Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Environ Toxicol ; 39(4): 2064-2076, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38095131

ABSTRACT

OBJECTIVE: We aimed to determine the role of Troponin T1 (TNNT1) in paclitaxel (PTX) resistance and tumor progression in breast cancer (BC). METHODS: Differentially expressed genes were obtained from the GSE4298 and GSE90564 datasets. Hub genes were isolated from protein-protein interaction networks and further validated by real-time quantitative polymerase chain reaction. The effect of TNNT1 on PTX resistance was determined using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, transwell, flow cytometry assays, and subcutaneous xenografted tumor model. Western blotting was used to detect proteins associated with PTX resistance, apoptosis, migration, invasion, and other key pathways. Hematoxylin-eosin and immunohistochemical staining were used to evaluate the role of TNNT1 in tumors. RESULTS: After comprehensive bioinformatic analysis, we identified CCND1, IGF1, SFN, INHBA, TNNT1, and TNFSF11 as hub genes for PTX resistance in BC. TNNT1 plays a key role in BC and is upregulated in PTX-resistant BC cells. TNNT1 silencing inhibited PTX resistance, proliferation, migration, and invasion while promoting apoptosis of PTX-resistant BC cells. Tumor xenograft experiments revealed that TNNT1 silencing suppresses PTX resistance and tumor development in vivo. In addition, TNNT1 silencing inhibited the expression of proteins in the rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma1 (RAF1) pathway in vivo. Treatment with a RAS/RAF1 pathway activator reversed the inhibitory effect of TNNT1 silencing on proliferation, migration, and invasion while promoting apoptosis of PTX resistance BC cells. CONCLUSION: Silencing of TNNT1 suppresses PTX resistance and BC progression by inhibiting the RAS/RAF1 pathway, which is a promising biomarker and therapeutic target for drug resistance in BC.


Subject(s)
Breast Neoplasms , Fibrosarcoma , MicroRNAs , Humans , Female , Paclitaxel/pharmacology , Breast Neoplasms/pathology , Troponin T/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Proto-Oncogene Proteins p21(ras)/therapeutic use , Drug Resistance, Neoplasm/genetics , Apoptosis/genetics , Cell Line, Tumor , Fibrosarcoma/genetics , Fibrosarcoma/drug therapy , Cell Proliferation , MicroRNAs/genetics
2.
Mar Drugs ; 21(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37233482

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the main aggressive types of cancer, characterized by late prognosis and drug resistance. Among the main factors sustaining PDAC progression, the alteration of cell metabolism has emerged to have a key role in PDAC cell proliferation, invasion, and resistance to standard chemotherapeutic agents. Taking into account all these factors and the urgency in evaluating novel options to treat PDAC, in the present work we reported the synthesis of a new series of indolyl-7-azaindolyl triazine compounds inspired by marine bis-indolyl alkaloids. We first assessed the ability of the new triazine compounds to inhibit the enzymatic activity of pyruvate dehydrogenase kinases (PDKs). The results showed that most of derivatives totally inhibit PDK1 and PDK4. Molecular docking analysis was executed to predict the possible binding mode of these derivatives using ligand-based homology modeling technique. Evaluation of the capability of new triazines to inhibit the cell growth in 2D and 3D KRAS-wild-type (BxPC-3) and KRAS-mutant (PSN-1) PDAC cell line, was carried out. The results showed the capacity of the new derivatives to reduce cell growth with a major selectivity against KRAS-mutant PDAC PSN-1 on both cell models. These data demonstrated that the new triazine derivatives target PDK1 enzymatic activity and exhibit cytotoxic effects on 2D and 3D PDAC cell models, thus encouraging further structure manipulation for analogs development against PDAC.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Molecular Docking Simulation , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Proto-Oncogene Proteins p21(ras)/therapeutic use , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/pathology , Triazines/pharmacology , Cell Proliferation , Adenocarcinoma/metabolism , Pancreatic Neoplasms
3.
Bioorg Med Chem ; 71: 116949, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35926326

ABSTRACT

RAS protein plays a key role in cellular proliferation and differentiation. RAS gene mutation is a known driver of oncogenic alternation in human cancer. RAS inhibition is an effective therapeutic treatment for solid tumors, but RAS protein has been classified as an undruggable target. Recent reports have demonstrated that a covalent binder to KRAS protein at a mutated cysteine residue (G12C) is effective for the treatment of solid tumors. Here, we report a series of 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one derivatives as potent covalent inhibitors against KRAS G12C identified throughout structural optimization of an acryloyl amine moiety to improve in vitro inhibitory activity. From an X-ray complex structural analysis, the 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one moiety binds in the switch-II pocket of KRAS G12C. Further optimization of the lead compound (5c) led to the successful identification of 1-[7-[6-chloro-8-fluoro-7-(5-methyl-1H-indazol-4-yl)-2-[(1-methylpiperidin-4-yl)amino]quinazolin-4-yl]-2,7-diazaspiro[3.5]nonan-2-yl]prop-2-en-1-one (7b), a potent compound with high metabolic stabilities in human and mouse liver microsomes. Compound 7b showed a dose-dependent antitumor effect on subcutaneous administration in an NCI-H1373 xenograft mouse model.


Subject(s)
Alkanes/pharmacology , Neoplasms , Proto-Oncogene Proteins p21(ras) , Animals , Cell Proliferation , Humans , Mice , Mutation , Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , ras Proteins/genetics , ras Proteins/metabolism
4.
Mar Drugs ; 20(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36005485

ABSTRACT

Overexpressed EGFR and mutant K-Ras play vital roles in therapeutic resistance in colorectal cancer patients. To search for an effective therapeutic protocol is an urgent task. A secondary metabolite in the sponge Hippospongia sp., Heteronemin, has been shown to induce anti-proliferation in several types of cancers. A thyroxine-deaminated analogue, tetrac, binds to integrin αvß3 to induce anti-proliferation in different cancers. Heteronemin- and in combination with tetrac-induced antiproliferative effects were evaluated. Tetrac enhanced heteronemin-induced anti-proliferation in HT-29 cells (KRAS WT CRC) and HCT-116 cells (KRAS MT CRC). Heteronemin and tetrac arrested cell cycle in different phases. Combined treatment increased the cell accumulation in sub-G1 and S phases. The combined treatment also induced the inactivation of EGFR signaling and downregulated the phosphorylated ERK1/2 protein in both cell lines. Heteronemin and the combination showed the downregulation of the phosphorylated and total PI3K protein in HT-29 cells (KRAS WT CRC). Results by NanoString technology and RT-qPCR revealed that heteronemin and combined treatment suppressed the expression of EGFR and downstream genes in HCT-116 cells (KRAS MT CRC). Heteronemin or combined treatment downregulated genes associated with cancer progression and decreased cell motility. Heteronemin or the combined treatment suppressed PD-L1 expression in both cancer cell lines. However, only tetrac and the combined treatment inhibited PD-L1 protein accumulation in HT-29 cells (KRAS WT CRC) and HCT-116 cells (KRAS MT CRC), respectively. In summary, heteronemin induced anti-proliferation in colorectal cancer cells by blocking the EGFR-dependent signal transduction pathway. The combined treatment further enhanced the anti-proliferative effect via PD-L1 suppression. It can be an alternative strategy to suppress mutant KRAS resistance for anti-EGFR therapy.


Subject(s)
Colorectal Neoplasms , Thyroxine , B7-H1 Antigen/metabolism , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/metabolism , ErbB Receptors/metabolism , Humans , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Signal Transduction , Terpenes , Thyroxine/analogs & derivatives
6.
Aquat Toxicol ; 265: 106755, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37944326

ABSTRACT

Microplastic pollution, especially microfibers (MFs), presents a critical global environmental challenge in natural water bodies. Yet, research on the toxic effects of MFs, particularly during early fish development, is limited. This study aimed to investigate MFs' toxic effects and mechanisms on early-stage zebrafish. Zebrafish embryos were exposed to varying concentrations of polyacrylonitrile microfibers (PanMfs) for 7 days. Results revealed PanMfs adhering to the embryos' surface, with higher concentrations accelerating heart rate and causing pericardial edema in post-hatching larvae. Larvae ingested PanMfs, leading to their accumulation in the intestines and increased levels of reactive oxygen species (ROS) and mitochondrial quantity. Notably, lipid metabolism and calcium ion related signaling pathways underwent significant changes. Low concentration MFs affected glycometabolism pathways, with potential roles for aldob and cacng1a, exhibiting pronounced increases in ROS levels. High concentration of MFs had the most profound impact on signal transduction-related pathways, and possibly triggering micromitophagy and apoptosis in zebrafish intestinal epithelial cells through the Kras/MAPK signaling pathway, with potential roles for kras and mapk9. Although ROS increase was somewhat alleviated, it resulted in decreased survival rates and restricted growth in high concentration of MFs group. These findings highlight the significant threat of MFs to the early survival of fish. MFs pollution prevention and control hold great significance in the conservation of fishery resources.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Zebrafish/metabolism , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Embryo, Nonmammalian , Plastics , Water Pollutants, Chemical/toxicity , Larva
7.
Curr Opin Pharmacol ; 68: 102343, 2023 02.
Article in English | MEDLINE | ID: mdl-36638742

ABSTRACT

About half of colorectal cancers harbor mutations in the KRAS gene. The presence of these mutations is associated with worse prognosis and, until now, the absence of matched targeted therapy options. In this review, we discuss clinical efforts to target KRAS in colorectal cancer from studies of downstream inhibitors to recent direct inhibitors of KRASG12C and other KRAS mutants. Early clinical trial data, however, suggest more limited activity for these novel inhibitors in colorectal cancer compared to other cancer types, and we discuss the role of receptor tyrosine kinase signaling and parallel signaling pathways in modulating response to these inhibitors. We also review the effect of KRAS mutations on the tumor-immune microenvironment and efforts to induce an immune response against these tumors.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/pharmacology , Proto-Oncogene Proteins p21(ras)/therapeutic use , Signal Transduction , Mutation , Prognosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Tumor Microenvironment
8.
ACS Appl Mater Interfaces ; 15(8): 10398-10413, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36795046

ABSTRACT

The Kirsten rat sarcoma viral oncogene (KRAS) is one of the most well-known proto-oncogenes, frequently mutated in pancreatic and colorectal cancers, among others. We hypothesized that the intracellular delivery of anti-KRAS antibodies (KRAS-Ab) with biodegradable polymeric micelles (PM) would block the overactivation of the KRAS-associated cascades and revert the effect of its mutation. To this end, PM-containing KRAS-Ab (PM-KRAS) were obtained using Pluronic F127. The feasibility of using PM for antibody encapsulation as well as the conformational change of the polymer and its intermolecular interactions with the antibodies was studied, for the first time, using in silico modeling. In vitro, encapsulation of KRAS-Ab allowed their intracellular delivery in different pancreatic and colorectal cancer cell lines. Interestingly, PM-KRAS promoted a high proliferation impairment in regular cultures of KRAS-mutated HCT116 and MIA PaCa-2 cells, whereas the effect was neglectable in non-mutated or KRAS-independent HCT-8 and PANC-1 cancer cells, respectively. Additionally, PM-KRAS induced a remarkable inhibition of the colony formation ability in low-attachment conditions in KRAS-mutated cells. In vivo, when compared with the vehicle, the intravenous administration of PM-KRAS significantly reduced tumor volume growth in HCT116 subcutaneous tumor-bearing mice. Analysis of the KRAS-mediated cascade in cell cultures and tumor samples showed that the effect of PM-KRAS was mediated by a significant reduction of the ERK phosphorylation and a decrease in expression in the stemness-related genes. Altogether, these results unprecedently demonstrate that the delivery of KRAS-Ab mediated by PM can safely and effectively reduce the tumorigenicity and the stemness properties of KRAS-dependent cells, thus bringing up new possibilities to reach undruggable intracellular targets.


Subject(s)
Colorectal Neoplasms , Neoplasms , Animals , Mice , Carcinogenesis , Cell Proliferation , Colorectal Neoplasms/pathology , Micelles , Mutation , Polymers/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Intracellular Space
9.
Med Chem ; 19(9): 897-905, 2023.
Article in English | MEDLINE | ID: mdl-37046198

ABSTRACT

BACKGROUND: KRAS and p53 are two of the most common genetic alterations associated with colorectal cancer. New drug development targeting these mutated genes in colorectal cancer may serve as a potential treatment avenue to the current regimen. OBJECTIVE: The objective of the present study was to investigate the effects of alkoxy chain length and 1-hydroxy group on anticolorectal cancer activity of a series of 2-bromoalkoxyanthraquinones and corroborate it with their in silico properties. METHODS: In vitro anticancer activity of 2-bromoalkoxyanthraquinones was evaluated against HCT116, HT29, and CCD841 CoN cell lines, respectively. Molecular docking was performed to understand the interactions of these compounds with putative p53 and KRAS targets (7B4N and 6P0Z). RESULTS: 2-Bromoalkoxyanthraquinones with the 1-hydroxy group were proven to be more active than the corresponding counterparts in anticancer activity. Among the tested compounds, compound 6b with a C3 alkoxy chain exhibited the most promising antiproliferation activity against HCT116 cells (IC50 = 3.83 ± 0.05 µM) and showed high selectivity for HCT116 over CCD841 CoN cells (SI = 45.47). The molecular docking reveals additional hydrogen bonds between the 1-hydroxy group of 6b and the proteins. Compound 6b has adequate lipophilicity (cLogP = 3.27) and ligand efficiency metrics (LE = 0.34; LLE = 2.15) close to the proposed acceptable range for an initial hit. CONCLUSION: This work highlights the potential of the 1-hydroxy group and short alkoxy chain on anticolorectal cancer activity of 2-bromoalkoxyanthraquinones. Further optimisation may be warranted for compound 6b as a therapeutic agent against colorectal cancer.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Structure-Activity Relationship , Molecular Docking Simulation , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/pharmacology , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Cell Proliferation , HCT116 Cells , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Cell Line, Tumor , Molecular Structure
10.
BMC Complement Med Ther ; 23(1): 365, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845669

ABSTRACT

Non-small-cell lung carcinoma (NSCLC) is a type of epithelial lung cancer accounting for about 85% of all lung cancers. In our research, a novel lupene derivative namely acetoxy-lup-5(6), 20(29)-diene (ALUP), as well as two known triterpenes; lupeol (LUP) and betulinic acid (BA) were isolated through the chromatographic purification of the 95% ethanolic extract of Thymus capitatus. Identification of the compounds was carried out by physicochemical properties as well as spectral 1D and 2D NMR analysis. The anti-cancer activity of the three triterpenes was assessed on non-small cell lung cancer cell line; A549 using MTT assay and cell cycle analysis using annexin V/propidium iodide. The molecular mechanism underlying anti-apoptotic effects was determined by analyzing Let-7 miRNA and miRNA-21 expression, the mRNA gene expression level of Bax, CASP-8, CD95, Bcl2, KRAS, VEGF, Cyclin D1 using qRT-PCR. Our results revealed that the three isolated compounds ALUP, LUP, and BA caused cell cycle arrest at the G2/M phase with an increase in the apoptosis which may be attributed to their significant effect on raising Bax, CASP-8, and CD95 and reducing the mRNA expression levels of Bcl-2, KRAS, VEGF, and Cyclin D1 compared to control cells. RT-PCR results showed that the ALUP, LUP, and BA significantly downregulated miRNA-21 expression. Meanwhile, the three compounds caused significant overexpression of Let-7 miRNA. This is the first report on the anti-cancer activity of acetoxy-lup-5(6), 20(29)-diene (ALUP) in reducing the proliferation and differentiation of the A549 cell line through inducing apoptosis. Finally, by targeting the Let-7 miRNA/Cyclin D1/VEGF cascade, acetoxy-lup-5(6), 20(29)-diene could be a potential therapeutic agent for lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Triterpenes , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , A549 Cells , Vascular Endothelial Growth Factor A/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin D1/pharmacology , bcl-2-Associated X Protein/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Proto-Oncogene Proteins p21(ras)/therapeutic use , Cell Line, Tumor , Apoptosis , MicroRNAs/genetics , Triterpenes/pharmacology , Triterpenes/therapeutic use , RNA, Messenger
11.
Transl Res ; 252: 79-90, 2023 02.
Article in English | MEDLINE | ID: mdl-35948200

ABSTRACT

KRAS mutation is a common driver in solid tumors, and KRAS-mutated tumors are relatively resistant to radiotherapy. Therefore, we investigated the combined effect of radiation and KRAS-MEK inhibitors (AMG510 and trametinib) in KRAS-mutated tumors. The expression of programmed death-ligand 1 (PD-L1), major histocompatibility complex (MHC) class I molecules, and cytokines in KRAS-mutated cell lines was assessed using flow cytometry, western blot analysis, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. In vivo, tumor growth, T cell infiltration, and gene sequencing analyses were conducted in 2 murine KRAS-mutated models. Both AMG510 and trametinib decreased the radiation-induced increase in PD-L1 expression. Radiation and trametinib additively induced the expression of CXCL10 and CXCL11 cytokines and MHC class I in murine CT26 and LLC cell lines. The combination of trametinib and radiation controlled tumor growth and induced more infiltration of CD4+ and CD8+ T cells in vivo, wherein tumor inhibition function and the survival period of mice could be reduced by CD8+ and/or CD4+ T cell depletion. The expression levels of immune-related genes also increased in the combination therapy group. Our results indicate that KRAS-MEK inhibitors in combination with radiotherapy can enhance antitumor immunity, providing new therapeutic strategies for KRAS-mutated tumors.


Subject(s)
CD8-Positive T-Lymphocytes , Lung Neoplasms , Mice , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Cell Line, Tumor , Lung Neoplasms/genetics , Histocompatibility Antigens Class I/metabolism , Cytokines/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/pharmacology , Mitogen-Activated Protein Kinase Kinases/therapeutic use
12.
ACS Appl Mater Interfaces ; 14(19): 21836-21847, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35512029

ABSTRACT

Glucose and glutamine are two principal nutrients in mammalian cells that provide energy and biomass for cell growth and proliferation. Especially in cancer cells, glutamine could be a main alternative for energy and biomass supply once glucose metabolism is suppressed. Therefore, single inhibition of enzymes in either glucose metabolism or glutaminolysis, though maybe efficient in vitro, is far from being satisfactory for efficient in vivo cancer therapy. Here, we proposed a new strategy for dual inhibitions on both glucose and glutamine metabolisms concurrently by silencing mutated gene Kras and glutaminase 1 (GLS1) via nanomaterial-based siKras and siGLS1 delivery, rather than conventional highly toxic chemodrugs. Such a combination therapy could overcome the challenge that glucose and glutamine are alternatives to each other in the biosynthesis and energy production for cancer cells, resulting in much elevated treatment efficacy. In addition, layered double hydroxide (LDH), the siRNA carrier, enables an enhanced gene delivery efficiency compared to the commercial transfection agent Lipofectamine 2000. Briefly, Mg-Al LDH nanosheets, loaded with siKras and siGLS1 onto their surfaces by electrostatic adsorption, could release siRNA from lysosomes into the cytoplasm via the proton sponge effect of LDH, favoring the siRNA stability and gene silencing efficiency enhancements. The thus released siRNA could downregulate the expressions of Kras, GLS1, and other enzymes involved in glucose metabolism, resulting in the downregulations of ATP and other metabolites. Such a biosafe LDH/siRNA nanomedicine is able to efficiently suppress the growth of xenografts through cancer cell proliferation suppression, displaying its great potential as a simultaneous glucose/glutamine metabolism coinhibitor for treating pancreatic cancer.


Subject(s)
Glutamine , Pancreatic Neoplasms , Animals , Cell Proliferation , Glucose/metabolism , Glutamine/metabolism , Glutamine/pharmacology , Glutamine/therapeutic use , Humans , Mammals/metabolism , Pancreatic Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , RNA, Small Interfering/pharmacology , Pancreatic Neoplasms
13.
Photodiagnosis Photodyn Ther ; 33: 102142, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33307231

ABSTRACT

OBJECTIVES: This study aimed to assess the effect of photodynamic therapy (PDT) on expression of CASP3, NRAS and HRAS genes at mRNA levels, and apoptosis of head and neck squamous cell carcinoma (HNSCC) cell line. MATERIALS AND METHODS: In order to complete the present in vitro study, HNSCC cell line (NCBI C196 HN5) purchased from Pasteur Institute. Cells were divided into four groups; Group 1: photodynamic treatment (laser + methylene blue (MB) as photosensitizer), group 2: MB, group 3: laser (with 660 nm wavelength), and group 4: control (without any treatment). To determine the optimal concentration of MB, in a pilot study, toxicity of MB in different concentration was assessed using MTT assay. Cells in group 1, 2 and 3 was treated at optimal concentration of MB (1.6 µg/mL). Gene expression at mRNA levels was assessed after 24 h incubation, using real-time (qRT)-PCR. The expression of BAX and BCL2 genes at the mRNA levels was analyzed to evaluate apoptosis. 2-ΔΔCt values of BCL2, BAX, CASP3, NRAS, and HRAS in groups was analyzed using ANOVA. Tukey's HSD and Games Howell test was used to compare between two groups. RESULTS: Over-expression of BAX (p < 0.001), CASP3 (p < 0.001) and down-regulation of BCL2 (p = 0.004), HRAS (p = 0.023) and NRAS (p = 0.045) were noted in group 1 (PDT), compared with the control group. Treatment by laser alone induce down-regulation of CASP3 (p < 0.05), BAX (p < 0.05), BCL2 (p > 0.05), HRAS (p > 0.05) and NRAS (p > 0.05). CONCLUSION: PDT caused down-regulation of NRAS, HRAS and BCL2 and over-expression of CASP3 and BAX genes at mRNA levels in HNSCC cell line. The present study raises the possibility that the role of MB on BCL2 down-regulation and BAX and CASP3 over-expression was higher than laser alone while it seems that laser alone was more effective than MB in HRAS and NRAS down-regulation.


Subject(s)
Head and Neck Neoplasms , Photochemotherapy , Apoptosis , Caspase 3 , Cell Line , Cell Line, Tumor , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/pharmacology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Humans , Membrane Proteins/genetics , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Pilot Projects , Proto-Oncogene Mas , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/pharmacology , RNA, Messenger , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics
14.
Circ Res ; 102(11): 1350-8, 2008 Jun 06.
Article in English | MEDLINE | ID: mdl-18467631

ABSTRACT

Angiogenesis and vascular permeability occur following endothelium activation by vascular endothelial growth factor (VEGF). Downstream mechanisms that define these vascular responses remain unknown. H-Ras activation has been associated with the angiogenic response. However, active H-Ras initiates a wide spectrum of other biological responses through multiple downstream effectors. To identify vascular signaling by H-Ras and the immediate effectors we activated the extracellular signal regulated kinase/mitogen-activated protein kinase or phosphatidylinositol 3-kinase (PI3K) pathways in chicken and mouse endothelial tissues by ectopic expression of the Ras effector mutants H-RasV12S35 or H-RasV12C40, respectively. Constitutive activation of the extracellular signal-regulate kinase/mitogen-activated protein kinase pathway by H-RasV12S35 was sufficient to induce angiogenesis and not vascular permeability, whereas activation of the PI3K pathway by H-RasV12C40 was required for both angiogenesis and vascular permeability. Pharmacological inhibition of PI3K (alpha/beta) suppressed both Ras- or VEGF-mediated vascular response in vivo and survival of primary human endothelial cells in vitro. However, inhibition of PI3K (gamma/delta) suppressed Ras- or VEGF-mediated vascular permeability in vivo, with no effect on survival of primary endothelial cells. This was supported by genetic studies because PI3K p110gamma knockout mice showed impaired vascular permeability response to VEGF or H-RasV12C40 treatment yet produced a wild-type angiogenic response to H-RasV12S35. We conclude that downstream of VEGF, H-Ras serves as a cellular switch that controls neovascularization and vascular permeability by activation of distinct effectors.


Subject(s)
Capillary Permeability/physiology , Endothelial Cells/metabolism , Neovascularization, Physiologic/physiology , Proto-Oncogene Proteins p21(ras)/physiology , Signal Transduction/physiology , Animals , Capillary Permeability/drug effects , Capillary Permeability/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Chick Embryo , Endothelial Cells/drug effects , Enzyme Inhibitors/pharmacology , Gene Transfer Techniques , Humans , Mice , Mice, Knockout , Mice, Nude , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/pharmacology , Signal Transduction/genetics , Vascular Endothelial Growth Factor A/pharmacology
15.
J Cell Biol ; 119(6): 1405-11, 1992 Dec.
Article in English | MEDLINE | ID: mdl-1469041

ABSTRACT

Human fibroblasts have a limited replicative life span when maintained in culture after which they become unresponsive to treatment with mitogens, a phenomenon most commonly called senescence. Experiments indicating that serum does not induce expression of the c-fos proto-oncogene in senescent fibroblasts raised the issue of a potential central role for c-fos in the phenotype of sustained growth arrest. This was directly tested by microinjection of oncogenic c-Ha-ras protein into senescent fibroblasts. While ras injection was found to induce marked nuclear c-fos expression and functional AP-1 transcription activity, this did not lead to DNA synthesis. These results suggest that the senescence phenotype cannot be solely attributed to the absence of c-fos expression and that the proliferative block in these cells is either independent of AP-1 transcriptional activity, downstream of it, or involves multiple molecular mechanisms.


Subject(s)
Cellular Senescence/physiology , Fibroblasts/physiology , Proto-Oncogene Proteins c-fos/biosynthesis , Proto-Oncogene Proteins p21(ras)/pharmacology , Transcription Factors/biosynthesis , Cell Division/drug effects , Cell Division/physiology , Cellular Senescence/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Gene Expression , Humans , Microinjections , Proto-Oncogene Mas , Proto-Oncogene Proteins c-fos/drug effects , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/drug effects , Transcription Factors/drug effects , beta-Galactosidase/biosynthesis , beta-Galactosidase/drug effects
16.
Science ; 250(4988): 1743-5, 1990 Dec 21.
Article in English | MEDLINE | ID: mdl-2176747

ABSTRACT

Influx of calcium through membrane channels is an important initial step in signal transduction of growth signals. Therefore, the effects of Ras protein injection on calcium currents across the soma membrane of an identified neuron of the snail Hermissenda were examined. With the use of these post-mitotic cells, a voltage-sensitive, inward calcium current was increased 10 to 20 minutes after Harvey-ras oncoproteins were injected. The effects of oncogenic Harvey ras p21 protein (v-Ras) occurred quickly and were sustained, whereas the effects of proto-oncogenic ras protein (c-Ras) were transient. This relative potency is consistent with the activities of these oncoproteins in stimulating cell proliferation. Thus, this calcium channel may be a target for Ras action.


Subject(s)
Calcium Channels/physiology , Neurons/physiology , Oncogene Protein p21(ras)/pharmacology , Proto-Oncogene Proteins p21(ras)/pharmacology , Animals , Barium/pharmacology , Calcium Channels/drug effects , In Vitro Techniques , Membrane Potentials/drug effects , Microinjections , Oncogene Protein p21(ras)/administration & dosage , Potassium Channels/drug effects , Potassium Channels/physiology , Proto-Oncogene Proteins p21(ras)/administration & dosage , Snails
17.
J Clin Invest ; 101(6): 1432-40, 1998 Mar 15.
Article in English | MEDLINE | ID: mdl-9502786

ABSTRACT

Human skin is exposed daily to solar ultraviolet (UV) radiation. UV induces the matrix metalloproteinases collagenase, 92-kD gelatinase, and stromelysin, which degrade skin connective tissue and may contribute to premature skin aging (photoaging). Pretreatment of skin with all-trans retinoic acid (tRA) inhibits UV induction of matrix metalloproteinases. We investigated upstream signal transduction pathways and the mechanism of tRA inhibition of UV induction of matrix metalloproteinases in human skin in vivo. Exposure of human skin in vivo to low doses of UV activated EGF receptors, the GTP-binding regulatory protein p21Ras, and stimulated mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38. Both JNK and p38 phosphorylated, and thereby activated transcription factors c-Jun and activating transcription factor 2 (ATF-2), which bound to the c-Jun promoter and upregulated c-Jun gene expression. Elevated c-Jun, in association with constitutively expressed c-Fos, formed increased levels of transcription factor activator protein (AP) 1, which is required for transcription of matrix metalloproteinases. Pretreatment of human skin with tRA inhibited UV induction of c-Jun protein and, consequently, AP-1. c-Jun protein inhibition occurred via a posttranscriptional mechanism, since tRA did not inhibit UV induction of c-Jun mRNA. These data demonstrate, for the first time, activation of MAP kinase pathways in humans in vivo, and reveal a novel posttranscriptional mechanism by which tRA antagonizes UV activation of AP-1 by inhibiting c-Jun protein induction. Inhibition of c-Jun induction likely contributes to the previously reported prevention by tRA of UV induction of AP-1-regulated matrix-degrading metalloproteinases in human skin.


Subject(s)
Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Skin/drug effects , Skin/radiation effects , Tretinoin/pharmacology , Activating Transcription Factor 2 , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/pharmacology , Calcium-Calmodulin-Dependent Protein Kinases/radiation effects , Cyclic AMP Response Element-Binding Protein/metabolism , ErbB Receptors/metabolism , ErbB Receptors/radiation effects , Gene Expression , Humans , JNK Mitogen-Activated Protein Kinases , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/pharmacology , Mitogen-Activated Protein Kinases/radiation effects , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/pharmacology , Nerve Tissue Proteins/radiation effects , Promoter Regions, Genetic , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Proto-Oncogene Proteins p21(ras)/radiation effects , Signal Transduction/genetics , Skin/metabolism , Transcription Factor AP-1/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Ultraviolet Rays , Up-Regulation , p38 Mitogen-Activated Protein Kinases
18.
Mol Cell Biol ; 13(2): 1290-5, 1993 Feb.
Article in English | MEDLINE | ID: mdl-8423794

ABSTRACT

Nuclear factor kappa B (NF-kappa B) plays a critical role in the regulation of a large variety of cellular genes. However, the mechanism whereby this nuclear factor is activated remains to be determined. In this report, we present evidence that in oocytes from Xenopus laevis, (i) ras p21- and phospholipase C (PLC)-mediated phosphatidylcholine (PC) hydrolysis activates NF-kappa B and (ii) protein kinase C zeta subspecies is involved in the activation of NF-kappa B in response to insulin/ras p21/PC-PLC. Thus, the microinjection of either ras p21 or PC-PLC, or the exposure of oocytes to insulin, promotes a significant translocation to the nucleus of an NF-kappa B-like activity. This effect is not observed when oocytes are incubated with phorbol myristate acetate or progesterone, both of which utilize a ras p21-independent pathway for oocyte activation. These data strongly suggest a critical role of the insulin/ras p21/PC-PLC/protein kinase C zeta pathway in the control of NF-kappa B activation.


Subject(s)
NF-kappa B/metabolism , Protein Kinase C/antagonists & inhibitors , Amino Acid Sequence , Animals , Cells, Cultured , Cytosol/metabolism , Enhancer Elements, Genetic , HIV-1/genetics , Insulin/pharmacology , Kinetics , Molecular Sequence Data , Oocytes/drug effects , Oocytes/metabolism , Protein Kinase C/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Transcriptional Activation , Xenopus laevis
19.
Mol Cell Biol ; 17(6): 3202-9, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9154819

ABSTRACT

In cooperation with an activated ras oncogene, the site-dependent AP-1 transcription factor c-Jun transforms primary rat embryo fibroblasts (REF). Although signal transduction pathways leading to activation of c-Jun proteins have been extensively studied, little is known about c-Jun cellular targets. We identified c-Jun-upregulated cDNA clones homologous to the tenascin-C gene by differential screening of a cDNA library from REF. This tightly regulated gene encodes a rare extracellular matrix protein involved in cell attachment and migration and in the control of cell growth. Transient overexpression of c-Jun induced tenascin-C expression in primary REF and in FR3T3, an established fibroblast cell line. Surprisingly, tenascin-C synthesis was repressed after stable transformation by c-Jun compared to that in the nontransformed parental cells. As assessed by using the tenascin-C (-220 to +79) promoter fragment cloned in a reporter construct, the c-Jun-induced transient activation is mediated by two binding sites: one GCN4/AP-1-like site, at position -146, and one NF-kappaB site, at position -210. Furthermore, as demonstrated by gel shift experiments and cotransfections of the reporter plasmid and expression vectors encoding the p65 subunit of NF-kappaB and c-Jun, the two transcription factors bind and synergistically transactivate the tenascin-C promoter. We previously described two other extracellular matrix proteins, SPARC and thrombospondin-1, as c-Jun targets. Thus, our results strongly suggest that the regulation of the extracellular matrix composition plays a central role in c-Jun-induced transformation.


Subject(s)
Cell Transformation, Neoplastic , Proto-Oncogene Proteins c-jun/pharmacology , Proto-Oncogene Proteins p21(ras)/pharmacology , Tenascin/biosynthesis , Animals , Binding Sites , Cell Adhesion Molecules/metabolism , Fibroblasts/metabolism , Gene Amplification , Gene Expression Regulation/drug effects , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , NF-kappa B/metabolism , Osteonectin/genetics , Osteonectin/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins c-jun/genetics , Rats , Tenascin/genetics , Thrombospondins , Transcription Factor AP-1/metabolism , Transcriptional Activation/drug effects
20.
Mol Biol Cell ; 4(5): 483-93, 1993 May.
Article in English | MEDLINE | ID: mdl-8334304

ABSTRACT

We describe a novel Triton-disrupted mammalian cell system wherein the pathways for activation of mitogen-activated protein (MAP) kinases (MAPKs) are capable of direct biochemical manipulation in vitro. MAPKs p42mapk and p44mapk are activated in signal transduction cascade(s) initiated by occupancy of plasma membrane receptors for peptide growth factors, hormones, and neurotransmitters. One likely activation pathway for MAPKs consists of sequential activations of c-ras, c-raf-1, and a protein-tyrosine/threonine kinase, MAP kinase kinase. Triton-disrupted cells retained capacity for activation of the pathway by both peptide growth factors and by addition of GTP-loaded p21 rasVal12. Incubation of disrupted cells with an antibody that neutralized the function of c-ras (Y13-259) abolished receptor-mediated stimulation of MAPK as did acute addition of 200 microM azatyrosine. Activation of the pathway was reconstituted in a cell-free system using high-speed supernatants generated from Triton-disrupted cells together with purified plasma membranes from parental cells and as a heterogeneous system using purified plasma membranes from v-ras-transformed cells. These systems will allow biochemical dissection in vitro of the interaction(s) between c-ras and the MAPK pathway in mammalian cells.


Subject(s)
Cell Membrane/physiology , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , 3T3 Cells , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Cell Line, Transformed , Cell-Free System , Enzyme Activation , Guanosine Triphosphate/pharmacology , Insulin/pharmacology , Mice , Microscopy, Electron , Mitogen-Activated Protein Kinase 1 , Octoxynol , Platelet-Derived Growth Factor/pharmacology , Polyethylene Glycols , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL