Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.831
Filter
1.
Genes Dev ; 32(21-22): 1361-1366, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30366902

ABSTRACT

How the interplay between cell- and tissue-level processes produces correctly proportioned organs is a key problem in biology. In plants, the relative size of leaves compared with their lateral appendages, called stipules, varies tremendously throughout development and evolution, yet relevant mechanisms remain unknown. Here we use genetics, live imaging, and modeling to show that in Arabidopsis leaves, the LATE MERISTEM IDENTITY1 (LMI1) homeodomain protein regulates stipule proportions via an endoreduplication-dependent trade-off that limits tissue size despite increasing cell growth. LM1 acts through directly activating the conserved mitosis blocker WEE1, which is sufficient to bypass the LMI1 requirement for leaf proportionality.


Subject(s)
Arabidopsis Proteins/physiology , Endoreduplication , Homeodomain Proteins/physiology , Transcription Factors/physiology , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
BMC Plant Biol ; 24(1): 566, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880875

ABSTRACT

BACKGROUND: Plants can retain atmospheric particulate matter (PM) through their unique foliar microstructures, which has a profound impact on the phyllosphere microbial communities. Yet, the underlying mechanisms linking atmospheric particulate matter (PM) retention by foliar microstructures to variations in the phyllosphere microbial communities remain a mystery. In this study, we conducted a field experiment with ten Ulmus lines. A series of analytical techniques, including scanning electron microscopy, atomic force microscopy, and high-throughput amplicon sequencing, were applied to examine the relationship between foliar surface microstructures, PM retention, and phyllosphere microbial diversity of Ulmus L. RESULTS: We characterized the leaf microstructures across the ten Ulmus lines. Chun exhibited a highly undulated abaxial surface and dense stomatal distribution. Langya and Xingshan possessed dense abaxial trichomes, while Lieye, Zuiweng, and Daguo had sparsely distributed, short abaxial trichomes. Duomai, Qingyun, and Lang were characterized by sparse stomata and flat abaxial surfaces, whereas Jinye had sparsely distributed but extensive stomata. The mean leaf retention values for total suspended particulate (TSP), PM2.5, PM2.5-10, PM10-100, and PM> 100 were 135.76, 6.60, 20.10, 90.98, and 13.08 µg·cm- 2, respectively. Trichomes substantially contributed to PM2.5 retention, while larger undulations enhanced PM2.5-10 retention, as evidenced by positive correlations between PM2.5 and abaxial trichome density and between PM2.5-10 and the adaxial raw microroughness values. Phyllosphere microbial diversity patterns varied among lines, with bacteria dominated by Sediminibacterium and fungi by Mycosphaerella, Alternaria, and Cladosporium. Redundancy analysis confirmed that dense leaf trichomes facilitated the capture of PM2.5-associated fungi, while bacteria were less impacted by PM and struggled to adhere to leaf microstructures. Long and dense trichomes provided ideal microhabitats for retaining PM-borne microbes, as evidenced by positive feedback loops between PM2.5, trichome characteristics, and the relative abundances of microorganisms like Trichoderma and Aspergillus. CONCLUSIONS: Based on our findings, a three-factor network profile was constructed, which provides a foundation for further exploration into how different plants retain PM through foliar microstructures, thereby impacting phyllosphere microbial communities.


Subject(s)
Microbiota , Particulate Matter , Plant Leaves , Ulmus , Plant Leaves/microbiology , Plant Leaves/ultrastructure , Ulmus/microbiology , Microscopy, Electron, Scanning , Bacteria/classification , Bacteria/genetics , Biodiversity
3.
BMC Plant Biol ; 24(1): 694, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039438

ABSTRACT

BACKGROUND: This study was aimed to determine the taxonomic position and delimitation of fifteen Lamiaceae taxa using leaf epidermal morpho-anatomical features in Lahore. A main objective of the study was also the revision and upgradation of Lamiaceae taxa in the flora of Pakistan, as no details of studied species are found in the flora of Pakistan. METHODS: The examination of significant anatomical parameters, such as epidermal cell shape and size, stomatal types, guard and subsidiary cells shape and size, stomatal cavity size, trichome size and shape, oil droplets, crystals, and secretory cavity characteristics were studied using light microscopic (LM) and scanning electron microscopic (SEM) techniques. Among all the studied Lamiaceae species, these anatomical features varied significantly. Principal component analysis and correlation were done to distinguish the species' similarities. RESULTS: Most species had pentagonal and hexagonal epidermal cells with straight anticlinal wall thickness. On the adaxial surface, paracytic stomata were found in Ocimum basilicum L. and Rosmarinus officinalis L. Diacytic stomata was observed in Ajuga reptans L. and anisocytic stomata in Galeopsis tetrahit L. In the abaxial surface, trichomes were present in five species, i.e., Mentha suaveolens Ehrh. A. reptans, Thymus vulgaris L., M. haplocalyx, and Salvia splendens Ewat. In S. splendens, peltate and glandular trichomes were seen whereas, in other species, trichomes were long, unbranched glandular and had tapering ends. In adaxial side trichomes were present only in M. suaveolens, A. reptans, S. bazyntina, O. basciculum, S. splendens, S. officinalis, S. rosemarinus. In other species, trichomes were absent on the adaxial surface. In abaxial view, M. suaveolens had the largest length of trichomes, and O. basciculum had the smallest. S. splendens L. had the largest trichome width, while T. vulgaris had the smallest. CONCLUSION: Hence, according to these findings, morpho-anatomical traits are useful for identifying Lamiaceae taxa. Also, there is a need of upgradation and addition of studied taxa in flora of Pakistan comprehensively.


Subject(s)
Lamiaceae , Plant Leaves , Pakistan , Lamiaceae/anatomy & histology , Lamiaceae/ultrastructure , Plant Leaves/anatomy & histology , Plant Leaves/ultrastructure , Plant Stomata/anatomy & histology , Plant Stomata/ultrastructure , Microscopy, Electron, Scanning , Trichomes/anatomy & histology , Trichomes/ultrastructure , Plant Epidermis/anatomy & histology , Plant Epidermis/ultrastructure
4.
Planta ; 260(4): 95, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271529

ABSTRACT

MAIN CONCLUSION: New findings are presented for Chaerophyllum coloratum L. on the volatile composition of the essential oil, based on data of hydrosol and fresh plant material, light and electron microscopy of leaves, and cytotoxic and antiviral activity. The widespread Apiaceae family includes many well-known and economically important plants that are cultivated as food or spices. Many produce essential oils and are generally a source of secondary metabolites and compounds that have numerous applications in daily life. In this study, the chemical composition of volatile organic compounds (VOCs), ultrastructure and biological activity of the Mediterranean endemic species Cheaerophyllum coloratum L. are investigated, as literature data for this plant species are generally very scarce. The essential oil and hydrosol were extracted from the air-dried leaves by hydrodistillation and the chemical composition of both extracts was analysed by GC-MS in conjunction with headspace solid-phase microextraction (HS-SPME) of VOCs from the hydrosol and the fresh plant material. In the composition of the essential oil, the oxygenated sesquiterpenes spathulenol and caryophyllene oxide were the most abundant components. In the fresh plant material, non-oxygenated sesquiterpenes dominated, with ß-caryophyllene and germacrene D being the main components. The hydrosol was dominated by monoterpenes, with the oxygenated monoterpene p-cymen-8-ol being the most abundant. Light and electron micrographs of the leaf of C. coloratum show secretory structures, and we hypothesize that glandular leaf trichomes, secretory epidermal cells and secretory canals are involved in the production of volatiles and their secretion on the leaf surface. Since the biological potential of C. coloratum is poorly investigated, we tested its cytotoxic activity on cancer and healthy cell lines and its antiviral activity on plants infected with tobacco mosiac virus (TMV). Our results dealing with the composition, ultrastructure and biological activity show that C. coloratum represent a hidden valuable plant species with a potential for future research.


Subject(s)
Oils, Volatile , Plant Leaves , Volatile Organic Compounds , Plant Leaves/chemistry , Plant Leaves/ultrastructure , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Antiviral Agents/pharmacology , Solid Phase Microextraction , Sesquiterpenes/pharmacology , Sesquiterpenes/metabolism
5.
Ann Bot ; 133(4): 621-642, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38366151

ABSTRACT

BACKGROUND AND AIMS: Extrafloral nectaries are nectar-secreting structures present on vegetative parts of plants which provide indirect defences against herbivore attack. Extrafloral nectaries in Clerodendrum chinense are patelliform-shaped specialized trichomatous structures. However, a complete understanding of patelliform extrafloral nectaries in general, and of C. chinense in particular, has not yet been established to provide fundamental insight into the cellular physiological machinery involved in nectar biosynthesis and secretory processes. METHODS: We studied temporal changes in the morphological, anatomical and ultrastructural features in the architectures of extrafloral nectaries. We also compared metabolite profiles of extrafloral nectar, nectary tissue, non-nectary tissue and phloem sap. Further, both in situ histolocalization and normal in vitro activities of enzymes related to sugar metabolism were examined. KEY RESULTS: Four distinct tissue regions in the nectar gland were revealed from histochemical characterization, among which the middle nectariferous tissue was found to be the metabolically active region, while the intermediate layer was found to be lipid-rich. Ultrastructural study showed the presence of a large number of mitochondria along with starch-bearing chloroplasts in the nectariferous region. However, starch depletion was noted with progressive maturation of nectaries. Metabolite analysis revealed compositional differences among nectar, phloem sap, nectary and non-nectary tissue. Invertase activity was higher in secretory stages and localized in nectariferous tissue and adjacent region. CONCLUSIONS: Our study suggests extrafloral nectar secretion in C. chinense to be both eccrine and merocrine in nature. A distinct intermediate lipid-rich layer that separates the epidermis from nectary parenchyma was revealed, which possibly acts as a barrier to water flow in nectar. This study also revealed a distinction between nectar and phloem sap, and starch could act as a nectar precursor, as evidenced from enzymatic and ultrastructural studies. Thus, our findings on changing architecture of extrafloral nectaries with temporal secretion revealed a cell physiological process involved in nectar biosynthesis and secretion.


Subject(s)
Clerodendrum , Plant Leaves , Plant Nectar , Plant Nectar/metabolism , Clerodendrum/metabolism , Clerodendrum/ultrastructure , Plant Leaves/ultrastructure , Plant Leaves/metabolism , Plant Leaves/anatomy & histology
6.
Ann Bot ; 134(1): 131-150, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38551515

ABSTRACT

BACKGROUND AND AIMS: Structural colour is responsible for the remarkable metallic blue colour seen in the leaves of several plants. Species belonging to only ten genera have been investigated to date, revealing four photonic structures responsible for structurally coloured leaves. One of these is the helicoidal cell wall, known to create structural colour in the leaf cells of five taxa. Here we investigate a broad selection of land plants to understand the phylogenetic distribution of this photonic structure in leaves. METHODS: We identified helicoidal structures in the leaf epidermal cells of 19 species using transmission electron microscopy. Pitch measurements of the helicoids were compared with the reflectance spectra of circularly polarized light from the cells to confirm the structure-colour relationship. RESULTS: By incorporating species examined with a polarizing filter, our results increase the number of taxa with photonic helicoidal cell walls to species belonging to at least 35 genera. These include 19 monocot genera, from the orders Asparagales (Orchidaceae) and Poales (Cyperaceae, Eriocaulaceae, Rapateaceae) and 16 fern genera, from the orders Marattiales (Marattiaceae), Schizaeales (Anemiaceae) and Polypodiales (Blechnaceae, Dryopteridaceae, Lomariopsidaceae, Polypodiaceae, Pteridaceae, Tectariaceae). CONCLUSIONS: Our investigation adds considerably to the recorded diversity of plants with structurally coloured leaves. The iterative evolution of photonic helicoidal walls has resulted in a broad phylogenetic distribution, centred on ferns and monocots. We speculate that the primary function of the helicoidal wall is to provide strength and support, so structural colour could have evolved as a potentially beneficial chance function of this structure.


Subject(s)
Biological Evolution , Cell Wall , Phylogeny , Plant Leaves , Plant Leaves/ultrastructure , Plant Leaves/anatomy & histology , Cell Wall/ultrastructure , Microscopy, Electron, Transmission , Color , Plant Epidermis/ultrastructure
7.
Plant Cell Rep ; 43(5): 135, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704787

ABSTRACT

KEY MESSAGE: The disruption of the SWL1 gene leads to a significant down regulation of chloroplast and secondary metabolites gene expression in Arabidopsis thaliana. And finally results in a dysfunction of chloroplast and plant growth. Although the development of the chloroplast has been a consistent focus of research, the corresponding regulatory mechanisms remain unidentified. In this study, the CRISPR/Cas9 system was used to mutate the SWL1 gene, resulting in albino cotyledons and variegated true leaf phenotype. Confocal microscopy and western blot of chloroplast protein fractions revealed that SWL1 localized in the chloroplast stroma. Electron microscopy indicated chloroplasts in the cotyledons of swl1 lack well-defined grana and internal membrane structures, and similar structures have been detected in the albino region of variegated true leaves. Transcriptome analysis revealed that down regulation of chloroplast and nuclear gene expression related to chloroplast, including light harvesting complexes, porphyrin, chlorophyll metabolism and carbon metabolism in the swl1 compared to wild-type plant. In addition, proteomic analysis combined with western blot analysis, showed that a significant decrease in chloroplast proteins of swl1. Furthermore, the expression of genes associated with secondary metabolites and growth hormones was also reduced, which may be attributed to SWL1 associated with absorption and fixation of inorganic carbon during chloroplast development. Together, the above findings provide valuable information to elucidate the exact function of SWL1 in chloroplast biogenesis and development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chloroplasts , Gene Expression Regulation, Plant , Organelle Biogenesis , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Chlorophyll/metabolism , Chloroplast Proteins/metabolism , Chloroplast Proteins/genetics , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Cotyledon/genetics , Cotyledon/metabolism , Cotyledon/growth & development , CRISPR-Cas Systems , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/ultrastructure , Proteomics
8.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33926963

ABSTRACT

Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-Å resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Membrane Proteins/genetics , Plant Leaves/genetics , Plant Stomata/genetics , Abscisic Acid/metabolism , Anions/metabolism , Arabidopsis/ultrastructure , Arabidopsis Proteins/ultrastructure , Brachypodium/genetics , Brachypodium/ultrastructure , Carbon Dioxide/metabolism , Cryoelectron Microscopy , Ion Transport/genetics , Membrane Proteins/ultrastructure , Phosphorylation/genetics , Plant Leaves/ultrastructure , Plant Stomata/ultrastructure , Protein Conformation , Signal Transduction/genetics
9.
Development ; 147(20)2020 10 21.
Article in English | MEDLINE | ID: mdl-32994171

ABSTRACT

The mechanisms whereby leaf anlagen undergo proliferative growth and expansion to form wide, flat leaves are unclear. The maize gene NARROWSHEATH1 (NS1) is a WUSCHEL-related homeobox3 (WOX3) homolog expressed at the margins of leaf primordia, and is required for mediolateral outgrowth. To investigate the mechanisms of NS1 function, we used chromatin immunoprecipitation and laser-microdissection RNA-seq of leaf primordial margins to identify gene targets bound and modulated by NS1. Microscopic analyses of cell division and gene expression in expanding leaves, and reverse genetic analyses of homologous NS1 target genes in Arabidopsis, reveal that NS1 controls mediolateral outgrowth by repression of a growth inhibitor and promotion of cell division at primordial leaf margins. Intriguingly, homologous WOX gene products are expressed in stem cell-organizing centers and traffic to adjoining cells to activate stem-cell identity non-autonomously. In contrast, WOX3/NS1 does not traffic, and stimulates cell divisions in the same cells in which it is transcribed.


Subject(s)
Homeodomain Proteins/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/ultrastructure , Cell Division , Gene Expression Regulation, Plant , Genes, Homeobox , Genes, Plant , Homeodomain Proteins/genetics , Indoleacetic Acids/metabolism , Mutation/genetics , Phenotype , Plant Leaves/cytology , Plant Leaves/ultrastructure , Plant Proteins/genetics , S Phase , Seedlings/genetics , Zea mays/genetics
10.
Plant Cell ; 32(5): 1414-1433, 2020 05.
Article in English | MEDLINE | ID: mdl-32169962

ABSTRACT

The aerial epidermis of plants plays a major role in environmental interactions, yet the development of the cellular components of the aerial epidermis-trichomes, stomata, and pavement cells-is still not fully understood. We have performed a detailed screen of the leaf epidermis in two generations of the well-established Solanum lycopersicum cv M82 × Solanum pennellii ac. LA716 introgression line (IL) population using a combination of scanning electron microscopy (SEM) techniques. Quantification of trichome and stomatal densities in the ILs revealed four genomic regions with a consistently low trichome density. This study also found ILs with abnormal proportions of different trichome types and aberrant trichome morphologies. This work has led to the identification of new, unexplored genomic regions with roles in trichome formation in tomato. This study investigated one interval in IL2-6 in more detail and identified a new function for the transcription factor SlMixta-like in determining trichome patterning in leaves. This illustrates how these SEM images, publicly available to the research community, provide an important dataset for further studies on epidermal development in tomato and other species of the Solanaceae family.


Subject(s)
Genetic Loci , Microscopy, Electron, Scanning , Plant Epidermis/growth & development , Plant Epidermis/ultrastructure , Plant Leaves/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/ultrastructure , Transcription Factors/metabolism , Alleles , Body Patterning , Gene Expression Regulation, Plant , Gene Silencing , Genetic Association Studies , Genome, Plant , Phenotype , Plant Leaves/ultrastructure , Plant Proteins/metabolism , Plant Stomata/ultrastructure , Plants, Genetically Modified , Trichomes/ultrastructure
11.
Plant Cell ; 32(3): 630-649, 2020 03.
Article in English | MEDLINE | ID: mdl-31911455

ABSTRACT

In most plants, abscisic acid (ABA) induces premature leaf senescence; however, the mechanisms of ABA signaling during leaf senescence remain largely unknown. Here, we show that the rice (Oryza sativa) NAM/ATAF1/2/CUC2 (NAC) transcription factor ONAC054 plays an important role in ABA-induced leaf senescence. The onac054 knockout mutants maintained green leaves, while ONAC054-overexpressing lines showed early leaf yellowing under dark- and ABA-induced senescence conditions. Genome-wide microarray analysis showed that ABA signaling-associated genes, including ABA INSENSITIVE5 (OsABI5) and senescence-associated genes, including STAY-GREEN and NON-YELLOW COLORING1 (NYC1), were significantly down-regulated in onac054 mutants. Chromatin immunoprecipitation and protoplast transient assays showed that ONAC054 directly activates OsABI5 and NYC1 by binding to the mitochondrial dysfunction motif in their promoters. ONAC054 activity is regulated by proteolytic processing of the C-terminal transmembrane domain (TMD). We found that nuclear import of ONAC054 requires cleavage of the putative C-terminal TMD. Furthermore, the ONAC054 transcript (termed ONAC054α) has an alternatively spliced form (ONAC054ß), with seven nucleotides inserted between intron 5 and exon 6, truncating ONAC054α protein at a premature stop codon. ONAC054ß lacks the TMD and thus localizes to the nucleus. These findings demonstrate that the activity of ONAC054, which is important for ABA-induced leaf senescence in rice, is precisely controlled by multilayered regulatory processes.


Subject(s)
Abscisic Acid/pharmacology , Cell Membrane/metabolism , Oryza/growth & development , Oryza/genetics , Plant Leaves/growth & development , Plant Proteins/metabolism , Amino Acid Sequence , Base Sequence , Darkness , Gene Expression Regulation, Plant/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Mutation/genetics , Oryza/drug effects , Oryza/ultrastructure , Phenotype , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/ultrastructure , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Binding/drug effects , Protein Domains , Transcription, Genetic/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics
12.
Proc Natl Acad Sci U S A ; 117(5): 2282-2287, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31964812

ABSTRACT

Biomimetic superhydrophobic surfaces display many excellent underwater functionalities, which attribute to the slippery air mattress trapped in the structures on the surface. However, the air mattress is easy to collapse due to various disturbances, leading to the fully wetted Wenzel state, while the water filling the microstructures is difficult to be repelled to completely recover the air mattress even on superhydrophobic surfaces like lotus leaves. Beyond superhydrophobicity, here we find that the floating fern, Salvinia molesta, has the superrepellent capability to efficiently replace the water in the microstructures with air and robustly recover the continuous air mattress. The hierarchical structures on the leaf surface are demonstrated to be crucial to the recovery. The interconnected wedge-shaped grooves between epidermal cells are key to the spontaneous spreading of air over the entire leaf governed by a gas wicking effect to form a thin air film, which provides a base for the later growth of the air mattress in thickness synchronously along the hairy structures. Inspired by nature, biomimetic artificial Salvinia surfaces are fabricated using 3D printing technology, which successfully achieves a complete recovery of a continuous air mattress to exactly imitate the superrepellent capability of Salvinia leaves. This finding will benefit the design principles of water-repellent materials and expand their underwater applications, especially in extreme environments.


Subject(s)
Ferns/chemistry , Ferns/ultrastructure , Biomimetic Materials/chemical synthesis , Biomimetic Materials/chemistry , Ferns/anatomy & histology , Hydrophobic and Hydrophilic Interactions , Nelumbo/chemistry , Plant Epidermis/ultrastructure , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Plant Leaves/ultrastructure , Printing, Three-Dimensional , Surface Properties
13.
Proc Natl Acad Sci U S A ; 117(25): 13901-13907, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513723

ABSTRACT

Many biological surfaces of animals and plants (e.g., bird feathers, insect wings, plant leaves, etc.) are superhydrophobic with rough surfaces at different length scales. Previous studies have focused on a simple drop-bouncing behavior on biological surfaces with low-speed impacts. However, we observed that an impacting drop at high speeds exhibits more complicated dynamics with unexpected shock-like patterns: Hundreds of shock-like waves are formed on the spreading drop, and the drop is then abruptly fragmented along with multiple nucleating holes. Such drop dynamics result in the rapid retraction of the spreading drop and thereby a more than twofold decrease in contact time. Our results may shed light on potential biological advantages of hypothermia risk reduction for endothermic animals and spore spreading enhancement for fungi via wave-induced drop fragmentation.


Subject(s)
Feathers/chemistry , Models, Theoretical , Plant Leaves/chemistry , Rain , Wettability , Wings, Animal/chemistry , Animals , Birds , Feathers/ultrastructure , Hydrodynamics , Insecta , Plant Leaves/ultrastructure , Time , Wings, Animal/ultrastructure
14.
BMC Microbiol ; 22(1): 18, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34996363

ABSTRACT

BACKGROUND: Fe-deficiency chlorosis (FDC) of Asian pear plants is widespread, but little is known about the association between the microbial communities in the rhizosphere soil and leaf chlorosis. The leaf mineral concentration, leaf subcellular structure, soil physiochemical properties, and bacterial species community and distribution had been analysed to gain insights into the FDC in Asian pear plant. RESULTS: The total Fe in leaves with Fe-deficiency was positively correlated with total K, Mg, S, Cu, Zn, Mo and Cl contents, but no differences of available Fe (AFe) were detected between the rhizosphere soil of chlorotic and normal plants. Degraded ribosomes and degraded thylakloid stacks in chloroplast were observed in chlorotic leaves. The annotated microbiome indicated that there were 5 kingdoms, 52 phyla, 94 classes, 206 orders, 404 families, 1,161 genera, and 3,043 species in the rhizosphere soil of chlorotic plants; it was one phylum less and one order, 11 families, 59 genera, and 313 species more than in that of normal plant. Bacterial community and distribution patterns in the rhizosphere soil of chlorotic plants were distinct from those of normal plants and the relative abundance and microbiome diversity were more stable in the rhizosphere soils of normal than in chlorotic plants. Three (Nitrospira defluvii, Gemmatirosa kalamazoonesis, and Sulfuricella denitrificans) of the top five species (N. defluvii, G. kalamazoonesis, S. denitrificans, Candidatus Nitrosoarchaeum koreensis, and Candidatus Koribacter versatilis). were the identical and aerobic in both rhizosphere soils, but their relative abundance decreased by 48, 37, and 22%, respectively, and two of them (G. aurantiaca and Ca. S. usitatus) were substituted by an ammonia-oxidizing soil archaeon, Ca. N. koreensis and a nitrite and nitrate reduction related species, Ca. K. versatilis in that of chlorotic plants, which indicated the adverse soil aeration in the rhizosphere soil of chlorotic plants. A water-impermeable tables was found to reduce the soil aeration, inhibit root growth, and cause some absorption root death from infection by Fusarium solani. CONCLUSIONS: It was waterlogging or/and poor drainage of the soil may inhibit Fe uptake not the amounts of AFe in the rhizosphere soil of chlorotic plants that caused FDC in this study.


Subject(s)
Microbiota , Plant Necrosis and Chlorosis/microbiology , Pyrus/microbiology , Rhizosphere , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Fungi/metabolism , Gene Ontology , Iron/analysis , Iron/metabolism , Metagenomics , Minerals/analysis , Minerals/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/ultrastructure , Plant Roots/growth & development , Plant Roots/microbiology , Pyrus/metabolism , Pyrus/ultrastructure , Soil/chemistry , Soil Microbiology , Water/analysis
15.
Plant Cell ; 31(7): 1430-1445, 2019 07.
Article in English | MEDLINE | ID: mdl-31023840

ABSTRACT

Chloroplasts fuel plant development and growth by converting solar energy into chemical energy. They mature from proplastids through the concerted action of genes in both the organellar and the nuclear genome. Defects in such genes impair chloroplast development and may lead to pigment-deficient seedlings or seedlings with variegated leaves. Such mutants are instrumental as tools for dissecting genetic factors underlying the mechanisms involved in chloroplast biogenesis. Characterization of the green-white variegated albostrians mutant of barley (Hordeum vulgare) has greatly broadened the field of chloroplast biology, including the discovery of retrograde signaling. Here, we report identification of the ALBOSTRIANS gene HvAST (also known as Hordeum vulgare CCT Motif Family gene 7, HvCMF7) by positional cloning as well as its functional validation based on independently induced mutants by Targeting Induced Local Lesions in Genomes (TILLING) and RNA-guided clustered regularly interspaced short palindromic repeats-associated protein 9 endonuclease-mediated gene editing. The phenotypes of the independent HvAST mutants imply residual activity of HvCMF7 in the original albostrians allele conferring an imperfect penetrance of the variegated phenotype even at homozygous state of the mutation. HvCMF7 is a homolog of the Arabidopsis (Arabidopsis thaliana) CONSTANS, CO-like, and TOC1 (CCT) Motif transcription factor gene CHLOROPLAST IMPORT APPARATUS2, which was reported to be involved in the expression of nuclear genes essential for chloroplast biogenesis. Notably, in barley we localized HvCMF7 to the chloroplast, without any clear evidence for nuclear localization.


Subject(s)
Chloroplasts/metabolism , Genes, Plant , Hordeum/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Alleles , Amino Acid Sequence , Base Sequence , CRISPR-Associated Protein 9/metabolism , Chloroplasts/ultrastructure , Chromosome Mapping , Green Fluorescent Proteins/metabolism , Hordeum/ultrastructure , Mutagenesis, Site-Directed , Mutation/genetics , Plant Leaves/ultrastructure , Plant Proteins/chemistry , Plant Proteins/metabolism , RNA, Plant/metabolism
16.
Plant Cell ; 31(7): 1598-1613, 2019 07.
Article in English | MEDLINE | ID: mdl-31036588

ABSTRACT

Autophagy is a major catabolic pathway whereby cytoplasmic constituents including lipid droplets (LDs), storage compartments for neutral lipids, are delivered to the lysosome or vacuole for degradation. The autophagic degradation of cytosolic LDs, a process termed lipophagy, has been extensively studied in yeast and mammals, but little is known about the role for autophagy in lipid metabolism in plants. Organisms maintain a basal level of autophagy under favorable conditions and upregulate the autophagic activity under stress including starvation. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) basal autophagy contributes to triacylglycerol (TAG) synthesis, whereas inducible autophagy contributes to LD degradation. We found that disruption of basal autophagy impedes organellar membrane lipid turnover and hence fatty acid mobilization from membrane lipids to TAG. We show that lipophagy is induced under starvation as indicated by colocalization of LDs with the autophagic marker and the presence of LDs in vacuoles. We additionally show that lipophagy occurs in a process morphologically resembling microlipophagy and requires the core components of the macroautophagic machinery. Together, this study provides mechanistic insight into lipophagy and reveals a dual role for autophagy in regulating lipid synthesis and turnover in plants.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Autophagy , Lipid Metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Biosynthetic Pathways , Chloroplasts/metabolism , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Lipid Droplets/ultrastructure , Membrane Lipids/metabolism , Models, Biological , Mutation/genetics , Plant Leaves/cytology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plants, Genetically Modified , Triglycerides/biosynthesis , Vacuoles/metabolism , Vacuoles/ultrastructure
17.
Proc Natl Acad Sci U S A ; 116(27): 13188-13193, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31196953

ABSTRACT

The tracheary system of plant leaves is composed of a cellulose skeleton with diverse hierarchical structures. It is built of polygonally bent helical microfilaments of cellulose-based nanostructures coated by different layers, which provide them high compression resistance, elasticity, and roughness. Their function includes the transport of water and nutrients from the roots to the leaves. Unveiling details about local interactions of tracheary elements with surrounding material, which varies between plants due to adaptation to different environments, is crucial for understanding ascending fluid transport and for tracheary mechanical strength relevant to potential applications. Here we show that plant tracheary microfilaments, collected from Agapanthus africanus and Ornithogalum thyrsoides leaves, have different surface morphologies, revealed by nematic liquid crystal droplets. This results in diverse interactions among microfilaments and with the environment; the differences translate to diverse mechanical properties of entangled microfilaments and their potential applications. The presented study also introduces routes for accurate characterization of plants' microfilaments.


Subject(s)
Actin Cytoskeleton/ultrastructure , Plants/ultrastructure , Actin Cytoskeleton/physiology , Amaryllidaceae/ultrastructure , Biomechanical Phenomena , Nanostructures/ultrastructure , Ornithogalum/ultrastructure , Plant Leaves/ultrastructure , Xylem/ultrastructure
18.
Proc Natl Acad Sci U S A ; 116(11): 4917-4922, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30804195

ABSTRACT

Raindrop impact on infected plants can disperse micron-sized propagules of plant pathogens (e.g., spores of fungi). Little is known about the mechanism of how plant pathogens are liberated and transported due to raindrop impact. We used high-speed photography to observe thousands of dry-dispersed spores of the rust fungus Puccinia triticina being liberated from infected wheat plants following the impact of a single raindrop. We revealed that an air vortex ring was formed during the raindrop impact and carried the dry-dispersed spores away from the surface of the host plant. The maximum height and travel distance of the airborne spores increased with the aid of the air vortex. This unique mechanism of vortex-induced dispersal dynamics was characterized to predict trajectories of spores. Finally, we found that the spores transported by the air vortex can reach beyond the laminar boundary layer of leaves, which would enable the long-distance transport of plant pathogens through the atmosphere.


Subject(s)
Host-Pathogen Interactions/physiology , Rain , Triticum/microbiology , Air , Basidiomycota/physiology , Microspheres , Models, Theoretical , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Leaves/ultrastructure , Spores, Fungal/physiology , Spores, Fungal/ultrastructure , Triticum/ultrastructure
19.
Plant J ; 103(2): 769-780, 2020 07.
Article in English | MEDLINE | ID: mdl-32279362

ABSTRACT

Foliar water uptake (FWU), the direct uptake of water into leaves, is a global phenomenon, having been observed in an increasing number of plant species. Despite the growing recognition of its functional relevance, our understanding of how FWU occurs and which foliar surface structures are implicated, is limited. In the present study, fluorescent and ionic tracers, as well as microcomputed tomography, were used to assess potential pathways for water entry in leaves of beech, a widely distributed tree species from European temperate regions. Although none of the tracers entered the leaf through the stomatal pores, small amounts of silver precipitation were observed in some epidermal cells, indicating moderate cuticular uptake. Trichomes, however, were shown to absorb and redistribute considerable amounts of ionic and fluorescent tracers. Moreover, microcomputed tomography indicated that 72% of empty trichomes refilled during leaf surface wetting and microscopic investigations revealed that trichomes do not have a cuticle but are covered with a pectin-rich cell wall layer. Taken together, our findings demonstrate that foliar trichomes, which exhibit strong hygroscopic properties as a result of their structural and chemical design, constitute a major FWU pathway in beech.


Subject(s)
Fagus/metabolism , Plant Leaves/metabolism , Trichomes/metabolism , Cryoelectron Microscopy , Fagus/physiology , Fagus/ultrastructure , Plant Leaves/ultrastructure , Trichomes/physiology , Water/metabolism
20.
Plant Mol Biol ; 106(6): 521-531, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34224063

ABSTRACT

KEY MESSAGE: We characterize a functional lincRNA, XH123 in cotton seedling in defense of cold stress. The silencing of XH123 leads to increased sensitivity to cold stress and the decay of chloroplast. Cotton, which originated from the arid mid-American region, is one of the most important cash crops worldwide. Cultivated cotton is now widely spread throughout high-altitude regions such as those in the far northwest of Asia. In such areas, spring temperatures below 12 ℃ impose cold stress on cotton seedlings, with concomitant threat of lost yield and productivity. It is documented that cold stress can induce differential expression of long noncoding RNAs (lncRNAs) in cotton; however, it is not yet clear if these cold-responsive lncRNAs are actively involved with tolerance of cold stress at the molecular level. Here, we select ten long intergenic non-coding RNAs as candidate genes and use virus-induced gene silencing and additional cold treatments to examine their roles in the response to cold stress during the cotton seedling stage. One such gene, XH123, was revealed to be involved in tolerance of cold stress. Specifically, XH123-silenced plants demonstrated sensitivity to cold stress, exhibiting chloroplast damage and increased endogenous levels of reactive oxygen species. The transcriptome profile of XH123-silenced seedlings was similar to that of cold-stressed seedlings having the known cold stress gene PIF3 silenced. These results imply that the lincRNA XH123 is actively involved with cold stress regulation in cotton during the seedling stage.


Subject(s)
Cold-Shock Response/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Gossypium/genetics , RNA, Long Noncoding/genetics , RNA, Plant/genetics , Adaptation, Physiological/genetics , Chloroplasts/genetics , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Cold Temperature , Gene Silencing , Gossypium/growth & development , Microscopy, Electron, Transmission , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/ultrastructure , RNA-Seq/methods , Seedlings/genetics , Seedlings/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL