Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 501
Filter
1.
PLoS Pathog ; 19(10): e1011738, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37883577

ABSTRACT

The unfolded protein response (UPR) is a cell-designated strategy that maintains the balance of protein folding in the endoplasmic reticulum (ER). UPR features a network of signal transduction pathways that reprogram the transcription, mRNA translation, and protein post-translational modification to relieve the ER stresses from unfolded/misfolded proteins. Infection with plant viruses can induce the UPR, and activated UPR often promotes plant viral infections in turn. However, the mechanism used by plant viruses to balance UPR and achieve robust infection remain largely unknown. In this study, P1SCSMV was identified as a virus-encoded RNA silencing suppressor (VSR). Heterologous overexpression of P1SCSMV via potato virus X (PVX) was found lead to programmed cell death (PCD) in Nicotiana benthamiana. Furthermore, P1SCSMV was also found to inhibit the PVX infection-triggered UPR by downregulating UPR-related genes and directly induced the distortion and collapse of the ER polygonal meshes on PVX-P1SCSMV infected N. benthamiana. Moreover, self-interaction, VSR activity, UPR inhibition, and cell death phenotype of P1SCSMV were also found to be dependent on its bipartite nuclear localization signal (NLS) (251RKRKLFPRIPLK262). P1SCSMV was found to directly bind to the stem-loop region of NbbZIP60U via its NLS and inhibit the UPR pathways, ultimately resulting in a PCD phenotype in PVX-P1SCSMV infected N. benthamiana leaves. This study also revealed the balancing role of potyviruses encoded P1SCSMV in the UPR pathway to achieve robust viral infection. This may represent a novel virulence strategy for plant viruses.


Subject(s)
Plant Viruses , Potexvirus , Potyviridae , Unfolded Protein Response , Endoplasmic Reticulum Stress , Cell Death , Potexvirus/genetics
2.
Plant Physiol ; 194(2): 1218-1232, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37874769

ABSTRACT

Cassava common mosaic virus (CsCMV, genus Potexvirus) is a prevalent virus associated with cassava mosaic disease, so it is essential to elucidate the underlying molecular mechanisms of the coevolutionary arms race between viral pathogenesis and the cassava (Manihot esculenta Crantz) defense response. However, the molecular mechanism underlying CsCMV infection is largely unclear. Here, we revealed that coat protein (CP) acts as a major pathogenicity determinant of CsCMV via a mutant infectious clone. Moreover, we identified the target proteins of CP-related to abscisic acid insensitive3 (ABI3)/viviparous1 (VP1) (MeRAV1) and MeRAV2 transcription factors, which positively regulated disease resistance against CsCMV via transcriptional activation of melatonin biosynthetic genes (tryptophan decarboxylase 2 (MeTDC2), tryptamine 5-hydroxylase (MeT5H), N-aceylserotonin O-methyltransferase 1 (MeASMT1)) and MeCatalase6 (MeCAT6) and MeCAT7. Notably, the interaction between CP, MeRAV1, and MeRAV2 interfered with the protein phosphorylation of MeRAV1 and MeRAV2 individually at Ser45 and Ser44 by the protein kinase, thereby weakening the transcriptional activation activity of MeRAV1 and MeRAV2 on melatonin biosynthetic genes, MeCAT6 and MeCAT7 dependent on the protein phosphorylation of MeRAV1 and MeRAV2. Taken together, the identification of the CP-MeRAV1 and CP-MeRAV2 interaction module not only illustrates a molecular mechanism by which CsCMV orchestrates the host defense system to benefit its infection and development but also provides a gene network with potential value for the genetic improvement of cassava disease resistance.


Subject(s)
Manihot , Melatonin , Mosaic Viruses , Potexvirus , Disease Resistance/genetics , Manihot/genetics , Manihot/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Potexvirus/genetics , Melatonin/metabolism , Plant Diseases/genetics
3.
J Gen Virol ; 105(1)2024 01.
Article in English | MEDLINE | ID: mdl-38189334

ABSTRACT

Phosphorylation and dephosphorylation of viral movement proteins plays a crucial role in regulating virus movement. Our study focused on investigating the movement protein TGBp1 of Bamboo mosaic virus (BaMV), which is a single-stranded positive-sense RNA virus. Specifically, we examined four potential phosphorylation sites (S15, S18, T58, and S247) within the TGBp1 protein. To study the impact of phosphorylation, we introduced amino acid substitutions at the selected sites. Alanine substitutions were used to prevent phosphorylation, while aspartate substitutions were employed to mimic phosphorylation. Our findings suggest that mimicking phosphorylation at S15, S18 and T58 of TGBp1 might be linked to silencing suppressor activities. The phosphorylated form at these sites exhibits a loss of silencing suppressor activity, leading to reduced viral accumulation in the inoculated leaves. Furthermore, mimicking phosphorylation at residues S15 and S18 could diminish viral accumulation at the single-cell level, while doing so at residue T58 could influence virus movement. However, mimicking phosphorylation at residue S247 does not appear to be relevant to both functions of TGBp1. Overall, our study provides insights into the functional significance of specific phosphorylation sites in BaMV TGBp1, illuminating the regulatory mechanisms involved in virus movement and silencing suppression.


Subject(s)
Potexvirus , Phosphorylation , Potexvirus/genetics , Alanine , Amino Acid Substitution
4.
J Gen Virol ; 105(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38888587

ABSTRACT

Turtlegrass virus X, which infects the seagrass Thalassia testudinum, is the only potexvirus known to infect marine flowering plants. We investigated potexvirus distribution in seagrasses using a degenerate reverse transcription polymerase chain reaction (RT-PCR) assay originally designed to capture potexvirus diversity in terrestrial plants. The assay, which implements Potex-5 and Potex-2RC primers, successfully amplified a 584 nt RNA-dependent RNA polymerase (RdRp) fragment from TVX-infected seagrasses. Following validation, we screened 74 opportunistically collected, apparently healthy seagrass samples for potexviruses using this RT-PCR assay. The survey examined the host species T. testudinum, Halodule wrightii, Halophila stipulacea, Syringodium filiforme, Ruppia maritima, and Zostera marina. Potexvirus PCR products were successfully generated only from T. testudinum samples and phylogenetic analysis of sequenced PCR products revealed five distinct TVX sequence variants. Although the RT-PCR assay revealed limited potexvirus diversity in seagrasses, the expanded geographic distribution of TVX shown here emphasizes the importance of future studies to investigate T. testudinum populations across its native range and understand how the observed fine-scale genetic diversity affects host-virus interactions.


Subject(s)
Genetic Variation , Phylogeny , Potexvirus , Potexvirus/genetics , Potexvirus/isolation & purification , Potexvirus/classification , Gulf of Mexico , Plant Diseases/virology , Hydrocharitaceae/virology , RNA-Dependent RNA Polymerase/genetics , RNA, Viral/genetics , Zosteraceae/virology
5.
Plant J ; 111(6): 1550-1564, 2022 09.
Article in English | MEDLINE | ID: mdl-35822533

ABSTRACT

Programmable transcriptional regulators based on CRISPR architecture are promising tools for the induction of plant gene expression. In plants, CRISPR gene activation is effective with respect to modulating development processes, such as the flowering time or customizing biochemical composition. The most widely used method for delivering CRISPR components into the plant is Agrobacterium tumefaciens-mediated genetic transformation, either transient or stable. However, as a result of their versatility and their ability to move, virus-derived systems have emerged as an interesting alternative for supplying the CRISPR components to the plant, in particular guide RNA (gRNA), which represents the variable component in CRISPR strategies. In the present study, we describe a Potato virus X-derived vector that, upon agroinfection in Nicotiana benthamiana, serves as a vehicle for delivery of gRNAs, producing highly specific virus-induced gene activation. The system works in combination with a N. benthamiana transgenic line carrying the remaining complementary CRISPR gene activation components, specifically the dCasEV2.1 cassette, which has been shown previously to mediate strong programmable transcriptional activation in plants. Using an easily scalable, non-invasive spraying method, we show that gRNA-mediated activation programs move locally and systemically, generating a strong activation response in different target genes. Furthermore, by activating three different endogenous MYB transcription factors, we demonstrate that this Potato virus X-based virus-induced gene reprogramming strategy results in program-specific metabolic fingerprints in N. benthamiana leaves characterized by distinctive phenylpropanoid-enriched metabolite profiles.


Subject(s)
Potexvirus , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Expression , Potexvirus/genetics , Potexvirus/metabolism , RNA, Guide, Kinetoplastida/genetics , Nicotiana/metabolism , Transcription Factors/metabolism
6.
Plant Biotechnol J ; 21(10): 2140-2154, 2023 10.
Article in English | MEDLINE | ID: mdl-37448155

ABSTRACT

The hyperosmolality-gated calcium permeable channel 4.1 (OSCA4.1) belongs to an evolutionarily conserved small family of mechano-sensitive channels. OSCA members may represent key players in plant resistance to drought and to pathogen infection but are scarcely studied. After screening for resistance to pepino mosaic virus (PepMV) a collection of 1000 mutagenized tomato families, we identified a mutant showing no symptoms and reduced virus accumulation. Resistance was mapped to chromosome 2 between positions 46 309 531 to 47 044 163, where a missense mutation caused the putative truncation of the OSCA4.1 protein. A CRISPR/Cas9 slosca4.1 mutant was resistant to PepMV, but not to tobacco mosaic virus or potato virus X. Inoculation of mutant and wild type tomato protoplasts showed that resistance was expressed in single cells, suggesting a role for SlOSCA4.1 in early viral function(s); congruently, SlOSCA4.1 re-localized to structures reminiscent of viral replication complexes. We propose that SlOSCA4.1 contributes to the correct regulation of the Ca2+ homeostasis necessary for optimal PepMV infection. PepMV is a pandemic virus that causes significant losses in tomato crops worldwide. In spite of its importance, no tomato-resistant varieties have been deployed yet; the mutant identified here has great potential to breed tomato varieties resistant to PepMV.


Subject(s)
Potexvirus , Solanum lycopersicum , Solanum , Solanum lycopersicum/genetics , Potexvirus/genetics , Potexvirus/metabolism , Calcium/metabolism , Plant Breeding , Plant Diseases/genetics
7.
Arch Virol ; 169(1): 9, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38092981

ABSTRACT

We demonstrated the infectivity and host adaptation of a viola isolate of Plantago asiatica mosaic virus (PlAMV-Vi) in an asymptomatic host, Nicotiana benthamiana, through long-term serial passages. Serial passaging of a green fluorescent protein-tagged full-length cDNA clone of PlAMV-Vi (PlAMV-ViGFP) in N. benthamiana plants resulted in the appearance of a new virus line inducing leaf-crinkle symptoms, the Leaf Crinkle (LC) line. Virus titers were higher for both in the LC and the 14th passage line(s) of PlAMV-ViGFP compared with the original line. The LC line was found to have seven unique nucleotide mutations that may have contributed to its higher virulence and multiplication rate in N. benthamiana.


Subject(s)
Nicotiana , Potexvirus , Virulence , Potexvirus/genetics , Plant Diseases
8.
Arch Virol ; 168(11): 272, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37837465

ABSTRACT

Adenium obesum plants showing virus-like symptoms were collected in several regions of Brazil. Mottling symptoms like those observed in symptomatic plants in the field were reproduced in mechanically inoculated A. obesum plants. This potexvirus was named "desert rose mottle virus" (DRMoV), and its genome sequence was first determined by high-throughput sequencing and then confirmed by Sanger sequencing. The complete genome of DRMoV is 6,781 nt in length, excluding the poly(A) tail, and five ORFs were predicted in order from 5' to 3': Rep-TGB1-TGB2-TGB3-CP. Phylogenetic analysis based on Rep amino acid sequences showed different clustering among potexviruses. These data suggest that RDMoV is a new member of the genus Potexvirus, and the binomial name "Potexvirus adenii" is proposed for its species.


Subject(s)
Potexvirus , Potexvirus/genetics , Base Sequence , Phylogeny , Amino Acid Sequence , Open Reading Frames , Plants , Genome, Viral
9.
Arch Virol ; 168(10): 244, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37676508

ABSTRACT

Here, we report the detection and complete genome sequence of a novel potexvirus, tentatively named "Adenium obesum virus X" (AobVX), isolated from Adenium obesum, that was sent for virus screening at Australian Government post-entry quarantine (PEQ) facilities after being imported into Australia from China. The AobVX genome is 6781 nucleotides in length excluding the poly(A) tail and is predicted to encode conserved potexvirus proteins and sequence motifs across five open reading frames. The RNA-dependent RNA polymerase of this virus shares the highest amino acid sequence similarity with that of nerine potexvirus 1 (58.7% identity) and nerine virus X (58.58% identity). This is the first report of a positive-sense single-stranded RNA virus in A. obesum related to members of the genus Potexvirus in the family Alphaflexiviridae.


Subject(s)
Apocynaceae , Potexvirus , Apocynaceae/virology , Potexvirus/classification , Potexvirus/genetics , Potexvirus/isolation & purification , Phylogeny , Genome, Viral , RNA-Dependent RNA Polymerase/genetics
10.
J Integr Plant Biol ; 65(6): 1369-1382, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36794821

ABSTRACT

Bamboo is one of the fastest growing plants among monocotyledonous species and is grown extensively in subtropical regions. Although bamboo has high economic value and produces much biomass quickly, gene functional research is hindered by the low efficiency of genetic transformation in this species. We therefore explored the potential of a bamboo mosaic virus (BaMV)-mediated expression system to investigate genotype-phenotype associations. We determined that the sites between the triple gene block proteins (TGBps) and the coat protein (CP) of BaMV are the most efficient insertion sites for the expression of exogenous genes in both monopodial and sympodial bamboo species. Moreover, we validated this system by individually overexpressing the two endogenous genes ACE1 and DEC1, which resulted in the promotion and suppression of internode elongation, respectively. In particular, this system was able to drive the expression of three 2A-linked betalain biosynthesis genes (more than 4 kb in length) to produce betalain, indicating that it has high cargo capacity and may provide the prerequisite basis for the development of a DNA-free bamboo genome editing platform in the future. Since BaMV can infect multiple bamboo species, we anticipate that the system described in this study will greatly contribute to gene function research and further promote the molecular breeding of bamboo.


Subject(s)
Nicotiana , Potexvirus , Nicotiana/metabolism , Plants , Potexvirus/genetics , Potexvirus/metabolism , Phenotype
11.
Plant J ; 106(2): 555-565, 2021 04.
Article in English | MEDLINE | ID: mdl-33484202

ABSTRACT

Systems based on the clustered, regularly interspaced, short palindromic repeat (CRISPR) and CRISPR-associated proteins (Cas) have revolutionized genome editing in many organisms, including plants. Most CRISPR-Cas strategies in plants rely on genetic transformation using Agrobacterium tumefaciens to supply the gene editing reagents, such as Cas nucleases or the synthetic guide RNA (sgRNA). While Cas nucleases are constant elements in editing approaches, sgRNAs are target-specific and a screening process is usually required to identify those most effective. Plant virus-derived vectors are an alternative for the fast and efficient delivery of sgRNAs into adult plants, due to the virus capacity for genome amplification and systemic movement, a strategy known as virus-induced genome editing. We engineered Potato virus X (PVX) to build a vector that easily expresses multiple sgRNAs in adult solanaceous plants. Using the PVX-based vector, Nicotiana benthamiana genes were efficiently targeted, producing nearly 80% indels in a transformed line that constitutively expresses Streptococcus pyogenes Cas9. Interestingly, results showed that the PVX vector allows expression of arrays of unspaced sgRNAs, achieving highly efficient multiplex editing in a few days in adult plant tissues. Moreover, virus-free edited progeny can be obtained from plants regenerated from infected tissues or infected plant seeds, which exhibit a high rate of heritable biallelic mutations. In conclusion, this new PVX vector allows easy, fast and efficient expression of sgRNA arrays for multiplex CRISPR-Cas genome editing and will be a useful tool for functional gene analysis and precision breeding across diverse plant species, particularly in Solanaceae crops.


Subject(s)
CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Gene Editing/methods , Genetic Vectors/genetics , Potexvirus/genetics , RNA, Guide, Kinetoplastida/genetics , Agrobacterium tumefaciens/genetics , Genes, Plant/genetics , Plants/genetics , Nicotiana
12.
J Virol ; 95(20): e0190620, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34346768

ABSTRACT

Characterized positive-strand RNA viruses replicate in association with intracellular membranes. Regarding viruses in the genus Potexvirus, the mechanism by which their RNA-dependent RNA polymerase (replicase) associates with membranes is understudied. Here, by membrane flotation analyses of the replicase of Plantago asiatica mosaic potexvirus (PlAMV), we identified a region in the methyltransferase (MET) domain as a membrane association determinant. An amphipathic α-helix was predicted downstream from the core region of the MET domain, and hydrophobic amino acid residues were conserved in the helical sequences in replicases of other potexviruses. Nuclear magnetic resonance (NMR) analysis confirmed the amphipathic α-helical configuration and unveiled a kink caused by a highly conserved proline residue in the α-helix. Substitution of this proline residue and other hydrophobic and charged residues in the amphipathic α-helix abolished PlAMV replication. Ectopic expression of a green fluorescent protein (GFP) fusion with the entire MET domain resulted in the formation of a large perinuclear complex, where virus replicase and RNA colocated during virus infection. Except for the proline substitution, the amino acid substitutions in the α-helix that abolished virus replication also prevented the formation of the large perinuclear complex by the respective GFP-MET fusion. Small intracellular punctate structures were observed for all GFP-MET fusions, and in vitro high-molecular-weight complexes were formed by both replication-competent and -incompetent viral replicons and thus were not sufficient for replication competence. We discuss the roles of the potexvirus-specific, proline-kinked amphipathic helical structure in virus replication and intracellular large complex and punctate structure formation. IMPORTANCE RNA viruses characteristically associate with intracellular membranes during replication. Although virus replicases are assumed to possess membrane-targeting properties, their membrane association domains generally remain unidentified or poorly characterized. Here, we identified a proline-kinked amphipathic α-helix structure downstream from the methyltransferase core domain of PlAMV replicase as a membrane association determinant. This helical sequence, which includes the proline residue, was conserved among potexviruses and related viruses in the order Tymovirales. Substitution of the proline residue, but not the other residues necessary for replication, allowed formation of a large perinuclear complex within cells resembling those formed by PlAMV replicase and RNA during virus replication. Our results demonstrate the role of the amphipathic α-helix in PlAMV replicase in a perinuclear complex formation and virus replication and that perinuclear complex formation by the replicase alone will not necessarily indicate successful virus replication.


Subject(s)
Potexvirus/genetics , Potexvirus/metabolism , Viral Replicase Complex Proteins/genetics , Amino Acid Sequence/genetics , Membrane Proteins/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Plant Diseases/virology , Proline/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Replicon/genetics , Nicotiana/virology , Viral Proteins/metabolism , Viral Replicase Complex Proteins/metabolism , Virus Replication/genetics
13.
J Virol ; 95(20): e0083121, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34379502

ABSTRACT

Many positive-strand (+) RNA viruses produce subgenomic RNAs (sgRNAs) in the infection cycle through the combined activities of viral replicase and host proteins. However, knowledge about host proteins involved in direct sgRNA promoter recognition is limited. Here, in the partially purified replicase complexes from Bamboo mosaic virus (BaMV)-infected tissue, we have identified the Nicotiana benthamiana photosystem II oxygen-evolving complex protein, NbPsbO1, which specifically interacted with the promoter of sgRNA but not that of genomic RNA (gRNA). Silencing of NbPsbO1 expression suppressed BaMV accumulation in N. benthamiana protoplasts without affecting viral gRNA replication. Overexpression of wild-type NbPsbO1 stimulated BaMV sgRNA accumulation. Fluorescent microscopy examination revealed that the fluorescence associated with NbPsbO1 was redistributed from chloroplast granal thylakoids to stroma in BaMV-infected cells. Overexpression of a mislocalized mutant of NbPsbO1, dTPPsbO1-T7, inhibited BaMV RNA accumulation in N. benthamiana, whereas overexpression of an NbPsbO1 derivative, sPsbO1-T7, designed to be targeted to chloroplast stroma, upregulated the sgRNA level. Furthermore, depletion of NbPsbO1 in BaMV RdRp preparation significantly inhibited sgRNA synthesis in vitro but exerted no effect on (+) or (-) gRNA synthesis, which indicates that NbPsbO1 is required for efficient sgRNA synthesis. These results reveal a novel role for NbPsbO1 in the selective enhancement of BaMV sgRNA transcription, most likely via direct interaction with the sgRNA promoter. IMPORTANCE Production of subgenomic RNAs (sgRNAs) for efficient translation of downstream viral proteins is one of the major strategies adapted for viruses that contain a multicistronic RNA genome. Both viral genomic RNA (gRNA) replication and sgRNA transcription rely on the combined activities of viral replicase and host proteins, which recognize promoter regions for the initiation of RNA synthesis. However, compared to the cis-acting elements involved in the regulation of sgRNA synthesis, the host factors involved in sgRNA promoter recognition mostly remain to be elucidated. Here, we found a chloroplast protein, NbPsbO1, which specifically interacts with Bamboo mosaic virus (BaMV) sgRNA promoter. We showed that NbPsbO1 is relocated to the BaMV replication site in BaMV-infected cells and demonstrated that NbPsbO1 is required for efficient BaMV sgRNA transcription but exerts no effect on gRNA replication. This study provides a new insight into the regulating mechanism of viral gRNA and sgRNA synthesis.


Subject(s)
Nicotiana/metabolism , Photosystem II Protein Complex/metabolism , Potexvirus/metabolism , 3' Untranslated Regions , Chloroplasts/metabolism , Plant Proteins/genetics , Potexvirus/genetics , Promoter Regions, Genetic/genetics , Protein Binding , RNA/genetics , RNA/metabolism , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Nicotiana/genetics , Nicotiana/virology , Viral Proteins/metabolism , Viral Replicase Complex Proteins/genetics , Viral Replicase Complex Proteins/metabolism , Virus Replication/physiology
14.
Mol Phylogenet Evol ; 167: 107336, 2022 02.
Article in English | MEDLINE | ID: mdl-34757169

ABSTRACT

Potato virus X (PVX) is the type potexvirus of economic significance. The pathogen is distributed worldwide, threatening solanaceous plants in particular. Based on the coat protein (CP) gene, PVX isolates are classified into two major genotypes (I and II). To gain more insights into the molecular epidemiology and evolution of PVX, recombination analyses were conducted and significant signals were detected. Bayesian coalescent method was then applied to the time-stamped entire CP sequences. According to the estimates, the global subtype I-1 went into expansion in the 20th century and was evolving at a moderate rate. Based on the CP phylogenies, a divergence scenario was proposed for PVX. Surveys of codon usage variation showed that PVX genes had additional bias independent of compositional constraint. In codon preference, PVX was both similar to and different from the three major hosts, potato (Solanum tuberosum), tobacco (Nicotiana tabacum), and tomato (S. lycopersicum). Moreover, the suppression of CpG and UpA dinucleotide frequencies was observed in PVX.


Subject(s)
Potexvirus , Solanum tuberosum , Bayes Theorem , Phylogeny , Potexvirus/genetics , Solanum tuberosum/genetics
15.
Nat Chem Biol ; 16(5): 564-569, 2020 05.
Article in English | MEDLINE | ID: mdl-32203412

ABSTRACT

Potato virus X (PVX) is a positive-sense single-stranded RNA (ssRNA) filamentous plant virus belonging to the Alphaflexiviridae family, considered in recent years as a tool for nanotechnology applications. We present the cryo-electron microscopy structure of the PVX particle at a resolution of 2.2 Å. The well-defined density of the coat proteins and of the genomic RNA allowed a detailed analysis of protein-RNA interactions, including those mediated by solvent molecules. The particle is formed by repeated segments made of 8.8 coat proteins, forming a left-handed helical structure. The RNA runs in an internal crevice along the virion, packaged in 5-nucleotide repeats in which the first four bases are stacked in the classical way, while the fifth is rotated and nearly perpendicular. The resolution of the structure described here suggests a mechanism for the virion assembly and potentially provides a platform for the rational design of antiviral compounds and for the use of PVX in nanotechnology.


Subject(s)
Capsid Proteins/chemistry , Potexvirus/chemistry , Capsid/chemistry , Capsid Proteins/genetics , Cryoelectron Microscopy , Models, Molecular , Potexvirus/genetics , RNA, Viral/chemistry , Virion/chemistry
16.
Arch Virol ; 167(10): 2089-2092, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35796833

ABSTRACT

Leaves from the ornamental plant Chaenostoma cordatum (Thunb.) Benth. expressing virus-like symptoms were collected for pathogen testing. A virus with features consistent with those of members of the genus Potexvirus was identified by high-throughput sequencing. The genome sequence was confirmed and completed using RT-PCR, cloning, rapid amplification of cDNA ends kits, and Sanger sequencing, revealing a complete viral genome of 6,071 nucleotides, excluding the poly-A tail. Phylogenetic analysis of the RNA-dependent RNA polymerase sequence from the viral genome indicated that its closest relative is Plantago asiatica mosaic virus. Further analysis of the nucleotide and amino acid sequences revealed that it had diverged enough from other potexviruses to be considered a member of a new species.


Subject(s)
Potexvirus , Base Sequence , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , Potexvirus/genetics , RNA, Viral/genetics
17.
Arch Virol ; 167(12): 2555-2566, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36269413

ABSTRACT

Cowpea mild mottle virus (CPMMV) is a flexuous filamentous virus that belongs to the genus Carlavirus (family Betaflexiviridae). The CPMMV genome contains six open reading frames (ORFs), among which the triple gene block (TGB), encoded by ORFs 2 to 4, has been reported to encode movement proteins for different viruses. The subcellular localization of the TGB proteins of CPMMV isolate CPMMV:BR:MG:09:2 was analysed by transient expression of each protein fused to a fluorophore. Overall, the accumulation pattern and interactions among CPMMV TGB proteins (TGBp) were similar to those of their counterparts from the potex-like group. Considering these similarities, we evaluated the potential interactions between the TGB proteins of CPMMV and of potato virus X, which could complement cell-to-cell movement. The TGBp2 and TGBp3 of PVX had an effect on CPMMV TGBp1, directing it to the plasmodesmata, but the reverse was not true.


Subject(s)
Carlavirus , Flexiviridae , Potexvirus , Nicotiana , Viral Proteins/genetics , Viral Proteins/metabolism , Carlavirus/genetics , Potexvirus/genetics , Flexiviridae/genetics
18.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077222

ABSTRACT

Plant ARGONAUTES (AGOs) play a significant role in the defense against viral infection. Previously, we have demonstrated that AGO5s encoded in Phalaenopsis aphrodite subsp. formosana (PaAGO5s) took an indispensable part in defense against major viruses. To understand the underlying defense mechanism, we cloned PaAGO5s promoters (pPaAGO5s) and analyzed their activity in transgenic Nicotiana benthamiana using ß-glucuronidase (GUS) as a reporter gene. GUS activity analyses revealed that during Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) infections, pPaAGO5b activity was significantly increased compared to pPaAGO5a and pPaAGO5c. Analysis of pPaAGO5b 5'-deletion revealed that pPaAGO5b_941 has higher activity during virus infection. Further, yeast one-hybrid analysis showed that the transcription factor NbMYB30 physically interacted with pPaAGO5b_941 to enhance its activity. Overexpression and silencing of NbMYB30 resulted in up- and downregulation of GUS expression, respectively. Exogenous application and endogenous measurement of phytohormones have shown that methyl jasmonate and salicylic acid respond to viral infections. NbMYB30 overexpression and its closest related protein, PaMYB30, in P. aphrodite subsp. formosana reduced CymMV accumulation in P. aphrodite subsp. formosana. Based on these discoveries, this study uncovers the interaction between virus-responsive promoter and the corresponding transcription factor in plants.


Subject(s)
Potexvirus , Virus Diseases , Plants , Potexvirus/genetics , Nicotiana/genetics , Transcription Factors
19.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35805989

ABSTRACT

Endophytic plant-growth-promoting bacteria (ePGPB) are interesting tools for pest management strategies. However, the molecular interactions underlying specific biocontrol effects, particularly against phytopathogenic viruses, remain unexplored. Herein, we investigated the antiviral effects and triggers of induced systemic resistance mediated by four ePGPB (Paraburkholderia fungorum strain R8, Paenibacillus pasadenensis strain R16, Pantoea agglomerans strain 255-7, and Pseudomonas syringae strain 260-02) against four viruses (Cymbidium Ring Spot Virus-CymRSV; Cucumber Mosaic Virus-CMV; Potato Virus X-PVX; and Potato Virus Y-PVY) on Nicotiana benthamiana plants under controlled conditions and compared them with a chitosan-based resistance inducer product. Our studies indicated that ePGPB- and chitosan-treated plants presented well-defined biocontrol efficacy against CymRSV and CMV, unlike PVX and PVY. They exhibited significant reductions in symptom severity while promoting plant height compared to nontreated, virus-infected controls. However, these phenotypic traits showed no association with relative virus quantification. Moreover, the tested defense-related genes (Enhanced Disease Susceptibility-1 (EDS1), Non-expressor of Pathogenesis-related genes-1 (NPR1), and Pathogenesis-related protein-2B (PR2B)) implied the involvement of a salicylic-acid-related defense pathway triggered by EDS1 gene upregulation.


Subject(s)
Chitosan , Cucumovirus , Cytomegalovirus Infections , Potexvirus , Chitosan/pharmacology , Cucumovirus/genetics , Plant Diseases/microbiology , Potexvirus/genetics , Pseudomonas syringae , Nicotiana/microbiology
20.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293354

ABSTRACT

Following pathogen infection, plants have developed diverse mechanisms that direct their immune systems towards more robust induction of defense responses against recurrent environmental stresses. The induced resistances could be inherited by the progenies, rendering them more tolerant to stressful events. Although within-generational induction of tolerance to abiotic stress is a well-documented phenomenon in virus-infected plants, the transgenerational inheritance of tolerance to abiotic stresses in their progenies has not been explored. Here, we show that infection of Nicotiana benthamiana plants by Potato virus X (PVX) and by a chimeric Plum pox virus (PPV) expressing the P25 pathogenicity protein of PVX (PPV-P25), but not by PPV, conferred tolerance to both salt and osmotic stresses to the progeny, which correlated with the level of virulence of the pathogen. This transgenerational tolerance to abiotic stresses in the progeny was partially sustained even if the plants experience a virus-free generation. Moreover, progenies from a Dicer-like3 mutant mimicked the enhanced tolerance to abiotic stress observed in progenies of PVX-infected wild-type plants. This phenotype was shown irrespective of whether Dicer-like3 parents were infected, suggesting the involvement of 24-nt small interfering RNAs in the transgenerational tolerance to abiotic stress induced by virus infection. RNAseq analysis supported the upregulation of genes related to protein folding and response to stress in the progeny of PVX-infected plants. From an environmental point of view, the significance of virus-induced transgenerational tolerance to abiotic stress could be questionable, as its induction was offset by major reproductive costs arising from a detrimental effect on seed production.


Subject(s)
Plum Pox Virus , Potexvirus , Osmotic Pressure , Plum Pox Virus/genetics , Potexvirus/genetics , Nicotiana , Sodium Chloride/pharmacology , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/physiology , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL