Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.740
Filter
Add more filters

Publication year range
1.
Cell ; 184(26): 6361-6377.e24, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34875226

ABSTRACT

Determining the spatial organization and morphological characteristics of molecularly defined cell types is a major bottleneck for characterizing the architecture underpinning brain function. We developed Expansion-Assisted Iterative Fluorescence In Situ Hybridization (EASI-FISH) to survey gene expression in brain tissue, as well as a turnkey computational pipeline to rapidly process large EASI-FISH image datasets. EASI-FISH was optimized for thick brain sections (300 µm) to facilitate reconstruction of spatio-molecular domains that generalize across brains. Using the EASI-FISH pipeline, we investigated the spatial distribution of dozens of molecularly defined cell types in the lateral hypothalamic area (LHA), a brain region with poorly defined anatomical organization. Mapping cell types in the LHA revealed nine spatially and molecularly defined subregions. EASI-FISH also facilitates iterative reanalysis of scRNA-seq datasets to determine marker-genes that further dissociated spatial and morphological heterogeneity. The EASI-FISH pipeline democratizes mapping molecularly defined cell types, enabling discoveries about brain organization.


Subject(s)
Hypothalamic Area, Lateral/metabolism , In Situ Hybridization, Fluorescence , Animals , Biomarkers/metabolism , Gene Expression Profiling , Gene Expression Regulation , Hypothalamic Area, Lateral/cytology , Imaging, Three-Dimensional , Male , Mice, Inbred C57BL , Neurons/metabolism , Neuropeptides/metabolism , Proto-Oncogene Proteins c-fos/metabolism , RNA/metabolism , RNA-Seq , Single-Cell Analysis , Transcription, Genetic
2.
Cell ; 181(2): 410-423.e17, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32187527

ABSTRACT

Memories are believed to be encoded by sparse ensembles of neurons in the brain. However, it remains unclear whether there is functional heterogeneity within individual memory engrams, i.e., if separate neuronal subpopulations encode distinct aspects of the memory and drive memory expression differently. Here, we show that contextual fear memory engrams in the mouse dentate gyrus contain functionally distinct neuronal ensembles, genetically defined by the Fos- or Npas4-dependent transcriptional pathways. The Fos-dependent ensemble promotes memory generalization and receives enhanced excitatory synaptic inputs from the medial entorhinal cortex, which we find itself also mediates generalization. The Npas4-dependent ensemble promotes memory discrimination and receives enhanced inhibitory drive from local cholecystokinin-expressing interneurons, the activity of which is required for discrimination. Our study provides causal evidence for functional heterogeneity within the memory engram and reveals synaptic and circuit mechanisms used by each ensemble to regulate the memory discrimination-generalization balance.


Subject(s)
Fear/physiology , Memory/physiology , Neurons/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain/physiology , Dentate Gyrus/physiology , Interneurons/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Proto-Oncogene Proteins c-fos/metabolism
3.
Cell ; 178(1): 44-59.e7, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31104844

ABSTRACT

Hypothalamic Agrp neurons regulate food ingestion in adult mice. Whether these neurons are functional before animals start to ingest food is unknown. Here, we studied the functional ontogeny of Agrp neurons during breastfeeding using postnatal day 10 mice. In contrast to adult mice, we show that isolation from the nursing nest, not milk deprivation or ingestion, activated Agrp neurons. Non-nutritive suckling and warm temperatures blunted this effect. Using in vivo fiber photometry, neonatal Agrp neurons showed a rapid increase in activity upon isolation from the nest, an effect rapidly diminished following reunion with littermates. Neonates unable to release GABA from Agrp neurons expressed blunted emission of isolation-induced ultrasonic vocalizations. Chemogenetic overactivation of these neurons further increased emission of these ultrasonic vocalizations, but not milk ingestion. We uncovered important functional properties of hypothalamic Agrp neurons during mouse development, suggesting these neurons facilitate offspring-to-caregiver bonding.


Subject(s)
Agouti-Related Protein/metabolism , Feeding Behavior/physiology , Hypothalamus/cytology , Neurons/metabolism , Agouti-Related Protein/genetics , Animals , Animals, Newborn , Eating/physiology , Maternal Behavior/physiology , Mice , Mice, Knockout , Milk , Proto-Oncogene Proteins c-fos/metabolism , Social Isolation , Sucking Behavior/physiology , Temperature , Vocalization, Animal/physiology , gamma-Aminobutyric Acid/metabolism
4.
Immunity ; 57(9): 2202-2215.e6, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39043184

ABSTRACT

The memory CD8+ T cell pool contains phenotypically and transcriptionally heterogeneous subsets with specialized functions and recirculation patterns. Here, we examined the epigenetic landscape of CD8+ T cells isolated from seven non-lymphoid organs across four distinct infection models, alongside their circulating T cell counterparts. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we found that tissue-resident memory T (TRM) cells and circulating memory T (TCIRC) cells develop along distinct epigenetic trajectories. We identified organ-specific transcriptional regulators of TRM cell development, including FOSB, FOS, FOSL1, and BACH2, and defined an epigenetic signature common to TRM cells across organs. Finally, we found that although terminal TEX cells share accessible regulatory elements with TRM cells, they are defined by TEX-specific epigenetic features absent from TRM cells. Together, this comprehensive data resource shows that TRM cell development is accompanied by dynamic transcriptome alterations and chromatin accessibility changes that direct tissue-adapted and functionally distinct T cell states.


Subject(s)
Basic-Leucine Zipper Transcription Factors , CD8-Positive T-Lymphocytes , Cell Differentiation , Epigenesis, Genetic , Epigenomics , Immunologic Memory , Memory T Cells , Animals , Cell Differentiation/immunology , Cell Differentiation/genetics , Mice , Memory T Cells/immunology , Memory T Cells/metabolism , Immunologic Memory/genetics , Immunologic Memory/immunology , CD8-Positive T-Lymphocytes/immunology , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Epigenomics/methods , Mice, Inbred C57BL , Organ Specificity/genetics , Organ Specificity/immunology , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Transcriptome , Chromatin/metabolism
5.
Cell ; 174(1): 59-71.e14, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29804835

ABSTRACT

Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments.


Subject(s)
Long-Term Potentiation , Memory , Neurons/metabolism , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Calcium/metabolism , Clozapine/analogs & derivatives , Clozapine/pharmacology , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Hippocampus/cytology , Long-Term Potentiation/drug effects , Male , Memory/drug effects , Mice , Mice, Inbred C57BL , N-Methylaspartate/pharmacology , Neurons/drug effects , Optogenetics , Patch-Clamp Techniques , Proto-Oncogene Proteins c-fos/metabolism , Stress, Psychological , Synaptic Potentials/drug effects
6.
Cell ; 168(3): 442-459.e20, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28111071

ABSTRACT

Oct4, Sox2, Klf4, and cMyc (OSKM) reprogram somatic cells to pluripotency. To gain a mechanistic understanding of their function, we mapped OSKM-binding, stage-specific transcription factors (TFs), and chromatin states in discrete reprogramming stages and performed loss- and gain-of-function experiments. We found that OSK predominantly bind active somatic enhancers early in reprogramming and immediately initiate their inactivation genome-wide by inducing the redistribution of somatic TFs away from somatic enhancers to sites elsewhere engaged by OSK, recruiting Hdac1, and repressing the somatic TF Fra1. Pluripotency enhancer selection is a stepwise process that also begins early in reprogramming through collaborative binding of OSK at sites with high OSK-motif density. Most pluripotency enhancers are selected later in the process and require OS and other pluripotency TFs. Somatic and pluripotency TFs modulate reprogramming efficiency when overexpressed by altering OSK targeting, somatic-enhancer inactivation, and pluripotency enhancer selection. Together, our data indicate that collaborative interactions among OSK and with stage-specific TFs direct both somatic-enhancer inactivation and pluripotency-enhancer selection to drive reprogramming.


Subject(s)
Cellular Reprogramming , Transcription Factors/metabolism , Animals , Chromatin/metabolism , Fibroblasts/metabolism , Histone Code , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Mice , Octamer Transcription Factor-3/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Regulatory Elements, Transcriptional , SOXB1 Transcription Factors/metabolism , Silencer Elements, Transcriptional
7.
Mol Cell ; 81(19): 4041-4058.e15, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34624217

ABSTRACT

Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.


Subject(s)
Breast Neoplasms/metabolism , Cell Proliferation , Immediate-Early Proteins/metabolism , Mitosis , Neoplastic Cells, Circulating/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , 3' Untranslated Regions , Animals , Antineoplastic Agents/pharmacology , Binding Sites , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Chromatin Assembly and Disassembly , Female , Gene Expression Regulation, Neoplastic , Genomic Instability , HEK293 Cells , Humans , Immediate-Early Proteins/genetics , Indoles/pharmacology , MCF-7 Cells , Mice, Inbred NOD , Mice, SCID , Mitosis/drug effects , Neoplastic Cells, Circulating/drug effects , Neoplastic Cells, Circulating/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Phenylacetates/pharmacology , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , R-Loop Structures , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Signal Transduction , Transcription Elongation, Genetic , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Nature ; 609(7926): 327-334, 2022 09.
Article in English | MEDLINE | ID: mdl-36002569

ABSTRACT

In the hippocampus, spatial maps are formed by place cells while contextual memories are thought to be encoded as engrams1-6. Engrams are typically identified by expression of the immediate early gene Fos, but little is known about the neural activity patterns that drive, and are shaped by, Fos expression in behaving animals7-10. Thus, it is unclear whether Fos-expressing hippocampal neurons also encode spatial maps and whether Fos expression correlates with and affects specific features of the place code11. Here we measured the activity of CA1 neurons with calcium imaging while monitoring Fos induction in mice performing a hippocampus-dependent spatial learning task in virtual reality. We find that neurons with high Fos induction form ensembles of cells with highly correlated activity, exhibit reliable place fields that evenly tile the environment and have more stable tuning across days than nearby non-Fos-induced cells. Comparing neighbouring cells with and without Fos function using a sparse genetic loss-of-function approach, we find that neurons with disrupted Fos function have less reliable activity, decreased spatial selectivity and lower across-day stability. Our results demonstrate that Fos-induced cells contribute to hippocampal place codes by encoding accurate, stable and spatially uniform maps and that Fos itself has a causal role in shaping these place codes. Fos ensembles may therefore link two key aspects of hippocampal function: engrams for contextual memories and place codes that underlie cognitive maps.


Subject(s)
Hippocampus , Proto-Oncogene Proteins c-fos , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Calcium/metabolism , Hippocampus/cytology , Hippocampus/physiology , Mice , Neurons/physiology , Place Cells/physiology , Proto-Oncogene Proteins c-fos/metabolism
9.
Nature ; 609(7928): 761-771, 2022 09.
Article in English | MEDLINE | ID: mdl-36071158

ABSTRACT

Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2-4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS-AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1+ neurons in the NTS-AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection.


Subject(s)
Brain Stem , Illness Behavior , Neurons , Animals , Anorexia/complications , Area Postrema/cytology , Area Postrema/metabolism , Brain Stem/cytology , Brain Stem/drug effects , Brain Stem/physiology , Illness Behavior/drug effects , Lethargy/complications , Lipopolysaccharides/pharmacology , Mice , Neurons/drug effects , Neurons/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Solitary Nucleus/cytology , Solitary Nucleus/metabolism
10.
Mol Cell ; 79(1): 68-83.e7, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32533918

ABSTRACT

BAX is a pro-apoptotic protein that transforms from a cytosolic monomer into a toxic oligomer that permeabilizes the mitochondrial outer membrane. How BAX monomers assemble into a higher-order conformation, and the structural determinants essential to membrane permeabilization, remain a mechanistic mystery. A key hurdle has been the inability to generate a homogeneous BAX oligomer (BAXO) for analysis. Here, we report the production and characterization of a full-length BAXO that recapitulates physiologic BAX activation. Multidisciplinary studies revealed striking conformational consequences of oligomerization and insight into the macromolecular structure of oligomeric BAX. Importantly, BAXO enabled the assignment of specific roles to particular residues and α helices that mediate individual steps of the BAX activation pathway, including unexpected functionalities of BAX α6 and α9 in driving membrane disruption. Our results provide the first glimpse of a full-length and functional BAXO, revealing structural requirements for the elusive execution phase of mitochondrial apoptosis.


Subject(s)
Apoptosis , Mitochondria/pathology , Mitochondrial Membranes/metabolism , Protein Multimerization , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/metabolism , Animals , Biological Transport , Cell Membrane Permeability , Cytosol/metabolism , Humans , Mice , Mitochondria/metabolism , Models, Molecular , Protein Conformation , Proto-Oncogene Proteins c-fos
11.
Nat Methods ; 21(7): 1306-1315, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38649742

ABSTRACT

Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease.


Subject(s)
Brain , Deep Learning , Virtual Reality , Animals , Brain/diagnostic imaging , Mice , Neurons , Software , Image Processing, Computer-Assisted/methods , Proto-Oncogene Proteins c-fos/metabolism , Humans
12.
PLoS Biol ; 22(7): e3002646, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39012916

ABSTRACT

Autism spectrum disorders (ASDs) are considered neural dysconnectivity syndromes. To better understand ASD and uncover potential treatments, it is imperative to know and dissect the connectivity deficits under conditions of autism. Here, we apply a whole-brain immunostaining and quantification platform to demonstrate impaired structural and functional connectivity and aberrant whole-brain synchronization in a Tbr1+/- autism mouse model. We express a channelrhodopsin variant oChIEF fused with Citrine at the basolateral amygdala (BLA) to outline the axonal projections of BLA neurons. By activating the BLA under blue light theta-burst stimulation (TBS), we then evaluate the effect of BLA activation on C-FOS expression at a whole brain level to represent neural activity. We show that Tbr1 haploinsufficiency almost completely disrupts contralateral BLA axonal projections and results in mistargeting in both ipsilateral and contralateral hemispheres, thereby globally altering BLA functional connectivity. Based on correlated C-FOS expression among brain regions, we further show that Tbr1 deficiency severely disrupts whole-brain synchronization in the absence of salient stimulation. Tbr1+/- and wild-type (WT) mice exhibit opposing responses to TBS-induced amygdalar activation, reducing synchronization in WT mice but enhancing it in Tbr1+/- mice. Whole-brain modular organization and intermodule connectivity are also affected by Tbr1 deficiency and amygdalar activation. Following BLA activation by TBS, the synchronizations of the whole brain and the default mode network, a specific subnetwork highly relevant to ASD, are enhanced in Tbr1+/- mice, implying a potential ameliorating effect of amygdalar stimulation on brain function. Indeed, TBS-mediated BLA activation increases nose-to-nose social interactions of Tbr1+/- mice, strengthening evidence for the role of amygdalar connectivity in social behaviors. Our high-resolution analytical platform reveals the inter- and intrahemispheric connectopathies arising from ASD. Our study emphasizes the defective synchronization at a whole-brain scale caused by Tbr1 deficiency and implies a potential beneficial effect of deep brain stimulation at the amygdala for TBR1-linked autism.


Subject(s)
Autism Spectrum Disorder , Basolateral Nuclear Complex , Deep Brain Stimulation , Disease Models, Animal , Social Behavior , T-Box Domain Proteins , Animals , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/genetics , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/physiopathology , Mice , Deep Brain Stimulation/methods , Male , Amygdala/metabolism , Amygdala/physiopathology , Brain/metabolism , Brain/physiopathology , Mice, Inbred C57BL , Neural Pathways/physiopathology , Neural Pathways/metabolism , Proto-Oncogene Proteins c-fos/metabolism
13.
Nature ; 590(7844): 115-121, 2021 02.
Article in English | MEDLINE | ID: mdl-33299180

ABSTRACT

Behavioural experiences activate the FOS transcription factor in sparse populations of neurons that are critical for encoding and recalling specific events1-3. However, there is limited understanding of the mechanisms by which experience drives circuit reorganization to establish a network of Fos-activated cells. It is also not known whether FOS is required in this process beyond serving as a marker of recent neural activity and, if so, which of its many gene targets underlie circuit reorganization. Here we demonstrate that when mice engage in spatial exploration of novel environments, perisomatic inhibition of Fos-activated hippocampal CA1 pyramidal neurons by parvalbumin-expressing interneurons is enhanced, whereas perisomatic inhibition by cholecystokinin-expressing interneurons is weakened. This bidirectional modulation of inhibition is abolished when the function of the FOS transcription factor complex is disrupted. Single-cell RNA-sequencing, ribosome-associated mRNA profiling and chromatin analyses, combined with electrophysiology, reveal that FOS activates the transcription of Scg2, a gene that encodes multiple distinct neuropeptides, to coordinate these changes in inhibition. As parvalbumin- and cholecystokinin-expressing interneurons mediate distinct features of pyramidal cell activity4-6, the SCG2-dependent reorganization of inhibitory synaptic input might be predicted to affect network function in vivo. Consistent with this prediction, hippocampal gamma rhythms and pyramidal cell coupling to theta phase are significantly altered in the absence of Scg2. These findings reveal an instructive role for FOS and SCG2 in establishing a network of Fos-activated neurons via the rewiring of local inhibition to form a selectively modulated state. The opposing plasticity mechanisms acting on distinct inhibitory pathways may support the consolidation of memories over time.


Subject(s)
Nerve Net/cytology , Nerve Net/physiology , Neural Inhibition , Neuronal Plasticity/physiology , Proto-Oncogene Proteins c-fos/metabolism , Animals , CA1 Region, Hippocampal/metabolism , Cholecystokinin/metabolism , Exploratory Behavior/physiology , Female , Gamma Rhythm , Interneurons/metabolism , Male , Memory Consolidation , Mice , Parvalbumins/metabolism , Pyramidal Cells/metabolism , Secretogranin II/genetics , Secretogranin II/metabolism , Spatial Navigation/physiology , Theta Rhythm
14.
Proc Natl Acad Sci U S A ; 121(18): e2404188121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657045

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.


Subject(s)
Carcinoma, Hepatocellular , Fos-Related Antigen-2 , Liver Neoplasms , Proto-Oncogene Proteins c-fos , Proto-Oncogene Proteins c-jun , Proto-Oncogene Proteins c-myc , Transcription Factor AP-1 , Animals , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Mice , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-jun/metabolism , Fos-Related Antigen-2/metabolism , Fos-Related Antigen-2/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Hepatocytes/metabolism , Protein Multimerization , Gene Expression Regulation, Neoplastic , Mice, Transgenic
15.
EMBO J ; 41(15): e110721, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35730718

ABSTRACT

ΔfosB is an alternatively spliced product of the FosB gene that is essential for dopamine-induced reward pathways and that acts as a master switch for addiction. However, the molecular mechanisms of its generation and regulation by dopamine signaling are unknown. Here, we report that dopamine D1 receptor signaling synergizes with the activin/ALK4/Smad3 pathway to potentiate the generation of ΔFosB mRNA in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) via activation of the RNA-binding protein PCBP1, a regulator of mRNA splicing. Concurrent activation of PCBP1 and Smad3 by D1 and ALK4 signaling induced their interaction, nuclear translocation, and binding to sequences in exon-4 and intron-4 of FosB mRNA. Ablation of either ALK4 or PCBP1 in MSNs impaired ΔFosB mRNA induction and nuclear translocation of ΔFosB protein in response to repeated co-stimulation of D1 and ALK4 receptors. Finally, ALK4 is required in NAc MSNs of adult mice for behavioral sensitization to cocaine. These findings uncover an unexpected mechanism for ΔFosB generation and drug-induced sensitization through convergent dopamine and ALK4 signaling.


Subject(s)
Cocaine , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Activin Receptors, Type I/metabolism , Alternative Splicing , Animals , Cocaine/metabolism , Cocaine/pharmacology , Dopamine/metabolism , Mice , Mice, Inbred C57BL , Nucleus Accumbens , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/metabolism , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism
16.
Cell ; 145(4): 584-95, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21565615

ABSTRACT

Microglia and astrocytes play essential roles in the maintenance of homeostasis within the central nervous system, but mechanisms that control the magnitude and duration of responses to infection and injury remain poorly understood. Here, we provide evidence that 5-androsten-3ß,17ß-diol (ADIOL) functions as a selective modulator of estrogen receptor (ER)ß to suppress inflammatory responses of microglia and astrocytes. ADIOL and a subset of synthetic ERß-specific ligands, but not 17ß-estradiol, mediate recruitment of CtBP corepressor complexes to AP-1-dependent promoters, thereby repressing genes that amplify inflammatory responses and activate Th17 T cells. Reduction of ADIOL or ERß expression results in exaggerated inflammatory responses to TLR4 agonists. Conversely, the administration of ADIOL or synthetic ERß-specific ligands that promote CtBP recruitment prevents experimental autoimmune encephalomyelitis in an ERß-dependent manner. These findings provide evidence for an ADIOL/ERß/CtBP-transrepression pathway that regulates inflammatory responses in microglia and can be targeted by selective ERß modulators.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Estrogen Receptor beta/metabolism , Inflammation/metabolism , Microglia/metabolism , Signal Transduction , 17-Hydroxysteroid Dehydrogenases/metabolism , Alcohol Oxidoreductases/metabolism , Androstenediol/metabolism , Animals , Astrocytes/metabolism , Cells, Cultured , DNA-Binding Proteins/metabolism , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Humans , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/metabolism , Proto-Oncogene Proteins c-fos/metabolism
17.
Nature ; 583(7816): 441-446, 2020 07.
Article in English | MEDLINE | ID: mdl-32641826

ABSTRACT

Connections between the gut and brain monitor the intestinal tissue and its microbial and dietary content1, regulating both physiological intestinal functions such as nutrient absorption and motility2,3, and brain-wired feeding behaviour2. It is therefore plausible that circuits exist to detect gut microorganisms and relay this information to areas of the central nervous system that, in turn, regulate gut physiology4. Here we characterize the influence of the microbiota on enteric-associated neurons by combining gnotobiotic mouse models with transcriptomics, circuit-tracing methods and functional manipulations. We find that the gut microbiome modulates gut-extrinsic sympathetic neurons: microbiota depletion leads to increased expression of the neuronal transcription factor cFos, and colonization of germ-free mice with bacteria that produce short-chain fatty acids suppresses cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling and anterograde tracing identify a subset of distal intestine-projecting vagal neurons that are positioned to have an afferent role in microbiota-mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identifies brainstem sensory nuclei that are activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota-dependent control of gut-extrinsic sympathetic activation through a gut-brain circuit.


Subject(s)
Gastrointestinal Microbiome/physiology , Intestines/innervation , Neurons/physiology , Sympathetic Nervous System/cytology , Sympathetic Nervous System/physiology , Animals , Dysbiosis/physiopathology , Female , Ganglia, Sympathetic/cytology , Ganglia, Sympathetic/physiology , Gastrointestinal Motility , Germ-Free Life , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Models, Animal , Neural Pathways/physiology , Proto-Oncogene Proteins c-fos/metabolism , Transcriptome
18.
Mol Cell ; 71(1): 169-177.e6, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29979964

ABSTRACT

Activity-dependent changes in neuronal function require coordinated regulation of the protein synthesis and protein degradation machinery to maintain protein homeostasis, critical for proper neuronal function. However, the biochemical evidence for this balance and coordination is largely lacking. Leveraging our recent discovery of a neuronal-specific 20S membrane proteasome complex (NMP), we began exploring how neuronal activity regulates its function. Here, we found that the NMP degrades exclusively a large fraction of ribosome-associated nascent polypeptides that are being newly synthesized during neuronal stimulation. Using deep-coverage and global mass spectrometry, we identified the nascent protein substrates of the NMP, which included products encoding immediate-early genes, such as c-Fos and Npas4. Intriguingly, we found that turnover of nascent polypeptides and not full-length proteins through the NMP occurred independent of canonical ubiquitylation pathways. We propose that these findings generally define a neuronal activity-induced protein homeostasis program of coordinated protein synthesis and degradation through the NMP.


Subject(s)
Cell Membrane/enzymology , Neurons/enzymology , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Mice , Proteasome Endopeptidase Complex/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism
19.
Proc Natl Acad Sci U S A ; 120(49): e2309047120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011562

ABSTRACT

PARP7 was reported to promote tumor growth in a cell-autonomous manner and by repressing the antitumor immune response. Nevertheless, the molecular mechanism of how PARP7-mediated ADP-ribosylation exerts these effects in cancer cells remains elusive. Here, we identified PARP7 as a nuclear and cysteine-specific mono-ADP-ribosyltransferase that modifies targets critical for regulating transcription, including the AP-1 transcription factor FRA1. Loss of FRA1 ADP-ribosylation via PARP7 inhibition by RBN-2397 or mutation of the ADP-ribosylation site C97 increased FRA1 degradation by the proteasome via PSMC3. The reduction in FRA1 protein levels promoted IRF1- and IRF3-dependent cytokine as well as proapoptotic gene expression, culminating in CASP8-mediated apoptosis. Furthermore, high PARP7 expression was indicative of the PARP7 inhibitor response in FRA1-positive lung and breast cancer cells. Collectively, our findings highlight the connected roles of PARP7 and FRA1 and emphasize the clinical potential of PARP7 inhibitors for FRA1-driven cancers.


Subject(s)
ADP-Ribosylation , Neoplasms , Nucleoside Transport Proteins , Proto-Oncogene Proteins c-fos , Humans , ADP Ribose Transferases/metabolism , Apoptosis , Cell Transformation, Neoplastic , Gene Expression Regulation , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-3/metabolism , Neoplasms/genetics , Nucleoside Transport Proteins/metabolism , Proto-Oncogene Proteins c-fos/metabolism
20.
J Neurosci ; 44(34)2024 08 21.
Article in English | MEDLINE | ID: mdl-39038954

ABSTRACT

Stress impairs fertility, at least in part, via inhibition of gonadotropin secretion. Luteinizing hormone (LH) is an important gonadotropin that is released in a pulsatile pattern in males and in females throughout the majority of the ovarian cycle. Several models of stress, including acute metabolic stress, suppress LH pulses via inhibition of neurons in the arcuate nucleus of the hypothalamus that coexpress kisspeptin, neurokinin B, and dynorphin (termed KNDy cells) which form the pulse generator. The mechanism for inhibition of KNDy neurons during stress, however, remains a significant outstanding question. Here, we investigated a population of catecholamine neurons in the nucleus of the solitary tract (NTS), marked by expression of the enzyme dopamine beta-hydroxylase (DBH), in female mice. First, we found that a subpopulation of DBH neurons in the NTS is activated (express c-Fos) during metabolic stress. Then, using chemogenetics, we determined that activation of these cells is sufficient to suppress LH pulses, augment corticosterone secretion, and induce sickness-like behavior. In subsequent studies, we identified evidence for suppression of KNDy cells (rather than downstream signaling pathways) and determined that the suppression of LH pulses was not dependent on the acute rise in glucocorticoids. Together these data support the hypothesis that DBH cells in the NTS are important for regulation of neuroendocrine and behavioral responses to stress.


Subject(s)
Luteinizing Hormone , Solitary Nucleus , Animals , Female , Luteinizing Hormone/metabolism , Mice , Solitary Nucleus/metabolism , Dopamine beta-Hydroxylase/metabolism , Mice, Inbred C57BL , Adrenergic Neurons/metabolism , Adrenergic Neurons/physiology , Corticosterone/metabolism , Norepinephrine/metabolism , Mice, Transgenic , Stress, Physiological/physiology , Proto-Oncogene Proteins c-fos/metabolism , Kisspeptins/metabolism , Neurokinin B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL