Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Langmuir ; 36(5): 1266-1278, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31961691

ABSTRACT

We herein demonstrate the outstanding protein-repelling characteristic of star-like micelles and polymersomes manufactured from amphiphilic block copolymers made by poly(butylene oxide) (PBO) hydrophobic segments and polyglycidol (PGL) hydrophilic outer shells. Although positively charged proteins (herein modeled by lysozyme) may adsorb onto the surface of micelles and polymersomes where the assemblies are stabilized by short PGL chains (degree of polymerization smaller than 15), the protein adsorption vanishes when the degree of polymerization of the hydrophilic segment (PGL) is higher than ∼20, regardless the morphology. This has been probed by using three different model proteins which are remarkably different concerning molecular weight, size, and zeta potential (bovine serum albumin (BSA), lysozyme, and immunoglobulin G (IgG)). Indeed, the adsorption of the most abundant plasma protein (herein modeled as BSA) is circumvented even by using very short PGL shells due to the highly negative zeta potential of the produced assemblies which presumably promote protein-nanoparticle electrostatic repulsion. The negative zeta potential, on the other hand, enables lysozyme adsorption, and the phenomenon is governed by electrostatic forces as evidenced by isothermal titration calorimetry. Nevertheless, the protein coating can be circumvented by slightly increasing the degree of polymerization of the hydrophilic segment. Notably, the PGL length required to circumvent protein fouling is significantly smaller than the one required for PEO. This feature and the safety concerns regarding the synthetic procedures on the preparation of poly(ethylene oxide)-based amphiphilic copolymers might make polyglycidol a promising alternative toward the production of nonfouling spherical particles.


Subject(s)
Nanoparticles/chemistry , Propylene Glycols/chemistry , Surface-Active Agents/chemistry , Adsorption , Animals , Cattle , Immunoglobulin G/chemistry , Micelles , Muramidase/chemistry , Propylene Glycols/chemical synthesis , Serum Albumin, Bovine/chemistry , Static Electricity , Surface-Active Agents/chemical synthesis
2.
Molecules ; 25(7)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283657

ABSTRACT

In this study approaches for chemical conversions of the renewable compounds 1,2-propanediol (1,2-PD) and 2,3-butanediol (2,3-BD) that yield the corresponding cyclic ketals and glycol ethers have been investigated experimentally. The characterization of the obtained products as potential green solvents and gasoline components is discussed. Cyclic ketals have been obtained by the direct reaction of the diols with lower aliphatic ketones (1,2-PD + acetone → 2,2,4-trimethyl-1,3-dioxolane (TMD) and 2,3-BD + butanone-2 → 2-ethyl-2,4,5-trimethyl-1,3-dioxolane (ETMD)), for which the ΔH0r, ΔS0r and ΔG0r values have been estimated experimentally. The monoethers of diols could be obtained through either hydrogenolysis of the pure ketals or from the ketone and the diol via reductive alkylation. In the both reactions, the cyclic ketals (TMD and ETMD) have been hydrogenated in nearly quantitative yields to the corresponding isopropoxypropanols (IPP) and 3-sec-butoxy-2-butanol (SBB) under mild conditions (T = 120-140 °C, p(H2) = 40 bar) with high selectivity (>93%). Four products (TMD, ETMD, IPP and SBB) have been characterized as far as their physical properties are concerned (density, melting/boiling points, viscosity, calorific value, evaporation rate, Antoine equation coefficients), as well as their solvent ones (Kamlet-Taft solvatochromic parameters, miscibility, and polymer solubilization). In the investigation of gasoline blending properties, TMD, ETMD, IPP and SBB have shown remarkable antiknock performance with blending antiknock indices of 95.2, 92.7, 99.2 and 99.7 points, respectively.


Subject(s)
Butylene Glycols/chemistry , Gasoline , Propylene Glycols/chemistry , Solvents/chemistry , Acetone/chemistry , Algorithms , Butylene Glycols/chemical synthesis , Chemical Phenomena , Chemistry Techniques, Synthetic , Glycols , Models, Chemical , Propylene Glycols/chemical synthesis , Solvents/chemical synthesis
3.
AAPS PharmSciTech ; 20(6): 251, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31300911

ABSTRACT

Polymersomes are versatile nanostructures for protein delivery with hydrophilic core suitable for large biomolecule encapsulation and protective stable corona. Nonetheless, pharmaceutical products based on polymersomes are not available in the market, yet. Here, using commercially available copolymers, we investigated the encapsulation of the active pharmaceutical ingredient (API) L-asparaginase, an enzyme used to treat acute lymphoblastic leukemia, in polymersomes through a quality-by-design (QbD) approach. This allows for streamlining of processes required for improved bioavailability and pharmaceutical activity. Polymersomes were prepared by bottom-up (temperature switch) and top-down (film hydration) methods employing the diblock copolymers poly(ethylene oxide)-poly(lactic acid) (PEG45-PLA69, PEG114-PLA153, and PEG114-PLA180) and the triblock Pluronic® L-121 (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), PEG5-PPO68-PEG5). Quality Target Product Profile (QTPP), Critical Quality Attributes (CQAs), Critical Process Parameters (CPPs), and the risk assessment were discussed for the early phase of polymersome development. An Ishikawa diagram was elaborated focusing on analytical methods, raw materials, and processes for polymersome preparation and L-asparaginase encapsulation. PEG-PLA resulted in diluted polymersomes systems. Nonetheless, a much higher yield of Pluronic® L-121 polymersomes of 200 nm were produced by temperature switch, reaching 5% encapsulation efficiency. Based on these results, a risk estimation matrix was created for an initial risk assessment, which can help in the future development of other polymersome systems with biological APIs nanoencapsulated.


Subject(s)
Antineoplastic Agents/chemical synthesis , Asparaginase/chemical synthesis , Nanostructures/chemistry , Poloxamer/chemical synthesis , Polyethylene Glycols/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Asparaginase/pharmacokinetics , Hydrophobic and Hydrophilic Interactions , Poloxamer/pharmacokinetics , Polyethylene Glycols/pharmacokinetics , Propylene Glycols/chemical synthesis , Propylene Glycols/pharmacokinetics
4.
Bioorg Med Chem ; 26(14): 4276-4287, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30031655

ABSTRACT

In the present study, (3aR,7aS)-1,3,3a,4,7,7a-hexahydroisobenzofuran was submitted to photooxygenation and two isomeric hydroperoxides were successfully obtained. Without any further purification, reduction of the hydroperoxides with titanium tetraisopropoxide catalyzed by dimethyl sulfide gave two alcohol isomers in high yields. After acetylation of alcohol with Ac2O in pyridine, epoxidation reaction of formed monoacetates with m-CPBA, then chromatographed and followed by hydrolysis of the acetate groups with NH3 in CH3OH resulted in the formation of epoxy alcohol isomers respectively. These epoxy alcohol isomers were subjected to trans-dihydroxylation reaction with acid (H2SO4) in the presence of water to afford triols. Acetylation of the free hydroxyl groups produced benzofuran triacetates in high yields. Ring-opening reaction of furan triacetates with sulfamic acid catalyzed in the presence of acetic acid/acetic anhydrate and subsequently hydrolysis of the acetate groups with ammonia gave the targeted cyclohexane carbasugar-based pentols. All products were separated and purified by chromatographic and crystallographic methods. Structural analyses of all compounds were conducted by spectral techniques including NMR and X-ray analyses. The biological inhibition activity of the target compounds was tested against glycosidase enzymes, α- and ß-glucosidase.


Subject(s)
Carbasugars/pharmacology , Cyclohexanes/pharmacology , Propylene Glycols/pharmacology , alpha-Glucosidases/metabolism , beta-Glucosidase/antagonists & inhibitors , Carbasugars/chemistry , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Dose-Response Relationship, Drug , Humans , Hydrolysis , Models, Molecular , Molecular Conformation , Propylene Glycols/chemical synthesis , Propylene Glycols/chemistry , Stereoisomerism , Structure-Activity Relationship , Sulfuric Acids/chemistry , beta-Glucosidase/metabolism
5.
Angew Chem Int Ed Engl ; 57(18): 5147-5150, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29508534

ABSTRACT

The total synthesis of siladenoserinol A, an inhibitor of the p53-Hdm2 interaction, has been achieved. AuCl3 -catalyzed hydroalkoxylation of an alkynoate derivative smoothly and regioselectively proceeded to afford a bicycloketal in excellent yield. A glycerophosphocholine moiety was successfully introduced through the Horner-Wadsworth-Emmons reaction using an originally developed phosphonoacetate derivative. Finally, removal of the acid-labile protecting groups, followed by regioselective sulfamate formation of the serinol moiety afforded the desired siladenoserinol A, and benzoyl and desulfamated analogues were also successfully synthesized. Biological evaluation showed that the sulfamate is essential for biological activity, and modification of the acyl group on the bicycloketal can improve the inhibitory activity against the p53-Hdm2 interaction.


Subject(s)
Glycerylphosphorylcholine/pharmacology , Propanolamines/pharmacology , Propylene Glycols/pharmacology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Tumor Suppressor Protein p53/antagonists & inhibitors , Catalysis , Dose-Response Relationship, Drug , Glycerylphosphorylcholine/chemical synthesis , Glycerylphosphorylcholine/chemistry , Gold Compounds/chemistry , Humans , Molecular Structure , Propanolamines/chemical synthesis , Propanolamines/chemistry , Propylene Glycols/chemical synthesis , Propylene Glycols/chemistry , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Structure-Activity Relationship , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism
6.
Luminescence ; 31(3): 897-904, 2016 May.
Article in English | MEDLINE | ID: mdl-26492942

ABSTRACT

Polymer dots (PDs) showing concentration-mediated multicolor fluorescence were first prepared from sulfuric acid-treated dehydration of Pluronic® F-127 in a single step. Pluronic-based PDs (P-PDs) showed high dispersion stability in solvent media and exhibited a fluorescence emission that was widely tunable from red to blue by adjusting both the excitation wavelengths and the P-PD concentration in an aqueous solution. This unique fluorescence behavior of P-PDs might be a result of cross-talk in the fluorophores of the poly(propylene glycol)-rich core inside the P-PD through either energy transfer or charge transfer. Reconstruction of the surface energy traps of the P-PDs mediated through aggregation may lead to a new generation of carbon-based nanomaterials possessing a fluorescence emission and tunable by adjusting the concentration. These structures may be useful in the design of multifunctional carbon nanomaterials with tunable emission properties according to a variety of internal or external stimuli.


Subject(s)
Carbon/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Poloxamer/chemistry , Polymers/chemistry , Propylene Glycols/chemistry , Fluorescent Dyes/chemical synthesis , Poloxamer/chemical synthesis , Polymers/chemical synthesis , Propylene Glycols/chemical synthesis
7.
J Am Chem Soc ; 137(28): 8900-3, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26167950

ABSTRACT

(+)-Zincophorin methyl ester is prepared in 13 steps (longest linear sequence). A bidirectional redox-triggered double anti-crotylation of 2-methyl-1,3-propane diol directly assembles the triketide stereopolyad spanning C4-C12, significantly enhancing step economy and enabling construction of (+)-zincophorin methyl ester in nearly half the steps previously required.


Subject(s)
Carboxylic Acids/chemical synthesis , Ionophores/chemical synthesis , Alkylation , Carboxylic Acids/chemistry , Ionophores/chemistry , Oxidation-Reduction , Polyketides/chemical synthesis , Polyketides/chemistry , Propylene Glycols/chemical synthesis , Propylene Glycols/chemistry , Stereoisomerism
8.
Langmuir ; 31(35): 9675-83, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26253051

ABSTRACT

Properties of novel temperature-responsive hydroxyl-containing poly(pentaerythritol monomethacrylate) (PPM) coatings, polymerized from oligoperoxide grafted to glass surface premodified with (3-aminopropyl)triethoxysilane, are presented. Molecular composition, chemical state, thickness, and wettability are examined with time of flight-secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), ellipsometry, and contact angle measurements, respectively. Temperature-induced changes in hydrophobicity of grafted PPM brushes are revealed by water contact angle and ellipsometric measurements. Partial postpolymerization modification of hydroxyl groups (maximum a few percent), performed with acetyl chloride or pyromellitic acid chloride, is demonstrated to preserve thermal response of coatings. Adsorption of bovine serum albumin to PPM brushes, observed with fluorescence microscopy, is higher than on glass in contrast to similar hydroxyl-containing layers reported as nonfouling. Enhanced and temperature-controlled protein adsorption is obtained after postpolymerization modification with pyromellitic acid chloride.


Subject(s)
Methacrylates/chemistry , Polymerization , Propylene Glycols/chemistry , Serum Albumin, Bovine/chemistry , Temperature , Wettability , Adsorption , Animals , Cattle , Methacrylates/chemical synthesis , Molecular Structure , Propylene Glycols/chemical synthesis , Surface Properties
9.
Environ Sci Technol ; 49(13): 7996-8003, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26061700

ABSTRACT

Allocation is required when a life cycle contains multi-functional processes. One approach to allocation is to partition the embodied resources in proportion to a criterion, such as product mass or cost. Many practitioners apply multiple partitioning criteria to avoid choosing one arbitrarily. However, life cycle results from different allocation methods frequently contradict each other, making it difficult or impossible for the practitioner to draw any meaningful conclusions from the study. Using the matrix notation for life-cycle inventory data, we show that an inventory that requires allocation leads to an ill-posed problem: an inventory based on allocation is one of an infinite number of inventories that are highly dependent upon allocation methods. This insight is applied to comparative life-cycle assessment (LCA), in which products with the same function but different life cycles are compared. Recently, there have been several studies that applied multiple allocation methods and found that different products were preferred under different methods. We develop the Comprehensive Allocation Investigation Strategy (CAIS) to examine any given inventory under all possible allocation decisions, enabling us to detect comparisons that are not robust to allocation, even when the comparison appears robust under conventional partitioning methods. While CAIS does not solve the ill-posed problem, it provides a systematic way to parametrize and examine the effects of partitioning allocation. The practical usefulness of this approach is demonstrated with two case studies. The first compares ethanol produced from corn stover hydrolysis, corn stover gasification, and corn grain fermentation. This comparison was not robust to allocation. The second case study compares 1,3-propanediol (PDO) produced from fossil fuels and from biomass, which was found to be a robust comparison.


Subject(s)
Ethanol/metabolism , Fossil Fuels , Models, Theoretical , Zea mays , Biomass , Biotechnology/methods , Fermentation , Hydrolysis , Propylene Glycols/chemical synthesis , Propylene Glycols/metabolism
10.
J Nanosci Nanotechnol ; 15(10): 7866-70, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26726430

ABSTRACT

Poly(glycidyl methadrylate-block-styrene) (PGMA-b-PS), a block copolymer consisting of glycidyl methacrylate and styrene, was synthesized via reversible addition-fragmentation chain transfer living polymerization. The synthesized PGMA-b-PS was then grafted with low-molecular-weight polyethylene glycol (PEG) via epoxy ring opening to give PGMA-g-PEG-b-PS, which was evaluated as an anti-biofouling coating material. As a preliminary test for the anti-biofouling effect, a protein adsorption experiment was performed on the synthesized block copolymer surface. The block copolymers were spin-coated onto silicon wafers, and protein adsorption experiments were carried out using fluorescein isothiocyanate conjugate-labeled bovine serum albumin. The fluorescence intensity of the protein adsorbed on the block copolymer surface was compared with that of a polystyrene film as a reference. The synthesized PGMA-g-PEG-b-PS film showed much lower fluorescence intensity than that of the PS film.


Subject(s)
Biofouling/prevention & control , Epoxy Compounds/chemistry , Methacrylates/chemistry , Propylene Glycols , Serum Albumin, Bovine/chemistry , Styrene/chemistry , Adsorption , Animals , Cattle , Propylene Glycols/chemical synthesis , Propylene Glycols/chemistry
11.
Biomacromolecules ; 15(2): 456-67, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24422429

ABSTRACT

The alkyl chain length of quaternary ammonium/PEG copolyoxetanes has been varied to discern effects on solution antimicrobial efficacy, hemolytic activity and cytotoxicity. Monomers 3-((4-bromobutoxy)methyl)-3-methyloxetane (BBOx) and 3-((2-(2-methoxyethoxy)ethoxy)methyl)-3-methyloxetane (ME2Ox) were used to prepare precursor P[(BBOx)(ME2Ox)-50:50-4 kDa] copolyoxetane via cationic ring opening polymerization. The 1:1 copolymer composition and Mn (4 kDa) were confirmed by (1)H NMR spectroscopy. After C-Br substitution by a series of tertiary amines, ionic liquid Cx-50 copolyoxetanes were obtained, where 50 is the mole percent of quaternary repeat units and "x" is quaternary alkyl chain length (2, 6, 8, 10, 12, 14, or 16 carbons). Modulated differential scanning calorimetry (MDSC) studies showed Tgs between -40 and -60 °C and melting endotherms for C14-50 and C16-50. Minimum inhibitory concentrations (MIC) were determined for Escherichia coli , Staphylococcus aureus , and Pseudomonas aeruginosa . A systematic dependence of MIC on alkyl chain length was found. The most effective antimicrobials were in the C6-50 to C12-50 range. C8-50 had better overall performance with MICs of 4 µg/mL, E. coli ; 2 µg/mL, S. aureus ; and 24 µg/mL, P. aeruginosa . At 5 × MIC, C8-50 effected >99% kill in 1 h against S. aureus , E. coli , and P. aeruginosa challenges of 10(8) cfu/mL; log reductions (1 h) were 7, 3, and 5, respectively. To provide additional insight into polycation interactions with bacterial membranes, a geometric model based on the dimensions of E. coli is described that provides an estimate of the maximum number of polycations that can chemisorb. Chain dimensions were estimated for polycation C8-50 with a molecular weight of 5 kDa. Considering the approximations for polycation chemisorption (PCC), it is surprising that a calculation based on geometric considerations gives a C8-50 concentration within a factor of 2 of the MIC, 4.0 (±1.2) µg/mL for E. coli . Cx-50 copolyoxetane cytotoxicity was low for human red blood cells, human dermal fibroblasts (HDF), and human foreskin fibroblasts (HFF). Selectivities for bacterial kill over cell lysis were among the highest ever reported for polycations indicating good prospects for biocompatibility.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fibroblasts/drug effects , Hemolysis/drug effects , Polyethylene Glycols/pharmacology , Polymers/pharmacology , Propylene Glycols/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Line , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Polymers/chemical synthesis , Polymers/chemistry , Propylene Glycols/chemical synthesis , Propylene Glycols/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship
12.
J Org Chem ; 79(15): 6987-95, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25020037

ABSTRACT

A new synthetic strategy was developed for the asymmetric total synthesis of (+)-didemniserinolipid B in 19 linear steps, featuring a highly efficient and enantioselective construction of 6,8-dioxabicyclo[3.2.1]octane (6,8-DOBCO) framework via a rarely explored Achmatowicz rearrangement/bicycloketalization strategy. In addition, the first total synthesis of the proposed (+)-didemniserinolipid C was accomplished with 41.6% yield in 4 steps from a common advanced intermediate 18, and a possible revised structure of (+)-didemniserinolipid C was proposed. The new convergent synthetic strategy greatly expedites the entry to the didemniserinolipids and their analogues for biological activity evaluation.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Propylene Glycols/chemical synthesis , Biochemical Phenomena , Cyclization , Molecular Structure , Propylene Glycols/chemistry , Stereoisomerism
14.
Chemistry ; 19(5): 1700-5, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23203900

ABSTRACT

A new class of inorganic-organic hybrid porous materials has been synthesized by a reaction between octa(hydridosilsesquioxane) (H(8)Si(8)O(12)), which has a double-four-ring (D4R) structure, and various diols, such as 1,3-propanediol (PD), 1,4-cyclohexanediol (CHD), and 1,3-adamantanediol (AD). Solid-state (29) Si magic-angle-spinning NMR spectroscopic analysis confirmed that most of the corner Si-H groups reacted with diols to form Si-O-C bonds with retention of the D4R cage. Nitrogen adsorption-desorption studies showed that the products are microporous solids with high BET surface areas (up to ≈580 m(2) g(-1) for CHD- and AD-linked products). If n-alkanediols are used as linkers, the surface area becomes smaller as the number of carbon atoms is increased. The thermal and hydrolytic stability of the products strongly depend on the type of diol linkers. The highest stabilities are found for the AD-linked products, which are thermally stable up to around 400 °C and remain intact even after being soaked in water for 1 day. In contrast, the PD-linked product is easily hydrolyzed in water to give microporous silica. These results offer a new route toward a series of silica-based porous materials with unique structures and properties.


Subject(s)
Adamantane/analogs & derivatives , Cyclohexanols/chemistry , Cyclohexanols/chemical synthesis , Propylene Glycols/chemistry , Propylene Glycols/chemical synthesis , Silicon Compounds/chemistry , Silicon Compounds/chemical synthesis , Siloxanes/chemistry , Siloxanes/chemical synthesis , Adamantane/chemical synthesis , Adamantane/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
15.
Biomacromolecules ; 14(11): 3985-96, 2013 Nov 11.
Article in English | MEDLINE | ID: mdl-24088140

ABSTRACT

Novel biodegradable materials with tunable hydrolytic degradation rate are prepared by grafting of phosphonoethylated polyglycidols with polyesters. First, the hydrolytically degradable polyester grafts are attached to polyglycidols partially grafted with phosphonoethylated diethyl esters through chemical-catalyzed grafting using tin(II) octanoate, then the diethyl ester groups are chemoselectively converted to the corresponding monoester (mixed phosphonate/phosphonic acid) using alkali metal halides. The products are characterized by means of (1)H, (13)C, and (31)P NMR spectroscopy, as well as size-exclusion chromatography and differential scanning calorimetry. The in vitro degradation of the copolymers is studied in phosphate buffered solution at 55 °C. The copolymers are of the same architecture, molecular weight, and crystallinity, only differing in the pendant phosphonate and mixed phosphonate/phosphonic acid groups, respectively. On the basis of mass loss, decrease of the molecular weight, and morphological analysis of the copolymers, the strong impact of mixed phosphonate/phosphonic acid groups on the hydrolytic degradation rate is demonstrated.


Subject(s)
Esters/chemistry , Polyesters/chemistry , Propylene Glycols/chemistry , Animals , Fibroblasts , Hydrolysis , Mice , Molecular Structure , Propylene Glycols/chemical synthesis
16.
J Am Chem Soc ; 134(8): 3671-4, 2012 Feb 29.
Article in English | MEDLINE | ID: mdl-22320858

ABSTRACT

We show here that complementary interactions can suppress mesoscopic order and thus lead to a counterintuitive change in material properties. We present results for telechelic supramolecular polymers based on poly(propylene oxide) (PPO), thymine (Thy), and diaminotriazine (DAT). The self-complementary systems based on Thy exhibit lamellar order and 2D crystallization of Thy in the bulk. We show that the microphase segregation is inhibited by addition of DAT: the strong complementary Thy-DAT interaction inhibits crystallization of thymine in microdomains and lamellar structuration. As a result, the supramolecular polymer with only weakly self-complementary stickers is a solid, whereas the supramolecular polymer with strongly complementary stickers is a liquid.


Subject(s)
Polymers/chemistry , Propylene Glycols/chemistry , Thymine/chemistry , Triazines/chemistry , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Polymers/chemical synthesis , Propylene Glycols/chemical synthesis
17.
Biomacromolecules ; 13(12): 3977-89, 2012 Dec 10.
Article in English | MEDLINE | ID: mdl-23167676

ABSTRACT

This paper reports the synthesis and characterization of new hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol) (PPG), poly(ethylene glycol) (PEG), and polycaprolactone (PCL) segments as in situ thermogels. The hyperbranched poly(PPG/PEG/PCL urethane)s, termed as HBPEC copolymers, were synthesized from PPG-diol, PEG-diol, and PCL-triol by using 1,6-hexamethylene diisocyanate (HMDI) as a coupling agent. The compositions and structures of HBPEC copolymers were determined by GPC and 1H NMR spectroscopy. We carried out comparative studies of the new hyperbranched copolymers with their linear counterparts, the linear poly(PPG/PEG/PCL urethane) (LPEC) copolymer and Pluronic F127 PEG-PPG-PEG block copolymer, in terms of their self-assembly and aggregation behaviors and thermoresponsive properties. HBPEC copolymers were found to show thermoresponsive micelle formation and aggregation behaviors. Particularly, the lower critical solution temperature (LCST) of the copolymers was significantly affected by the copolymer architecture. HBPEC copolymers showed much lower LCST than LPEC, the linear counterpart. Our studies revealed that the effect of hyperbranch architecture was more prominent in the gelation of the copolymers. The aqueous solutions of HBPEC copolymers exhibited thermogelling behaviors at critical gelation concentrations (CGCs) ranging from 4.3 to 7.4 wt %. These values are much lower than those reported on other PCL-contained linear thermogelling copolymers and Pluronic F127 copolymer. In addition, the CGC of HBPEC copolymers is much lower than the control LPEC copolymer. More interestingly, at high temperatures, while LPEC and other linear thermogelling copolymers formed turbid sol, HBPEC formed a dehydrated gel. Our data suggest that these phenomena are caused by the hyperbranched structure of HBPEC copolymers, which could increase the interaction of copolymer branches and enhance the chain association through synergetic hydrogen bonding effect. The thermogelling behavior of HBPEC block copolymers was further evidenced by the 1H NMR molecular dynamic study and rheological study, which further support the above hypothesis. The hydrolytic degradation study showed that the HBPEC copolymer hydrogels are biodegradable under physiological conditions. Together with the good cell biocompatibility demonstrated by the cytotoxicity study, the new thermogelling copolymers reported in this paper could potentially be used as in situ-forming hydrogels for biomedical applications.


Subject(s)
Biocompatible Materials/chemical synthesis , Polyesters/chemistry , Polyethylene Glycols/chemical synthesis , Polyurethanes/chemistry , Propylene Glycols/chemical synthesis , Animals , Cell Line , Cell Survival , Cyanates/metabolism , Hydrogels/chemistry , Isocyanates , Magnetic Resonance Spectroscopy/methods , Mice , Micelles , Microscopy, Electron, Transmission , Particle Size , Thermodynamics
18.
Bioorg Med Chem Lett ; 22(22): 6817-20, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22321213

ABSTRACT

The conversion of sphingosine to sphingosine-1-phosphate is catalyzed by sphingosine kinase (SphK), which has been implicated in disease states such as cancer and fibrosis. Because SphK exists as two different isoforms, SphK1 and SphK2, understanding the physiological function of each isoenzyme is important. Of the two isoenzymes, SphK2 is significantly less understood, which is evident by the lack of selective small molecule inhibitors. Building on our initial work that focused on the structure-activity relationship study on an FTY720-derived cylohexylamine scaffold, we report that varying the alkyl chain length on the hydrophobic tail can impart selectivity toward SphK2 over SphK1.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Propylene Glycols/chemistry , Sphingosine/analogs & derivatives , Cyclohexylamines/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Fingolimod Hydrochloride , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Propylene Glycols/chemical synthesis , Propylene Glycols/metabolism , Protein Binding , Sphingosine/chemical synthesis , Sphingosine/chemistry , Sphingosine/metabolism , Structure-Activity Relationship
19.
Macromol Rapid Commun ; 33(22): 1958-63, 2012 Nov 23.
Article in English | MEDLINE | ID: mdl-22907706

ABSTRACT

Novel spiropyran-conjugated Pluronic [polyethylene oxide (PEO)-b-polypropylene oxide (PPO)-b-polyethylene oxide (PEO)] micelles are developed as a new colorimetric detector showing photo- or thermo-switchable behavior. Facile conjugation of spiropyran to Pluronic was confirmed by (1)H NMR, UV-Vis, and Fluorescence spectroscopy. A switchable photoluminescence is found depending on the irradiation with either UV or visible light, and temperature resulting from structural isomerization of spiropyran between spiropyran (SP) and merocyanine (MC) form. Cytotoxicity of the spiropyran-conjugated Pluronic (SP-PL) was evaluated following an MTT assay, whereas photo responsiveness of spiropyran within the micelles was determined by confocal laser scanning microscopy.


Subject(s)
Benzopyrans/chemistry , Indoles/chemistry , Nitro Compounds/chemistry , Polyethylene Glycols/chemistry , Propylene Glycols/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Humans , Light , Micelles , Microscopy, Confocal , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/toxicity , Propylene Glycols/chemical synthesis , Propylene Glycols/toxicity , Spectrometry, Fluorescence , Ultraviolet Rays
20.
Chem Pharm Bull (Tokyo) ; 60(11): 1395-8, 2012.
Article in English | MEDLINE | ID: mdl-23124563

ABSTRACT

A concise synthesis of a useful intermediate 10 for the preparation of fingolimod (FTY-720) analogs was achieved by utilizing a chemoselective Sonogashira reaction of trihalobenzene 12 with alkyne 13. The reaction proceeded with high selectivity to give alkyne 11 containing the dihalobenzene moiety in good yield. Compound 11 was converted into intermediate 10 by hydrogenation without reduction of the halogen atoms.


Subject(s)
Immunosuppressive Agents/chemistry , Propylene Glycols/chemistry , Sphingosine/analogs & derivatives , Alkynes/chemical synthesis , Alkynes/chemistry , Benzene Derivatives/chemical synthesis , Benzene Derivatives/chemistry , Catalysis , Fingolimod Hydrochloride , Immunosuppressive Agents/chemical synthesis , Palladium/chemistry , Propylene Glycols/chemical synthesis , Sphingosine/chemical synthesis , Sphingosine/chemistry , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL