Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.503
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 37: 1-17, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30379594

ABSTRACT

Each of us is a story. Mine is a story of doing science for 60 years, and I am honored to be asked to tell it. Even though this autobiography was written for the Annual Review of Immunology, I have chosen to describe my whole career in science because the segment that was immunology is so intertwined with all else I was doing. This article is an elongation and modification of a talk I gave at my 80th birthday celebration at Caltech on March 23, 2018.


Subject(s)
Allergy and Immunology/history , NF-kappa B/metabolism , RNA Viruses/physiology , Virus Diseases/immunology , Animals , Disease Models, Animal , Gene Rearrangement , History, 20th Century , History, 21st Century , Humans , Mice , Protein-Tyrosine Kinases/metabolism , Reverse Transcription , United States
2.
Annu Rev Immunol ; 36: 549-578, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29677469

ABSTRACT

Signaling through the T cell antigen receptor (TCR) activates a series of tyrosine kinases. Directly associated with the TCR, the SRC family kinase LCK and the SYK family kinase ZAP-70 are essential for all downstream responses to TCR stimulation. In contrast, the TEC family kinase ITK is not an obligate component of the TCR cascade. Instead, ITK functions as a tuning dial, to translate variations in TCR signal strength into differential programs of gene expression. Recent insights into TEC kinase structure have provided a view into the molecular mechanisms that generate different states of kinase activation. In resting lymphocytes, TEC kinases are autoinhibited, and multiple interactions between the regulatory and kinase domains maintain low activity. Following TCR stimulation, newly generated signaling modules compete with the autoinhibited core and shift the conformational ensemble to the fully active kinase. This multidomain control over kinase activation state provides a structural mechanism to account for ITK's ability to tune the TCR signal.


Subject(s)
Lymphocyte Activation , Protein-Tyrosine Kinases/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Biomarkers , Humans , Lymphocyte Activation/immunology , Phospholipase C gamma/metabolism , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein-Tyrosine Kinases/chemistry , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , src-Family Kinases/metabolism
3.
Cell ; 182(4): 1009-1026.e29, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32730809

ABSTRACT

Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.


Subject(s)
Cysteine/metabolism , Ligands , T-Lymphocytes/metabolism , Acetamides/chemistry , Acetamides/pharmacology , Acrylamides/chemistry , Acrylamides/pharmacology , Cells, Cultured , Humans , Inhibitor of Apoptosis Proteins/metabolism , Lymphocyte Activation/drug effects , Protein-Tyrosine Kinases/metabolism , Proteolysis/drug effects , Proteome/chemistry , Proteome/metabolism , Stereoisomerism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Ubiquitin-Protein Ligases/metabolism
4.
Cell ; 173(1): 104-116.e12, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29502971

ABSTRACT

Human diseases are often caused by loss of somatic cells that are incapable of re-entering the cell cycle for regenerative repair. Here, we report a combination of cell-cycle regulators that induce stable cytokinesis in adult post-mitotic cells. We screened cell-cycle regulators expressed in proliferating fetal cardiomyocytes and found that overexpression of cyclin-dependent kinase 1 (CDK1), CDK4, cyclin B1, and cyclin D1 efficiently induced cell division in post-mitotic mouse, rat, and human cardiomyocytes. Overexpression of the cell-cycle regulators was self-limiting through proteasome-mediated degradation of the protein products. In vivo lineage tracing revealed that 15%-20% of adult cardiomyocytes expressing the four factors underwent stable cell division, with significant improvement in cardiac function after acute or subacute myocardial infarction. Chemical inhibition of Tgf-ß and Wee1 made CDK1 and cyclin B dispensable. These findings reveal a discrete combination of genes that can efficiently unlock the proliferative potential in cells that have terminally exited the cell cycle.


Subject(s)
Heart/physiology , Myocytes, Cardiac/metabolism , Animals , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Proliferation , Cyclin B1/genetics , Cyclin B1/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cytokinesis , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/veterinary , Myocytes, Cardiac/cytology , Myosin Heavy Chains/genetics , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Rats , Regeneration , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/metabolism
5.
Annu Rev Biochem ; 85: 573-97, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27023845

ABSTRACT

Epidermal growth factor (EGF) and insulin receptor tyrosine kinases (RTKs) exemplify how receptor location is coupled to signal transduction. Extracellular binding of ligands to these RTKs triggers their concentration into vesicles that bud off from the cell surface to generate intracellular signaling endosomes. On the exposed cytosolic surface of these endosomes, RTK autophosphorylation selects the downstream signaling proteins and lipids to effect growth factor and polypeptide hormone action. This selection is followed by the recruitment of protein tyrosine phosphatases that inactivate the RTKs and deliver them by membrane fusion and fission to late endosomes. Coincidentally, proteinases inside the endosome cleave the EGF and insulin ligands. Subsequent inward budding of the endosomal membrane generates multivesicular endosomes. Fusion with lysosomes then results in RTK degradation and downregulation. Through the spatial positioning of RTKs in target cells for EGF and insulin action, the temporal extent of signaling, attenuation, and downregulation is regulated.


Subject(s)
Epidermal Growth Factor/genetics , ErbB Receptors/genetics , Gene Expression Regulation , Insulin/genetics , Protein-Tyrosine Kinases/genetics , Signal Transduction , Cell Membrane/metabolism , Endocytosis , Endosomes/metabolism , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Feedback, Physiological , Humans , Insulin/metabolism , Intracellular Membranes/metabolism , Phosphorylation , Protein Transport , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Protein-Tyrosine Kinases/metabolism
6.
Nature ; 629(8014): 1174-1181, 2024 May.
Article in English | MEDLINE | ID: mdl-38720073

ABSTRACT

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.


Subject(s)
Phosphotyrosine , Protein-Tyrosine Kinases , Substrate Specificity , Tyrosine , Animals , Humans , Amino Acid Motifs , Evolution, Molecular , Mass Spectrometry , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Phosphotyrosine/metabolism , Protein-Tyrosine Kinases/drug effects , Protein-Tyrosine Kinases/metabolism , Proteome/chemistry , Proteome/metabolism , Proteomics , Signal Transduction , src Homology Domains , Tyrosine/metabolism , Tyrosine/chemistry
7.
Mol Cell ; 82(6): 1081-1083, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35303480

ABSTRACT

Lin et al. (2022) discover that FGFR2 undergoes liquid-liquid phase separation with its downstream effectors SHP2 and PLCγ1, and the formation of phase separated condensates is essential for signaling competency.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein-Tyrosine Kinases , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction
8.
Nat Immunol ; 18(6): 694-704, 2017 06.
Article in English | MEDLINE | ID: mdl-28369050

ABSTRACT

The transcription factor STAT5 has a critical role in B cell acute lymphoblastic leukemia (B-ALL). How STAT5 mediates this effect is unclear. Here we found that activation of STAT5 worked together with defects in signaling components of the precursor to the B cell antigen receptor (pre-BCR), including defects in BLNK, BTK, PKCß, NF-κB1 and IKAROS, to initiate B-ALL. STAT5 antagonized the transcription factors NF-κB and IKAROS by opposing regulation of shared target genes. Super-enhancers showed enrichment for STAT5 binding and were associated with an opposing network of transcription factors, including PAX5, EBF1, PU.1, IRF4 and IKAROS. Patients with a high ratio of active STAT5 to NF-κB or IKAROS had more-aggressive disease. Our studies indicate that an imbalance of two opposing transcriptional programs drives B-ALL and suggest that restoring the balance of these pathways might inhibit B-ALL.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , B-Lymphocytes , Gene Expression Regulation, Neoplastic , Ikaros Transcription Factor/genetics , Pre-B Cell Receptors/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , STAT5 Transcription Factor/metabolism , Agammaglobulinaemia Tyrosine Kinase , Animals , Chromatin Immunoprecipitation , Flow Cytometry , Humans , Interferon Regulatory Factors/genetics , Mice , Multiplex Polymerase Chain Reaction , NF-kappa B p50 Subunit/genetics , PAX5 Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Prognosis , Protein Kinase C beta/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction , Survival Rate , Trans-Activators/genetics
9.
Cell ; 158(5): 1033-1044, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25171405

ABSTRACT

Although tyrosine phosphorylation of extracellular proteins has been reported to occur extensively in vivo, no secreted protein tyrosine kinase has been identified. As a result, investigation of the potential role of extracellular tyrosine phosphorylation in physiological and pathological tissue regulation has not been possible. Here, we show that VLK, a putative protein kinase previously shown to be essential in embryonic development, is a secreted protein kinase, with preference for tyrosine, that phosphorylates a broad range of secreted and ER-resident substrate proteins. We find that VLK is rapidly and quantitatively secreted from platelets in response to stimuli and can tyrosine phosphorylate coreleased proteins utilizing endogenous as well as exogenous ATP sources. We propose that discovery of VLK activity provides an explanation for the extensive and conserved pattern of extracellular tyrosine phosphophorylation seen in vivo, and extends the importance of regulated tyrosine phosphorylation into the extracellular environment.


Subject(s)
Blood Platelets/enzymology , Embryo, Mammalian/enzymology , Protein Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Amino Acid Sequence , Animals , Embryonic Development , Glycosylation , Humans , Mice , Molecular Sequence Data , Phosphorylation , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Processing, Post-Translational , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , Secretory Pathway
10.
Mol Cell ; 81(18): 3833-3847.e11, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34289383

ABSTRACT

Mutant isocitrate dehydrogenase (IDH) 1 and 2 play a pathogenic role in cancers, including acute myeloid leukemia (AML), by producing oncometabolite 2-hydroxyglutarate (2-HG). We recently reported that tyrosine phosphorylation activates IDH1 R132H mutant in AML cells. Here, we show that mutant IDH2 (mIDH2) R140Q commonly has K413 acetylation, which negatively regulates mIDH2 activity in human AML cells by attenuating dimerization and blocking binding of substrate (α-ketoglutarate) and cofactor (NADPH). Mechanistically, K413 acetylation of mitochondrial mIDH2 is achieved through a series of hierarchical phosphorylation events mediated by tyrosine kinase FLT3, which phosphorylates mIDH2 to recruit upstream mitochondrial acetyltransferase ACAT1 and simultaneously activates ACAT1 and inhibits upstream mitochondrial deacetylase SIRT3 through tyrosine phosphorylation. Moreover, we found that the intrinsic enzyme activity of mIDH2 is much higher than mIDH1, thus the inhibitory K413 acetylation optimizes leukemogenic ability of mIDH2 in AML cells by both producing sufficient 2-HG for transformation and avoiding cytotoxic accumulation of intracellular 2-HG.


Subject(s)
Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/metabolism , Acetyl-CoA C-Acetyltransferase/metabolism , Acetylation , Animals , Antineoplastic Agents/pharmacology , Female , Humans , Isocitrate Dehydrogenase/metabolism , Ketoglutaric Acids/metabolism , Leukemia, Myeloid, Acute/genetics , Lysine/genetics , Lysine/metabolism , Male , Mice , Mice, Inbred NOD , Mutation/genetics , NADP/metabolism , Nuclear Proteins/metabolism , Phosphorylation , Polymorphism, Single Nucleotide/genetics , Primary Cell Culture , Protein Binding , Protein Processing, Post-Translational , Protein-Tyrosine Kinases/metabolism
11.
Cell ; 152(4): 791-805, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23415227

ABSTRACT

Cytosolic compartmentalization through liquid-liquid unmixing, such as the formation of RNA granules, is involved in many cellular processes and might be used to regulate signal transduction. However, specific molecular mechanisms by which liquid-liquid unmixing and signal transduction are coupled remain unknown. Here, we show that during cellular stress the dual specificity kinase DYRK3 regulates the stability of P-granule-like structures and mTORC1 signaling. DYRK3 displays a cyclic partitioning mechanism between stress granules and the cytosol via a low-complexity domain in its N terminus and its kinase activity. When DYRK3 is inactive, it prevents stress granule dissolution and the release of sequestered mTORC1. When DYRK3 is active, it allows stress granule dissolution, releasing mTORC1 for signaling and promoting its activity by directly phosphorylating the mTORC1 inhibitor PRAS40. This mechanism links cytoplasmic compartmentalization via liquid phase transitions with cellular signaling.


Subject(s)
Cytoplasmic Granules/metabolism , Multiprotein Complexes/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , Cytosol/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , RNA, Messenger/metabolism , Stress, Physiological
12.
Nature ; 604(7907): 749-756, 2022 04.
Article in English | MEDLINE | ID: mdl-35444283

ABSTRACT

Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies1-4. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumour regressions when combined with gemcitabine in models of CCNE1 amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1-overexpressing cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the MMB-FOXM1 mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.


Subject(s)
Cyclin E , Membrane Proteins , Ovarian Neoplasms , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , CDC2 Protein Kinase , Cyclin E/genetics , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/genetics , Neoplasms/genetics , Ovarian Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Synthetic Lethal Mutations
13.
Mol Cell ; 78(1): 57-69.e4, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32059760

ABSTRACT

Homeothermic organisms maintain their core body temperature in a narrow, tightly controlled range. Whether and how subtle circadian oscillations or disease-associated changes in core body temperature are sensed and integrated in gene expression programs remain elusive. Furthermore, a thermo-sensor capable of sensing the small temperature differentials leading to temperature-dependent sex determination (TSD) in poikilothermic reptiles has not been identified. Here, we show that the activity of CDC-like kinases (CLKs) is highly responsive to physiological temperature changes, which is conferred by structural rearrangements within the kinase activation segment. Lower body temperature activates CLKs resulting in strongly increased phosphorylation of SR proteins in vitro and in vivo. This globally controls temperature-dependent alternative splicing and gene expression, with wide implications in circadian, tissue-specific, and disease-associated settings. This temperature sensor is conserved across evolution and adapted to growth temperatures of diverse poikilotherms. The dynamic temperature range of reptilian CLK homologs suggests a role in TSD.


Subject(s)
Alternative Splicing , Body Temperature Regulation/genetics , Gene Expression , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Reptiles/genetics , Animals , Biological Evolution , HEK293 Cells , Humans , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/physiology , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/physiology , Reptiles/metabolism , Serine-Arginine Splicing Factors/metabolism
14.
Mol Cell ; 79(3): 376-389.e8, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32640193

ABSTRACT

Activation of dual-specificity tyrosine-phosphorylation-regulated kinases 1A and 1B (DYRK1A and DYRK1B) requires prolyl hydroxylation by PHD1 prolyl hydroxylase. Prolyl hydroxylation of DYRK1 initiates a cascade of events leading to the release of molecular constraints on von Hippel-Lindau (VHL) ubiquitin ligase tumor suppressor function. However, the proline residue of DYRK1 targeted by hydroxylation and the role of prolyl hydroxylation in tyrosine autophosphorylation of DYRK1 are unknown. We found that a highly conserved proline in the CMGC insert of the DYRK1 kinase domain is hydroxylated by PHD1, and this event precedes tyrosine autophosphorylation. Mutation of the hydroxylation acceptor proline precludes tyrosine autophosphorylation and folding of DYRK1, resulting in a kinase unable to preserve VHL function and lacking glioma suppression activity. The consensus proline sequence is shared by most CMGC kinases, and prolyl hydroxylation is essential for catalytic activation. Thus, formation of prolyl-hydroxylated intermediates is a novel mechanism of kinase maturation and likely a general mechanism of regulation of CMGC kinases in eukaryotes.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Isoenzymes/genetics , Proline/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Amino Acid Sequence , Animals , Binding Sites , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Crystallography, X-Ray , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Glioma/pathology , HEK293 Cells , Heterografts , Humans , Hydroxylation , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Isoenzymes/chemistry , Isoenzymes/metabolism , Mice , Mice, Nude , Mitogen-Activated Protein Kinase 14/chemistry , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/metabolism , Models, Molecular , Mutation , Neuroglia/metabolism , Neuroglia/pathology , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Secondary , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Dyrk Kinases
15.
Mol Cell ; 79(6): 1008-1023.e4, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32871104

ABSTRACT

TMPRSS2-ERG gene fusion occurs in approximately 50% of cases of prostate cancer (PCa), and the fusion product is a key driver of prostate oncogenesis. However, how to leverage cellular signaling to ablate TMPRSS2-ERG oncoprotein for PCa treatment remains elusive. Here, we demonstrate that DNA damage induces proteasomal degradation of wild-type ERG and TMPRSS2-ERG oncoprotein through ERG threonine-187 and tyrosine-190 phosphorylation mediated by GSK3ß and WEE1, respectively. The dual phosphorylation triggers ERG recognition and degradation by the E3 ubiquitin ligase FBW7 in a manner independent of a canonical degron. DNA damage-induced TMPRSS2-ERG degradation was abolished by cancer-associated PTEN deletion or GSK3ß inactivation. Blockade of DNA damage-induced TMPRSS2-ERG oncoprotein degradation causes chemotherapy-resistant growth of fusion-positive PCa cells in culture and in mice. Our findings uncover a previously unrecognized TMPRSS2-ERG protein destruction mechanism and demonstrate that intact PTEN and GSK3ß signaling are essential for effective targeting of ERG protein by genotoxic therapeutics in fusion-positive PCa.


Subject(s)
Cell Cycle Proteins/genetics , Glycogen Synthase Kinase 3 beta/genetics , Oncogene Proteins, Fusion/genetics , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms/genetics , Protein-Tyrosine Kinases/genetics , Animals , Carcinogenesis/genetics , Cell Line, Tumor , DNA Damage/drug effects , Drug Resistance, Neoplasm/genetics , Drug Therapy , F-Box-WD Repeat-Containing Protein 7/genetics , Heterografts , Humans , Male , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Proteolysis/drug effects , Signal Transduction/drug effects
16.
Mol Cell ; 80(3): 410-422.e6, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33108758

ABSTRACT

While effective anti-cancer drugs targeting the CHK1 kinase are advancing in the clinic, drug resistance is rapidly emerging. Here, we demonstrate that CRISPR-mediated knockout of the little-known gene FAM122A/PABIR1 confers cellular resistance to CHK1 inhibitors (CHK1is) and cross-resistance to ATR inhibitors. Knockout of FAM122A results in activation of PP2A-B55α, a phosphatase that dephosphorylates the WEE1 protein and rescues WEE1 from ubiquitin-mediated degradation. The resulting increase in WEE1 protein expression reduces replication stress, activates the G2/M checkpoint, and confers cellular resistance to CHK1is. Interestingly, in tumor cells with oncogene-driven replication stress, CHK1 can directly phosphorylate FAM122A, leading to activation of the PP2A-B55α phosphatase and increased WEE1 expression. A combination of a CHK1i plus a WEE1 inhibitor can overcome CHK1i resistance of these tumor cells, thereby enhancing anti-cancer activity. The FAM122A expression level in a tumor cell can serve as a useful biomarker for predicting CHK1i sensitivity or resistance.


Subject(s)
Checkpoint Kinase 1/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoproteins/metabolism , Pyrazines/pharmacology , Pyrazoles/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints , Cell Cycle Proteins/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 1/metabolism , DNA Damage/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Intracellular Signaling Peptides and Proteins/physiology , Nuclear Proteins/metabolism , Phosphoproteins/physiology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational/drug effects , Protein-Tyrosine Kinases/genetics , Pyrazines/metabolism , Pyrazoles/metabolism , Signal Transduction/drug effects
17.
N Engl J Med ; 390(2): 118-131, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38197815

ABSTRACT

BACKGROUND: The early-generation ROS1 tyrosine kinase inhibitors (TKIs) that are approved for the treatment of ROS1 fusion-positive non-small-cell lung cancer (NSCLC) have antitumor activity, but resistance develops in tumors, and intracranial activity is suboptimal. Repotrectinib is a next-generation ROS1 TKI with preclinical activity against ROS1 fusion-positive cancers, including those with resistance mutations such as ROS1 G2032R. METHODS: In this registrational phase 1-2 trial, we assessed the efficacy and safety of repotrectinib in patients with advanced solid tumors, including ROS1 fusion-positive NSCLC. The primary efficacy end point in the phase 2 trial was confirmed objective response; efficacy analyses included patients from phase 1 and phase 2. Duration of response, progression-free survival, and safety were secondary end points in phase 2. RESULTS: On the basis of results from the phase 1 trial, the recommended phase 2 dose of repotrectinib was 160 mg daily for 14 days, followed by 160 mg twice daily. Response occurred in 56 of the 71 patients (79%; 95% confidence interval [CI], 68 to 88) with ROS1 fusion-positive NSCLC who had not previously received a ROS1 TKI; the median duration of response was 34.1 months (95% CI, 25.6 to could not be estimated), and median progression-free survival was 35.7 months (95% CI, 27.4 to could not be estimated). Response occurred in 21 of the 56 patients (38%; 95% CI, 25 to 52) with ROS1 fusion-positive NSCLC who had previously received one ROS1 TKI and had never received chemotherapy; the median duration of response was 14.8 months (95% CI, 7.6 to could not be estimated), and median progression-free survival was 9.0 months (95% CI, 6.8 to 19.6). Ten of the 17 patients (59%; 95% CI, 33 to 82) with the ROS1 G2032R mutation had a response. A total of 426 patients received the phase 2 dose; the most common treatment-related adverse events were dizziness (in 58% of the patients), dysgeusia (in 50%), and paresthesia (in 30%), and 3% discontinued repotrectinib owing to treatment-related adverse events. CONCLUSIONS: Repotrectinib had durable clinical activity in patients with ROS1 fusion-positive NSCLC, regardless of whether they had previously received a ROS1 TKI. Adverse events were mainly of low grade and compatible with long-term administration. (Funded by Turning Point Therapeutics, a wholly owned subsidiary of Bristol Myers Squibb; TRIDENT-1 ClinicalTrials.gov number, NCT03093116.).


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Protein-Tyrosine Kinases , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Antineoplastic Agents/therapeutic use , Treatment Outcome
18.
Nat Immunol ; 16(6): 642-52, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25915733

ABSTRACT

Fungal infection stimulates the canonical C-type lectin receptor (CLR) signaling pathway via activation of the tyrosine kinase Syk. Here we identify a crucial role for the tyrosine phosphatase SHP-2 in mediating CLR-induced activation of Syk. Ablation of the gene encoding SHP-2 (Ptpn11; called 'Shp-2' here) in dendritic cells (DCs) and macrophages impaired Syk-mediated signaling and abrogated the expression of genes encoding pro-inflammatory molecules following fungal stimulation. Mechanistically, SHP-2 operated as a scaffold, facilitating the recruitment of Syk to the CLR dectin-1 or the adaptor FcRγ, through its N-SH2 domain and a previously unrecognized carboxy-terminal immunoreceptor tyrosine-based activation motif (ITAM). We found that DC-derived SHP-2 was crucial for the induction of interleukin 1ß (IL-1ß), IL-6 and IL-23 and anti-fungal responses of the TH17 subset of helper T cells in controlling infection with Candida albicans. Together our data reveal a mechanism by which SHP-2 mediates the activation of Syk in response to fungal infection.


Subject(s)
Candidiasis/immunology , Dendritic Cells/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein-Tyrosine Kinases/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Th17 Cells/immunology , Amino Acid Motifs/genetics , Animals , Antigens, Fungal/immunology , Cells, Cultured , Cytokines/metabolism , Enzyme Activation , Inflammation Mediators/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Lymphocyte Activation , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Receptors, IgE/genetics , Receptors, IgE/metabolism , Signal Transduction , Syk Kinase
19.
Mol Cell ; 74(2): 347-362.e6, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30853401

ABSTRACT

Selective autophagy recycles damaged organelles and clears intracellular pathogens to prevent their aberrant accumulation. How ULK1 kinase is targeted and activated during selective autophagic events remains to be elucidated. In this study, we used chemically inducible dimerization (CID) assays in tandem with CRISPR KO lines to systematically analyze the molecular basis of selective autophagosome biogenesis. We demonstrate that ectopic placement of NDP52 on mitochondria or peroxisomes is sufficient to initiate selective autophagy by focally localizing and activating the ULK1 complex. The capability of NDP52 to induce mitophagy is dependent on its interaction with the FIP200/ULK1 complex, which is facilitated by TBK1. Ectopically tethering ULK1 to cargo bypasses the requirement for autophagy receptors and TBK1. Focal activation of ULK1 occurs independently of AMPK and mTOR. Our findings provide a parsimonious model of selective autophagy, which highlights the coordination of ULK1 complex localization by autophagy receptors and TBK1 as principal drivers of targeted autophagosome biogenesis.


Subject(s)
Autophagy-Related Protein-1 Homolog/genetics , Autophagy/genetics , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinase Kinases , Autophagy-Related Proteins , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , HeLa Cells , Humans , Mitochondria/chemistry , Mitochondria/genetics , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Peroxisomes/chemistry , Peroxisomes/genetics , Phosphorylation , Protein Kinases/genetics , Protein Multimerization , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics
20.
Mol Cell ; 74(2): 320-329.e6, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30853402

ABSTRACT

Xenophagy, a selective autophagy pathway that protects the cytosol against bacterial invasion, relies on cargo receptors that juxtapose bacteria and phagophore membranes. Whether phagophores are recruited from a constitutive pool or are generated de novo at prospective cargo remains unknown. Phagophore formation in situ would require recruitment of the upstream autophagy machinery to prospective cargo. Here, we show that, essential for anti-bacterial autophagy, the cargo receptor NDP52 forms a trimeric complex with FIP200 and SINTBAD/NAP1, which are subunits of the autophagy-initiating ULK and the TBK1 kinase complex, respectively. FIP200 and SINTBAD/NAP1 are each recruited independently to bacteria via NDP52, as revealed by selective point mutations in their respective binding sites, but only in their combined presence does xenophagy proceed. Such recruitment of the upstream autophagy machinery by NDP52 reveals how detection of cargo-associated "eat me" signals, induction of autophagy, and juxtaposition of cargo and phagophores are integrated in higher eukaryotes.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Autophagy/genetics , Nuclear Proteins/genetics , Protein-Tyrosine Kinases/genetics , Adaptor Proteins, Signal Transducing/chemistry , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Proteins , Binding Sites/genetics , Cytoplasm/microbiology , Cytosol/microbiology , Humans , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Nuclear Proteins/chemistry , Point Mutation/genetics , Protein Binding/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/chemistry , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL