Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Phytochem Anal ; 35(3): 586-598, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38263361

ABSTRACT

INTRODUCTION: The seeds of Plantago asiatica L., a folk herb, are rich in polysaccharides that possess antioxidant, antidiabetic, and anti-inflammatory properties. Polysaccharides with lower molecular weights generally exhibit higher biological activity, so a method to efficiently extract low-molecular-weight polysaccharides from P. asiatica L. seeds (PLPs) is needed. OBJECTIVES: The aim was to establish an efficient method for extracting polysaccharides from P. asiatica L. seeds while preserving their activity. MATERIALS AND METHODS: Response surface methodology was applied to determine the optimal polysaccharide extraction conditions. Subsequently, the extracted polysaccharides were characterized to determine their monosaccharide composition, physicochemical properties, and molecular weight. Their antioxidant activity was evaluated by measuring their ability to scavenge DPPH and ABTS free radicals. RESULTS: An extraction yield of 9.17% was achieved under an ethanol concentration of 18.0% (w/w), a K2HPO4 concentration of 27.8% (w/w), a solvent-to-material ratio of 30:1 (mL/g), an ultrasound power of 203 W, and an extraction time of 39 min. Structural analyses indicated that this method might cause physicochemical changes in the conformation of PLPs and induce the degradation of PLP side chains but not the backbone. The antioxidant assay results showed that the DPPH and ABTS radical scavenging rates of PLPs were 48.3% and 49.2%, respectively, while in the control group the radical scavenging rates were 35.5% and 37.1%, respectively. CONCLUSION: The established method for extracting polysaccharides from P. asiatica L. seeds is efficient and reliable. The polysaccharides could be used as an important resource with antioxidant activity.


Subject(s)
Antioxidants , Benzothiazoles , Plantago , Sulfonic Acids , Antioxidants/chemistry , Ethanol , Plantago/chemistry , Plantago/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/metabolism , Seeds/chemistry
2.
Mol Cell Biochem ; 478(9): 2041-2056, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36609901

ABSTRACT

Exposure to the herbicide atrazine (ATZ) has deleterious effects on male fertility. This fact underscores the need for measures to protect against the detrimental impact of atrazine exposure on male fertility. The study assessed the protective effects of plantain-based diet (PBD) on rat testes exposed to ATZ by exploring oxid-inflammatory homeostasis. The study evaluated the preventive and therapeutic effects of PBD in a two-phased experiment. Male rats were randomized into seven groups for therapeutic model (Control, ATZ only, ATZ recovery, ATZ + 50% PBD, ATZ + 25% PBD, ATZ + 12.5% PBD and ATZ + quercetin-QUE) while the preventive model had ten groups (Control, ATZ, 50% PBD + ATZ, 25% PBD + ATZ, 12.5% PBD + ATZ and QUE + ATZ). The oxidative stress parameters (DNA fragmentation and MDA level), purinergic activity (ATPase), acetylcholine esterase, and inflammatory markers (NO level, MPO activity, and TNF-α) were increased while the Nrf2 levels were decreased by the ATZ treatment. However, the PBD was able to restore the oxido-inflammatory parameters in the rat testes. The chemical fingerprint of the diet revealed that the diets contained 16 bioactive compounds with quercetin being the most prominent compound. Overall, treatment with PBD was able to protect and prevent the toxicity caused by ATZ by modulating the redox and inflammatory status as well as purinergic activity in the rat testes.


Subject(s)
Atrazine , Herbicides , Plantago , Rats , Male , Animals , Atrazine/toxicity , Atrazine/metabolism , Testis/metabolism , Plantago/metabolism , Quercetin/pharmacology , Quercetin/metabolism , Antioxidants/pharmacology , Oxidative Stress , Herbicides/toxicity , Diet
3.
J Exp Bot ; 73(14): 4832-4849, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35512676

ABSTRACT

In this study, we aimed to investigate for the first time different fruit development stages in plantain banana in order gain insights into the order of appearance and dominance of specific enzymes and fluxes. We examined fruit development in two plantain banana cultivars during the period between 2-12 weeks after bunch emergence using high-throughput proteomics, quantification of major metabolites, and analyses of metabolic fluxes. Starch synthesis and breakdown are processes that take place simultaneously. During the first 10 weeks fruits accumulated up to 48% of their dry weight as starch, and glucose 6-phosphate and fructose were important precursors. We found a unique amyloplast transporter and hypothesize that it facilitates the import of fructose. We identified an invertase originating from the Musa balbisiana genome that would enable carbon flow back to growth and starch synthesis and maintain a high starch content even during ripening. Enzymes associated with the initiation of ripening were involved in ethylene and auxin metabolism, starch breakdown, pulp softening, and ascorbate biosynthesis. The initiation of ripening was cultivar specific, with faster initiation being particularly linked to the 1-aminocyclopropane-1-carboxylate oxidase and 4-alpha glucanotransferase disproportionating enzymes. Information of this kind is fundamental to determining the optimal time for picking the fruit in order to reduce post-harvest losses, and has potential applications for breeding to improve fruit quality.


Subject(s)
Musa , Plantago , Fructose/metabolism , Fruit , Musa/genetics , Musa/metabolism , Plant Breeding , Plantago/metabolism , Starch/metabolism
4.
Chem Biodivers ; 19(8): e202200280, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35796520

ABSTRACT

In the current study, some phenolic compounds, including acteoside, isoacteoside, echinacoside, and arenarioside purified and characterized from Plantago subulata. These compounds were tested for its antioxidant potential, including Fe3+ and Cu2+ reductive ability and Fe2+ chelating effects. The inhibitory effects of isolated phenolic compounds were tested towards human carbonic anhydrase I and II isoenzymes (hCA I and hCA II), butyrylcholinesterase (BChE) acetylcholinesterase (AChE), aldose reductase (AR) and α-glycosidase (α-gly). Ki values were found these compounds in range of 0.24±0.05-1.38±0.34 µM against hCA I, 0.194±0.018-1.03±0.06 µM against hCA II, 0.043±0.01-0.154±0.02 µM against AChE, 3.92±1.08-11.93±4.45 µM against BChE, 0.082±0.0008-1.68±0.42 µM against AR, and 6.93±2.74-17.17±6.70 µM against α-glycosidase. As a result, isolated compounds displayed inhibition effects against studied all metabolic enzymes. They are promising candidates for treating disorders like Alzheimer's disease, diabetes mellitus, glaucoma, leukemia, and epilepsy.


Subject(s)
Cholinesterase Inhibitors , Plantago , Acetylcholinesterase/metabolism , Anticonvulsants/pharmacology , Antioxidants/pharmacology , Butyrylcholinesterase/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Cholinesterase Inhibitors/pharmacology , Glycoside Hydrolases/metabolism , Humans , Hypoglycemic Agents/pharmacology , Molecular Structure , Plantago/metabolism , Structure-Activity Relationship
5.
Plant Cell Environ ; 44(4): 1268-1277, 2021 04.
Article in English | MEDLINE | ID: mdl-33176015

ABSTRACT

When plants compete what influences that interaction? To answer this we measured belowground competition directly, as the simultaneous capture of soil ammonium and nitrate by co-existing herbaceous perennials, Dactylis glomerata and Plantago lanceolata, under the influence of: species identity; N uptake and biomass of focal and neighbour plants; location (benign lowland versus harsher upland site); N availability (low or high N fertilizer); N ion, ammonium or nitrate production (mineralisation) rate, and competition type (intra- or interspecific), as direct effects or pairwise interactions in linear models. We also measured biomass as an indirect proxy for competition. Only three factors influenced both competitive N uptake and biomass production: focal species identity, N ion and the interaction between N ion and neighbour N uptake. Location had little effect on N uptake but a strong influence on biomass production. N uptake increased linearly with biomass only in isolated plants. Our results support the view that measuring resource capture or biomass production tells you different things about how competitors interact with one another and their environment, and that biomass is a longer-term integrative proxy for the outcomes of multiple separate interactions-such as competition for N-occurring between plants.


Subject(s)
Dactylis/physiology , Ecology , Plantago/physiology , Biomass , Dactylis/metabolism , Nitrogen/metabolism , Nutrients/metabolism , Plantago/metabolism
6.
Int J Mol Sci ; 22(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34884890

ABSTRACT

Arbuscular mycorrhiza (AM), i.e., the interaction of plants with arbuscular mycorrhizal fungi (AMF), often influences plant growth, physiology, and metabolism. Effects of AM on the metabolic composition of plant phloem sap may affect aphids. We investigated the impacts of AM on primary metabolites in phloem exudates of the plant species Plantago major and Poa annua and on the aphid Myzus persicae. Plants were grown without or with a generalist AMF species, leaf phloem exudates were collected, and primary metabolites were measured. Additionally, the performance of M. persicae on control and mycorrhizal plants of both species was assessed. While the plant species differed largely in the relative proportions of primary metabolites in their phloem exudates, metabolic effects of AM were less pronounced. Slightly higher proportions of sucrose and shifts in proportions of some amino acids in mycorrhizal plants indicated changes in phloem upload and resource allocation patterns within the plants. Aphids showed a higher performance on P. annua than on P. major. AM negatively affected the survival of aphids on P. major, whereas positive effects of AM were found on P. annua in a subsequent generation. Next to other factors, the metabolic composition of the phloem exudates may partly explain these findings.


Subject(s)
Aphids , Exudates and Transudates/chemistry , Mycorrhizae , Phloem/metabolism , Plantago/physiology , Poa/physiology , Amino Acids , Animals , Plant Leaves/metabolism , Plantago/metabolism , Poa/metabolism , Sucrose
7.
Int J Mol Sci ; 22(3)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535533

ABSTRACT

Seed and fruit mucilage is composed of three types of polysaccharides-pectins, cellulose, and hemicelluloses-and demonstrates adhesive properties after hydration. One of the important functions of the mucilage is to enable seeds to attach to diverse natural surfaces. Due to its adhesive properties, which increase during dehydration, the diaspore can be anchored to the substrate (soil) or attached to an animal's body and dispersed over varied distances. After complete desiccation, the mucilage envelope forms a thin transparent layer around the diaspore creating a strong bond to the substrate. In the present study, we examined the mucilaginous seeds of six different plant taxa (from genera Linum, Lepidium, Ocimum, Salvia and Plantago) and addressed two main questions: (1) How strong is the adhesive bond of the dried mucilage envelope? and (2) What are the differences in adhesion between different mucilage types? Generally, the dried mucilage envelope revealed strong adhesive properties. Some differences between mucilage types were observed, particularly in relation to adhesive force (Fad) whose maximal values varied from 0.58 to 6.22 N. The highest adhesion force was revealed in the cellulose mucilage of Ocimum basilicum. However, mucilage lacking cellulose fibrils, such as that of Plantago ovata, also demonstrated high values of adhesion force with a maximum close to 5.74 N. The adhesion strength, calculated as force per unit contact area (Fad/A0), was comparable between studied taxa. Obtained results demonstrated (1) that the strength of mucilage adhesive bonds strongly surpasses the requirements necessary for epizoochory and (2) that seed mucilage has a high potential as a nontoxic, natural substance that can be used in water-based glues.


Subject(s)
Adhesives , Plant Mucilage/metabolism , Plants/metabolism , Seeds/metabolism , Cell Adhesion , Cell Wall/metabolism , Cellulose/chemistry , Elastic Modulus , Flax/metabolism , Ocimum/metabolism , Plantago/metabolism , Polysaccharides/chemistry , Pressure , Species Specificity
8.
Int J Mol Sci ; 22(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918622

ABSTRACT

A comparative phytochemical study on the phenylethanoid glycoside (PhEG) composition of the underground organs of three Plantago species (P. lanceolata, P. major, and P. media) and that of the fruit wall and seed parts of Forsythia suspensa and F. europaea fruits was performed. The leaves of these Forsythia species and six cultivars of the hybrid F. × intermedia were also analyzed, demonstrating the tissue-specific accumulation and decomposition of PhEGs. Our analyses confirmed the significance of selected tissues as new and abundant sources of these valuable natural compounds. The optimized heat treatment of tissues containing high amounts of the PhEG plantamajoside (PM) or forsythoside A (FA), which was performed in distilled water, resulted in their characteristic isomerizations. In addition to PM and FA, high amounts of the isomerization products could also be isolated after heat treatment. The isomerization mechanisms were elucidated by molecular modeling, and the structures of PhEGs were identified by nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (HR-MS) techniques, also confirming the possibility of discriminating regioisomeric PhEGs by tandem MS. The PhEGs showed no cytostatic activity in non-human primate Vero E6 cells, supporting their safe use as natural medicines and allowing their antiviral potency to be tested.


Subject(s)
Forsythia/chemistry , Glycosides/chemistry , Phytochemicals/chemistry , Plantago/chemistry , Animals , Chlorocebus aethiops , Chromatography, High Pressure Liquid , Forsythia/metabolism , Glycosides/metabolism , Glycosides/pharmacology , Isomerism , Molecular Conformation , Molecular Structure , Organ Specificity , Phytochemicals/metabolism , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plantago/metabolism , Structure-Activity Relationship , Vero Cells
9.
BMC Plant Biol ; 20(1): 116, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32171251

ABSTRACT

BACKGROUND: Developing fruit is considered as an excellent model to study the complex network of metabolites which are altered rapidly during development. RESULTS: Metabolomics revealed that developing psyllium fruit is a rich source of primary metabolites (ω-3 and ω-6 fatty acids and amino-acids), secondary metabolites and natural antioxidants. Eidonomy and anatomy confirmed that psyllium fruit followed five stages of development. Total lipids and fatty acids were synthesized differentially; saturated fatty acids (FAs) increased, whereas total polyunsaturated FAs decreased with increasing developmental stage. The unsaturation index and degree of unsaturation showed a catenary curve. Principal component analysis confirmed a significant shift in the FA profile from bud initiation to the maturation stage. Similarly, a similar level of total amino acids was present at different developmental stage following a temporal biosynthesis pathway. Total phenolic and flavonoid contents decreased in tandem with fruit development. Twenty-two different metabolites were identified, and metabolic changes were also observed during fruit development. Six metabolites were detected exclusively in the flowering stage, whereas two were detected in each of early and maturity stages of development. The metabolites apigenin and kaempferol were detected ubiquitously in all developmental stages. Time-dependent metabolomics revealed a shift in metabolite biosynthesis. CONCLUSION: During fruit development, metabolites, FAs, amino acids, total phenolics, total flavonoids, antioxidants and scavenging activities changed progressively and were co-ordinately linked to each other. As a future perspective, further studies will focus on the validation of identified metabolites, which integrated with transcriptomics data and will reveal the metabolic regulatory network of development psyllium fruit.


Subject(s)
Fruit/metabolism , Metabolome , Plantago/metabolism , Fruit/growth & development , Metabolomics , Plantago/growth & development
10.
Environ Geochem Health ; 42(1): 209-219, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31152287

ABSTRACT

A field study was carried out to estimate the variations in the concentrations of macro- and trace elements in the rhizosphere soil and in roots and leaves of three widely distributed plant species-couch grass, plantain, and yarrow collected simultaneously from two sites characterized by different soil parameters. Main attention was paid to environmental (soil characteristics) and phylogenetic (plant species) factors that can influence on the concentrations of different elements in the plants and in soils. Both the factors cannot be considered as independent, although their contribution to the plant elemental composition may be different. There were statistically significant differences between concentrations of C, N, and H and 13 macro- and trace elements in the soils collected from the two sites. The concentrations of many chemical elements in the rhizosphere soil of the three plant species collected from the same site were often different. The differences in the characteristics of the soils at the sites resulted in differences between the concentrations of several elements in the plants growing at the sites. However, this was only one of the reasons of significant difference between the concentrations of macro- and trace elements in the same plant species collected from the sites. Couch grass, plantain, and yarrow had different reactions on the soil characteristics. The elemental composition of each plant species was unique although they grew at the same place and were collected simultaneously. Among the plants, yarrow was more tolerant to varying environmental conditions than plantain and couch grass.


Subject(s)
Plants/metabolism , Soil/chemistry , Trace Elements/analysis , Trace Elements/pharmacokinetics , Achillea/metabolism , Bioaccumulation , Carbon/analysis , Metals/analysis , Metals/pharmacokinetics , Nitrogen/analysis , Phylogeny , Plant Leaves/chemistry , Plant Roots/chemistry , Plantago/metabolism , Poaceae/metabolism , Rhizosphere , Russia , Species Specificity
11.
Int J Mol Sci ; 20(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31395813

ABSTRACT

Vascular tissues essentially regulate water, nutrient, photo-assimilate, and phytohormone logistics throughout the plant body. Boron (B) is crucial for the development of the vascular tissue in many dicotyledonous plant taxa and B deficiency particularly affects the integrity of phloem and xylem vessels, and, therefore, functionality of long-distance transport. We hypothesize that changes in the plants' B nutritional status evoke differential responses of the vasculature and the mesophyll. However, direct analyses of the vasculature in response to B deficiency are lacking, due to the experimental inaccessibility of this tissue. Here, we generated biochemical and physiological understanding of B deficiency response reactions in common plantain (Plantago major L.), from which pure and intact vascular bundles can be extracted. Low soil B concentrations affected quantitative distribution patterns of various phytohormones, sugars and macro-, and micronutrients in a tissue-specific manner. Vascular sucrose levels dropped, and sucrose loading into the phloem was reduced under low B supply. Phytohormones responded selectively to B deprivation. While concentrations of abscisic acid and salicylic acid decreased at low B supply, cytokinins and brassinosteroids increased in the vasculature and the mesophyll, respectively. Our results highlight the biological necessity to analyze nutrient deficiency responses in a tissue- rather organ-specific manner.


Subject(s)
Boron/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/metabolism , Plantago/metabolism , Sucrose/metabolism , Brassinosteroids/metabolism , Cytokinins/metabolism , Phloem/metabolism , Xylem/metabolism
12.
Biometals ; 30(2): 171-184, 2017 04.
Article in English | MEDLINE | ID: mdl-28108976

ABSTRACT

Plantago ovata Forsk is an annual herb with immense medicinal importance, the seed and husk of which is used in the treatment of chronic constipation, irritable bowel syndrome, diarrhea since ancient times. Zinc, an essential metal, is required by plants as they form important components of zinc finger proteins and also aid in synthesis of photosynthetic pigments such as chlorophyll. However, in excess amount Zn causes chlorosis of leaf and shoot tissues and generate reactive oxygen species. The present study is aimed at investigating the changes in expression levels of MT2 gene in Plantago ovata under zinc stress. Data show up to 1.66 fold increase in expression of PoMT2 in 1000 µM ZnSO4·7H2O treated sample. Our study also describes alteration of MT2 gene expressions in Plantago ovata as observed through Real time PCR (qPCR) done by [Formula: see text] method. In this study we have observed an upregulation (or induction) in the PoMT2 gene expression level in 500 and 800 µM ZnSO4·7H2O treated samples but found saturation on further increasing the dose to 1000 µM of ZnSO4·7H2O. Determination of the phenotypic and biochemical changes in Plantago ovata due to exposure to zinc stress of concentrations 500, 800 and 1000 µM revealed oxidative stress. The enhanced expression of MT2 gene in Plantago ovata has a correlation with the increased total antioxidant activity and increased DPPH radical scavenging activity.


Subject(s)
Gene Expression Regulation, Plant , Metallothionein/genetics , Plant Proteins/genetics , Plantago/drug effects , Zinc Sulfate/toxicity , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Chlorophyll/biosynthesis , Chlorophyll A , Dose-Response Relationship, Drug , Metallothionein/agonists , Metallothionein/biosynthesis , Oxidation-Reduction , Oxidative Stress , Picrates/antagonists & inhibitors , Picrates/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Proteins/agonists , Plant Proteins/biosynthesis , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/metabolism , Plantago/genetics , Plantago/growth & development , Plantago/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/metabolism , Seeds/drug effects , Seeds/genetics , Seeds/metabolism
13.
Ecotoxicol Environ Saf ; 141: 37-42, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28301809

ABSTRACT

Albendazole (ABZ) is a benzimidazole anthelmintic widely used especially in veterinary medicine. Along with other drugs, anthelmintics have become one of a new class of micro-pollutants that disturb the environment but the information about their fate in plants remains limited. The present study was designed to test the uptake and biotransformation of ABZ in the ribwort plantain (Plantago lancelota), a common meadow plant, which can come into contact with this anthelmintic through the excrements of treated animals in pastures. Two model systems were used and compared: cell suspensions and whole plant regenerants. In addition, time-dependent changes in occurrence of ABZ and its metabolites in roots, basal parts of the leaves and tops of the leaves were followed up. Ultrahigh-performance liquid chromatography coupled with high mass accuracy tandem mass spectrometry (UHPLC-MS/MS) led to the identification of 18 metabolites of ABZ formed in the ribwort. In both model systems, the same types of ABZ biotransformation reactions were found, but the spectrum and abundance of the ABZ metabolites detected in cell suspensions and regenerants differed significantly. Cell suspensions seem to be suitable only for qualitative estimations of drug biotransformation reactions while regenerants were shown to represent an adequate model for the qualitative as well as quantitative evaluation of drug uptake and metabolism in plants.


Subject(s)
Albendazole/analysis , Anthelmintics/analysis , Plantago/metabolism , Soil Pollutants/analysis , Albendazole/metabolism , Animals , Anthelmintics/metabolism , Biodegradation, Environmental , Biotransformation , Chromatography, Liquid , Plantago/growth & development , Soil Pollutants/metabolism , Tandem Mass Spectrometry
14.
Pestic Biochem Physiol ; 142: 21-31, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29107244

ABSTRACT

Azoxystrobin is a broad-spectrum, systemic and soil-applied fungicide used for crop protection against the four major classes of pathogenic fungi. The use of azoxystrobin use has induced water pollution and ecotoxicological effects upon aquatic organisms, long half-life in soils, as well as heath issues. Such issues may be solved by phytoremediation. Here, we tested the uptake and translocation of azoxystrobin and its degradation products by Plantago major, under cold stress and salt stress. The result demonstrated that azoxystrobin significantly accumulated in P. major roots under salinity conditions more than that in the P. major roots under cold conditions and natural condition within two days of experimental period. In P. major roots and leaves, the chromatograms of HPLC for azoxystrobin and metabolites under natural condition (control) and stressed samples (cold stress and salt stress) show different patterns of metabolism pathways reflecting changes in the degradation products. Azoxystrobin carboxylic acid (AZ-acid) formed by methyl ester hydrolysis was an important route in the roots and the leaves. AZ-pyOH and AZ-benzoic were detected in P. major roots under cold and salt stress, while did not detected in P. major roots under natural condition. In the leaves, AZ-pyOH and AZ-benzoic were detected in all treatments between 4 and 12days of exposure. Shoots of the stressed plants had greater H2O2 and proline contents than was observed in the control plants. The level of 100mM NaCl treatment induced significantly higher peroxidase (POD) activity than the non-treated control group. Leaf Chlorophyll contents in the plants at 80 and 100mM NaCl were significantly reduced than was observed in the control plants. I concluded that P. major had a high potential to contribute to remediation of saline-soil contaminated with azoxystrobin.


Subject(s)
Plantago/metabolism , Pyrimidines/metabolism , Sodium Chloride/metabolism , Strobilurins/metabolism , Biodegradation, Environmental , Chlorophyll/metabolism , Cold Temperature , Molecular Structure , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Plantago/chemistry , Pyrimidines/chemistry , Salinity , Sodium Chloride/analysis , Strobilurins/chemistry
15.
Acta Pol Pharm ; 74(3): 739-746, 2017 May.
Article in English | MEDLINE | ID: mdl-29513942

ABSTRACT

The basic aspire of current study was to review different aspects of Plantago ovata together with its cultivation, growth, biochemistry, pharmaceutical and pharmacological attributes. Plantago ovata belongs to family Plantaginaceae. It is an annual herb, indigenous to Mediterranean region especially Southern Europe, North Africa and West Asia. Different electronic databases (Medline, Science Direct, Springer link, Pubmed, Google and Google Scholar) were analyzed for the literature on medicinal properties of Plantago ovata. The literature analysis has revealed that Plantago ovata has been endowed with diverse pharmaceutical and pharmacological activities. It is widely used in numerous medicines owing to its both pharmaceutical properties such as mucilage, superdisintegrant, gelling agent, suspending agent as well as pharmacological actions like anti-diarrheal, anti-constipation, wound healer, hypocholestrolemic and hypoglycemic. Thus, Plantago ovata can be employed in the manufacture of a number of pharmaceutical products as well as a safe and efficacious ethnobotanical remedy in several health problems.


Subject(s)
Crops, Agricultural/metabolism , Plant Extracts/therapeutic use , Plantago/metabolism , Animals , Crops, Agricultural/growth & development , Ethnobotany , Humans , Phytotherapy , Plant Extracts/isolation & purification , Plantago/growth & development , Plants, Medicinal
16.
Plant Cell Environ ; 39(8): 1683-90, 2016 08.
Article in English | MEDLINE | ID: mdl-26510552

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) can transfer nitrogen (N) to host plants, but the ecological relevance is debated, as total plant N and biomass do not generally increase. The extent to which the symbiosis is mutually beneficial is thought to rely on the stoichiometry of N, phosphorus (P) and carbon (C) availability. While inorganic N fertilization has been shown to elicit strong mutualism, characterized by improved plant and fungal growth and mineral nutrition, similar responses following organic N addition are lacking. Using a compartmented microcosm experiment, we determined the significance to a mycorrhizal plant of placing a (15) N-labelled, nitrogen-rich patch of organic matter in a compartment to which only AMF hyphae had access. Control microcosms denied AMF hyphal access to the patch compartment. When permitted access to the patch compartment, the fungus proliferated extensively in the patch and transferred substantial quantities of N to the plant. Moreover, our data demonstrate that allowing hyphal access to an organic matter patch enhanced total plant N and P contents, with a simultaneous and substantial increase in plant biomass. Furthermore, we demonstrate that organic matter fertilization of arbuscular mycorrhizal plants can foster a mutually beneficial symbiosis based on nitrogen transfer, a phenomenon previously thought irrelevant.


Subject(s)
Mycorrhizae/metabolism , Nitrogen Isotopes/metabolism , Plantago/metabolism , Chlorella , Fertilizers , Plantago/growth & development
17.
J Exp Bot ; 67(22): 6481-6495, 2016 12.
Article in English | MEDLINE | ID: mdl-27856710

ABSTRACT

Xylans are the most abundant non-cellulosic polysaccharide found in plant cell walls. A diverse range of xylan structures influence tissue function during growth and development. Despite the abundance of xylans in nature, details of the genes and biochemical pathways controlling their biosynthesis are lacking. In this study we have utilized natural variation within the Plantago genus to examine variation in heteroxylan composition and structure in seed coat mucilage. Compositional assays were combined with analysis of the glycosyltransferase family 61 (GT61) family during seed coat development, with the aim of identifying GT61 sequences participating in xylan backbone substitution. The results reveal natural variation in heteroxylan content and structure, particularly in P. ovata and P. cunninghamii, species which show a similar amount of heteroxylan but different backbone substitution profiles. Analysis of the GT61 family identified specific sequences co-expressed with IRREGULAR XYLEM 10 genes, which encode putative xylan synthases, revealing a close temporal association between xylan synthesis and substitution. Moreover, in P. ovata, several abundant GT61 sequences appear to lack orthologues in P. cunninghamii. Our results indicate that natural variation in Plantago species can be exploited to reveal novel details of seed coat development and polysaccharide biosynthetic pathways.


Subject(s)
Glycosyltransferases/metabolism , Plant Mucilage/metabolism , Plantago/physiology , Seeds/physiology , Glycosyltransferases/genetics , Microscopy , Microscopy, Electron, Scanning , Phylogeny , Plant Mucilage/analysis , Plantago/enzymology , Plantago/genetics , Plantago/metabolism , Polymerase Chain Reaction , Seeds/chemistry , Seeds/enzymology , Seeds/growth & development
18.
Ann Bot ; 117(7): 1241-8, 2016 06.
Article in English | MEDLINE | ID: mdl-27091508

ABSTRACT

BACKGROUND AND AIMS: Nickel (Ni)-hyperaccumulating species produce high-Ni litters and may potentially influence important ecosystem processes such as decomposition. Although litters resembling the natural community conditions are essential in order to predict decomposition dynamics, decomposition of mixed-species litters containing hyperaccumulated Ni has never been studied. This study aims to test the effect of different litter mixtures containing hyperaccumulated Ni on decomposition and Ni release across serpentine and non-serpentine soils. METHODS: Three different litter mixtures were prepared based on the relative abundance of the dominant species in three serpentine soils in the island of Lesbos, Greece where the Ni-hyperaccumulator Alyssum lesbiacum is present. Each litter mixture decomposed on its original serpentine habitat and on an adjacent non-serpentine habitat, in order to investigate whether the decomposition rates differ across the contrasted soils. In order to make comparisons across litter mixtures and to investigate whether additive or non-additive patterns of mass loss occur, a control non-serpentine site was used. Mass loss and Ni release were measured after 90, 180 and 270 d of field exposure. KEY RESULTS: The decomposition rates and Ni release had higher values on serpentine soils after all periods of field exposure. The recorded rapid release of hyperaccumulated Ni is positively related to the initial litter Ni concentration. No differences were found in the decomposition of the three different litter mixtures at the control non-serpentine site, while their patterns of mass loss were additive. CONCLUSIONS: Our results: (1) demonstrate the rapid decomposition of litters containing hyperaccumulated Ni on serpentine soils, indicating the presence of metal-tolerant decomposers; and (2) imply the selective decomposition of low-Ni parts of litters by the decomposers on non-serpentine soils. This study provides support for the elemental allelopathy hypothesis of hyperaccumulation, presenting the potential selective advantages acquired by metal-hyperaccumulating plants through litter decomposition on serpentine soils.


Subject(s)
Biodegradation, Environmental , Nickel/pharmacokinetics , Plant Leaves/metabolism , Soil , Crepis/metabolism , Greece , Hordeum/metabolism , Nickel/analysis , Plantago/metabolism , Soil/chemistry
19.
Ecotoxicol Environ Saf ; 126: 23-29, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26707185

ABSTRACT

We aimed at determining the major physical-chemical processes that drive arsenic (As) dynamic in the rhizosphere of four species (Holcus lanatus, Dittrichia viscosa, Lotus corniculatus, Plantago lanceolata) tested for phytostabilization. Experiments were performed with an alkaline soil naturally rich in As. Composition of the soil solution of planted and unplanted pots was monitored every 15 days for 90 days, with a focus on the evolution of As concentrations in solution and in the non-specifically bound (i.e. easily exchangeable) fraction. The four species similarly increased As concentration in solution, but decreased As concentration in the non-specifically bound fraction. The major part (60%) of As desorbed from the non-specifically bound fraction in planted pots was likely redistributed on the less available fractions of As on the solid phase. A second part (35%) of desorbed As was taken up by plants. The minor part (5%) of desorbed As supplied As increase in solution. To conclude, plants induced a substantial redistribution of As on the less available fractions in the rhizosphere, as expected in phytostabilization strategies. Plants however concomitantly increased As concentration in the rhizosphere solution which may contribute to As transfer through plant uptake and leaching.


Subject(s)
Arsenic/analysis , Plants/metabolism , Rhizosphere , Soil Pollutants/analysis , Soil/chemistry , Arsenic/pharmacokinetics , Asteraceae/metabolism , Holcus/metabolism , Hydrogen-Ion Concentration , Lotus/metabolism , Plantago/metabolism , Soil Pollutants/pharmacokinetics , Solutions/metabolism
20.
Mycorrhiza ; 26(3): 257-62, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26467250

ABSTRACT

Long-lived radionuclides such as (90)Sr and (137)Cs can be naturally or accidentally deposited in the upper soil layers where they emit ß/γ radiation. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can accumulate and transfer radionuclides from soil to plant, but there have been no studies on the direct impact of ionizing radiation on AMF. In this study, root organ cultures of the AMF Rhizophagus irregularis MUCL 41833 were exposed to 15.37, 30.35, and 113.03 Gy gamma radiation from a (137)Cs source. Exposed spores were subsequently inoculated to Plantago lanceolata seedlings in pots, and root colonization and P uptake evaluated. P. lanceolata seedlings inoculated with non-irradiated AMF spores or with spores irradiated with up to 30.35 Gy gamma radiation had similar levels of root colonization. Spores irradiated with 113.03 Gy gamma radiation failed to colonize P. lanceolata roots. P content of plants inoculated with non-irradiated spores or of plants inoculated with spores irradiated with up to 30.35 Gy gamma radiation was higher than in non-mycorrhizal plants or plants inoculated with spores irradiated with 113.03 Gy gamma radiation. These results demonstrate that spores of R. irregularis MUCL 41833 are tolerant to chronic ionizing radiation at high doses.


Subject(s)
Gamma Rays , Glomeromycota/radiation effects , Phosphorus/metabolism , Plantago/metabolism , Beta Particles , Glomeromycota/growth & development , Glomeromycota/metabolism , Mycorrhizae/radiation effects , Phosphorus/analysis , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Plantago/microbiology , Radiation, Ionizing , Seedlings/microbiology , Soil , Spores, Fungal/metabolism , Spores, Fungal/radiation effects , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL