/microbiology , Phytoplasma/genetics , Recombinant Fusion Proteins/genetics , Spiroplasma citri/genetics , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Animals , Bacterial Proteins/metabolism , Gene Expression , Octoxynol , Phytoplasma/metabolism , Phytoplasma/pathogenicity , Plant Diseases/microbiology , Plasmids/chemistry , Plasmids/metabolism , Polyethylene Glycols/chemistry , Promoter Regions, Genetic , Protein Engineering , Protein Sorting Signals/genetics , Recombinant Fusion Proteins/metabolism , Spiroplasma citri/metabolism , Transformation, Bacterial , Vitis/microbiology , beta-Lactamases/biosynthesis , beta-Lactamases/metabolism
13.
Plant Physiol ; 164(3): 1456-69, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24464367

ABSTRACT

Phytoplasmas have the smallest genome among bacteria and lack many essential genes required for biosynthetic and metabolic functions, making them unculturable, phloem-limited plant pathogens. In this study, we observed that transgenic Arabidopsis (Arabidopsis thaliana) expressing the secreted Aster Yellows phytoplasma strain Witches' Broom protein11 shows an altered root architecture, similarly to the disease symptoms of phytoplasma-infected plants, by forming hairy roots. This morphological change is paralleled by an accumulation of cellular phosphate (Pi) and an increase in the expression levels of Pi starvation-induced genes and microRNAs. In addition to the Pi starvation responses, we found that secreted Aster Yellows phytoplasma strain Witches' Broom protein11 suppresses salicylic acid-mediated defense responses and enhances the growth of a bacterial pathogen. These results contribute to an improved understanding of the role of phytoplasma effector SAP11 and provide new insights for understanding the molecular basis of plant-pathogen interactions.


Subject(s)
Arabidopsis/immunology , Arabidopsis/microbiology , Bacterial Proteins/metabolism , Phosphates/deficiency , Phytoplasma/metabolism , Anthocyanins/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Base Sequence , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genome, Plant/genetics , Homeostasis/drug effects , Homeostasis/genetics , Indoleacetic Acids/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Annotation , Molecular Sequence Data , Phenotype , Phytoplasma/drug effects , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Plant Immunity/drug effects , Plant Immunity/genetics , Plant Leaves/anatomy & histology , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Roots/anatomy & histology , Plant Roots/drug effects , Plant Roots/metabolism , Plants, Genetically Modified , Pseudomonas syringae/drug effects , Pseudomonas syringae/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
14.
Int J Syst Evol Microbiol ; 65(Pt 3): 1075-1082, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25574038

ABSTRACT

Phytoplasmas are a diverse but phylogenetically coherent group of cell-wall-less bacteria affiliated with the class Mollicutes. Due to difficulties in establishing axenic culture, phytoplasmas were assigned to a provisional genus, 'Candidatus Phytoplasma', and the genus was embraced within the order Acholeplasmatales. However, phytoplasmas differ significantly from species of the genus Acholeplasma in their habitat specificities, modes of life, metabolic capabilities, genomic architectures, and phylogenetic positions. This communication describes the unique ecological, nutritional, biochemical, genomic and phylogenetic properties that distinguish phytoplasmas from species of the genus Acholeplasma and all other taxa in the class Mollicutes. Since such distinguishing properties of the phytoplasmas are not referable to the descriptions of the order Acholeplasmatales and of all other existing orders, namely Mycoplasmatales, Entomoplasmatales and Anaeroplasmatales, this communication raises the question of whether 'Candidatus Phytoplasma' should be retained in the order Acholeplasmatales or whether a novel provisional order and family should be created to accommodate the genus 'Ca. Phytoplasma'.


Subject(s)
Phylogeny , Phytoplasma/classification , DNA, Bacterial/genetics , Molecular Sequence Data , Phytoplasma/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
15.
Microbiology (Reading) ; 160(Pt 12): 2794-2806, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25294105

ABSTRACT

Phytoplasmas ('Candidatus Phytoplasma') are insect-vectored plant pathogens. The genomes of these bacteria are small with limited metabolic capacities making them dependent on their plant and insect hosts for survival. In contrast to mycoplasmas and other relatives in the class Mollicutes, phytoplasmas encode genes for malate transporters and malic enzyme (ME) for conversion of malate into pyruvate. It was hypothesized that malate is probably a major energy source for phytoplasmas as these bacteria are limited in the uptake and processing of carbohydrates. In this study, we investigated the metabolic capabilities of 'Candidatus (Ca.) phytoplasma' aster yellows witches'-broom (AYWB) malic enzyme (ME). We found that AYWB-ME has malate oxidative decarboxylation activity, being able to convert malate to pyruvate and CO2 with the reduction of either NAD or NADP, and displays distinctive kinetic mechanisms depending on the relative concentration of the substrates. AYWB-ME activity was strictly modulated by the ATP/ADP ratio, a feature which has not been found in other ME isoforms characterized to date. In addition, we found that the 'Ca. Phytoplasma' AYWB PduL-like enzyme (AYWB-PduL) harbours phosphotransacetylase activity, being able to convert acetyl-CoA to acetyl phosphate downstream of pyruvate. ATP also inhibited AYWB-PduL activity, as with AYWB-ME, and the product of the reaction catalysed by AYWB-PduL, acetyl phosphate, stimulated AYWB-ME activity. Overall, our data indicate that AYWB-ME and AYWB-PduL activities are finely coordinated by common metabolic signals, like ATP/ADP ratios and acetyl phosphate, which support their participation in energy (ATP) and reducing power [NAD(P)H] generation from malate in phytoplasmas.


Subject(s)
Energy Metabolism , Gene Expression Regulation, Enzymologic , Malate Dehydrogenase/metabolism , Malates/metabolism , Phosphate Acetyltransferase/metabolism , Phytoplasma/enzymology , Phytoplasma/metabolism , Acetyl Coenzyme A/metabolism , Carbon Dioxide/metabolism , Gene Expression Regulation, Bacterial , NAD/metabolism , NADP/metabolism , Phytoplasma/genetics , Pyruvic Acid/metabolism
16.
Plant Physiol ; 162(4): 2005-14, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23784461

ABSTRACT

Phytoplasmas are insect-borne plant pathogenic bacteria that alter host morphology. TENGU, a small peptide of 38 residues, is a virulence factor secreted by phytoplasmas that induces dwarfism and witches' broom in the host plant. In this study, we demonstrate that plants process TENGU in order to generate small functional peptides. First, virus vector-mediated transient expression demonstrated that the amino-terminal 11 amino acids of TENGU are capable of causing symptom development in Nicotiana benthamiana plants. The deletion of the 11th residue significantly diminished the symptom-inducing activity of TENGU, suggesting that these 11 amino acids constitute a functional domain. Second, we found that TENGU undergoes proteolytic processing in vitro, generating peptides of 19 and 21 residues including the functional domain. Third, we observed similar processing of TENGU in planta, and an alanine substitution mutant of TENGU, for which processing was compromised, showed reduced symptom induction activity. All TENGU homologs from several phytoplasma strains possessed similar symptom induction activity and went through processing, which suggests that the processing of TENGU might be related to its function.


Subject(s)
Arabidopsis/microbiology , Bacterial Proteins/metabolism , Host-Pathogen Interactions , Nicotiana/microbiology , Phytoplasma/pathogenicity , Amino Acid Sequence , Arabidopsis/metabolism , Bacterial Proteins/genetics , Molecular Sequence Data , Mutation , Peptide Fragments/metabolism , Phylogeny , Phytoplasma/metabolism , Plant Diseases/microbiology , Plant Extracts/metabolism , Protein Structure, Tertiary , RNA, Ribosomal, 16S , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Nicotiana/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
17.
J Proteome Res ; 12(2): 785-95, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23244174

ABSTRACT

Infection of Mexican lime trees (Citrus aurantifolia L.) with the specialized bacterium "CandidatusPhytoplasma aurantifolia" causes witches' broom disease. Witches' broom disease has the potential to cause significant economic losses throughout western Asia and North Africa. We used label-free quantitative shotgun proteomics to study changes in the proteome of Mexican lime trees in response to infection by "Ca. Phytoplasma aurantifolia". Of 990 proteins present in five replicates of healthy and infected plants, the abundances of 448 proteins changed significantly in response to phytoplasma infection. Of these, 274 proteins were less abundant in infected plants than in healthy plants, and 174 proteins were more abundant in infected plants than in healthy plants. These 448 proteins were involved in stress response, metabolism, growth and development, signal transduction, photosynthesis, cell cycle, and cell wall organization. Our results suggest that proteomic changes in response to infection by phytoplasmas might support phytoplasma nutrition by promoting alterations in the host's sugar metabolism, cell wall biosynthesis, and expression of defense-related proteins. Regulation of defense-related pathways suggests that defense compounds are induced in interactions with susceptible as well as resistant hosts, with the main differences between the two interactions being the speed and intensity of the response.


Subject(s)
Citrus aurantiifolia/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Proteins/metabolism , Proteome/analysis , Cell Cycle/genetics , Cell Wall/chemistry , Cell Wall/metabolism , Citrus aurantiifolia/metabolism , Citrus aurantiifolia/microbiology , Host-Pathogen Interactions , Photosynthesis/genetics , Phytoplasma/metabolism , Phytoplasma/pathogenicity , Plant Diseases/microbiology , Plant Proteins/genetics , Proteome/genetics , Proteome/metabolism , Signal Transduction/genetics , Stress, Physiological/genetics
18.
Front Cell Infect Microbiol ; 13: 1289100, 2023.
Article in English | MEDLINE | ID: mdl-38029232

ABSTRACT

Introduction: The adhesion of flavescence dorée phytoplasma to the midgut epithelium cells of their insect vectors is partially mediated by the variable membrane protein A (VmpA), an adhesin which shows lectin properties. In order to identify the insect receptor for VmpA, we identified Euscelidius variegatus cell proteins interacting with recombinant VmpA-His6. Methods: The E. variegatus proteins were identified by mass spectrometry analysis of VmpA-E. variegatus protein complexes formed upon in vitro interaction assays. To assess their impact in VmpA binding, we reduced the expression of the candidate genes on E. variegatus cells in culture by dsRNA-mediated RNAi. The effect of candidate gene knockdown on VmpA binding was measured by the capacity of E. variegatus cells to bind VmpA-coated fluorescent beads. Results and discussion: There were 13 candidate proteins possessing potential N-glycosylation sites and predicted transmembrane domains selected. The decrease of expression of an unknown transmembrane protein with leucine-rich repeat domains (uk1_LRR) was correlated with the decreased adhesion of VmpA beads to E. variegatus cells. The uk1_LRR was more expressed in digestive tubes than salivary glands of E. variegatus. The protein uk1_LRR could be implicated in the binding with VmpA in the early stages of insect infection following phytoplasmas ingestion.


Subject(s)
Hemiptera , Phytoplasma , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phytoplasma/genetics , Phytoplasma/metabolism , Staphylococcal Protein A , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Hemiptera/metabolism , Insect Vectors , Plant Diseases
19.
Mol Plant Microbe Interact ; 25(7): 889-95, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22432876

ABSTRACT

The phytopathogenic, cell-wall-less phytoplasmas exhibit a dual life cycle: they multiply in the phloem of their host plant and in the body of their insect vector. Their membrane proteins are in direct contact with both hosts and are supposed to play a crucial role in the phytoplasma spread within the plant as well as by the insect vector. Three types of nonhomologous but highly abundant and immunodominant membrane proteins (IDP) have been identified within the phytoplasmas: Amp, IdpA, and Imp. Although recent results indicate that Amp is involved in vector specificity interacting with insect proteins such as actin, little is known about the interaction of IDP with the plant. We could demonstrate that transiently expressed Imp of 'Candidatus Phytoplasma mali' as well as the Imp without transmembrane domain (Imp▴Tm) bind with plant actins in vivo. Moreover, in vitro co-sediment and binding assays showed that Escherichia coli-expressed recombinant Imp▴Tm-His binds to both G- and F-actins isolated from rabbit muscle. Transgenic plants expressing Imp- or Imp▴Tm-green fluorescent protein did not exhibit any remarkable change of phenotype compared with the wild-type plant. These results indicate that Imp specifically binds to plant actin and a role of Imp-actin binding in phytoplasma motility is hypothesized.


Subject(s)
Actins/metabolism , Immunodominant Epitopes/metabolism , Membrane Proteins/metabolism , Nicotiana/microbiology , Phytoplasma/metabolism , Actin Cytoskeleton/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , DNA, Plant/genetics , Green Fluorescent Proteins , Immunodominant Epitopes/genetics , Immunodominant Epitopes/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Phytoplasma/genetics , Phytoplasma/immunology , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Binding , Rabbits , Recombinant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism
20.
Plant Physiol ; 157(2): 831-41, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21849514

ABSTRACT

Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches' Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches' broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host.


Subject(s)
Arabidopsis/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flowers/growth & development , Phytoplasma/pathogenicity , Plant Diseases/microbiology , Animals , Arabidopsis/growth & development , Flowers/microbiology , Hemiptera/genetics , Hemiptera/microbiology , Host-Pathogen Interactions , Insect Vectors/genetics , Phytoplasma/metabolism , Plants, Genetically Modified/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL