Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Am J Bot ; 106(2): 174-186, 2019 02.
Article in English | MEDLINE | ID: mdl-30726576

ABSTRACT

PREMISE OF THE STUDY: Leaves are the sites of greatest water stress in trees and a key means of acclimation to the environment. We considered phenotypic plasticity of Pseudotsuga menziesii leaves in their ecological context, exploring responsiveness to natural gradients in water stress (indicated by sample height) and light availability (measured from hemispherical photos) to understand how leaf structure is controlled by abiotic factors in tall tree crowns. METHODS: After measuring anatomy, morphology, and carbon isotope composition (δ13 C) of leaves throughout crowns of P. menziesii >90 m tall, we compared structural plasticity of leaves among the three tallest conifer species using equivalent data from past work on Sequoia sempervirens and Picea sitchensis. KEY RESULTS: Leaf mass per projected area (LMA) and δ13 C increased and mesoporosity (airspace/area) decreased along the water-stress gradient, while light did not play a detectable role in leaf development. Overall, leaves of P. menziesii were far less phenotypically responsive to within-crown abiotic gradients than either P. sitchensis, whose leaves responded strongly to light availability, or S. sempervirens, whose leaves responded equally strongly to water stress. CONCLUSIONS: P. menziesii maintain remarkably consistent leaf structure despite pronounced vertical gradients in abiotic factors. Contrasting patterns of leaf structural plasticity underlie divergent ecological strategies of the three tallest conifer species, which coexist in Californian rainforests.


Subject(s)
Adaptation, Physiological , Plant Leaves/growth & development , Pseudotsuga/growth & development , Water/physiology , Light , Plant Leaves/anatomy & histology , Pseudotsuga/anatomy & histology , Pseudotsuga/radiation effects
2.
BMC Genomics ; 18(1): 558, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28738815

ABSTRACT

BACKGROUND: Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 109 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. RESULTS: We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. CONCLUSIONS: Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably, thousands of genes reach their annual peak activity during winter dormancy. Our study establishes the fine-scale timing of daily and annual maximum gene expression for diverse needle genes in Douglas-fir, and it highlights the potential for using this information for evaluating hypotheses concerning the daily or seasonal timing of gene activity in temperate-zone conifers, and for identifying cyclic transcriptome components in other conifer species.


Subject(s)
Circadian Rhythm/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Pseudotsuga/genetics , Pseudotsuga/physiology , Transcription, Genetic , Darkness , Gene Expression Profiling , Photoperiod , Plant Leaves/radiation effects , Pseudotsuga/radiation effects , Transcription, Genetic/radiation effects
3.
Int J Biometeorol ; 53(2): 135-48, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19132410

ABSTRACT

A simple top-down model of canopy photosynthesis (P) was developed and tested in this study. The model (referred to as the Q(e)-MM model) is P = alphaQ (e) P (max)/(alphaQ ( e ) + P (max)), alpha and P (max) are quantum-use efficiency and potential P, respectively. Q (e) is given by Q (d) (0) + kQ (b) (0), where Q (d) (0) and Q (b) (0) are the diffuse and direct photosynthetically active radiation (PAR) incident on the canopy, respectively. Q (e) can be considered to be the effective incident PAR contributing to P and k is a measure of the contribution of Q (b) (0) to Q (e). When k = 1, the Q(e)-MM model becomes the regular Michaelis-Menten type model of P (referred to as the MM model). A major objective of this study was to determine how well the Q(e)-MM model could estimate P of a 56-year-old coastal Douglas-fir stand. To this end, we parameterized the Q(e)-MM model using five and half years of eddy-covariance measurements of CO(2) flux above the Douglas-fir stand. The Q(e)-MM model, with the incorporation of a function of air temperature, accounted for 74% of the variance in over 34,000 half-hourly P measurements. P estimated using the Q(e)-MM model had no systematic errors with respect to Q (d) (0). Although the Q(e)-MM model has only one more parameter than the MM model, it accounted for 30% more variance in P than the latter when total incident PAR exceeded 900 micromol m(-2) s(-1). On average, k was found to be 0.22. We show that this small value of k reflects the significant effect of the scattering of the solar beam and the fraction of light-limited sunlit leaves. We also show that the success of the Q(e)-MM model was due to the fact that a large fraction of the sunlit leaves were light-limited as a result of their orientation to the solar beam.


Subject(s)
Models, Biological , Photosynthesis , Pseudotsuga/metabolism , British Columbia , Light , Photosynthesis/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Pseudotsuga/radiation effects , Trees/metabolism , Trees/radiation effects
4.
Tree Physiol ; 27(6): 805-15, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17331899

ABSTRACT

Coastal Douglas-fir (Pseudotsuga menziesii spp. menziesii (Mirb.) Franco) occurs over a wide range of environmental conditions on Vancouver Island, British Columbia. Although ecological zones have been drawn, no formal spatial analysis of environmental limitations on tree growth has been carried out. Such an exercise is desirable to identify areas that may warrant intensive management and to evaluate the impacts of predicted climate change this century. We applied a physiologically based forest growth model, 3-PG (Physiological Principles Predicting Growth), to interpret and map current limitations to Douglas-fir growth across Vancouver Island at 100-m cell resolution. We first calibrated the model to reproduce the regional productivity estimates reported in yield table growth curves. Further analyses indicated that slope exposure is important; southwest slopes of 30 degrees receive 40% more incident radiation than similarly inclined northeast slopes. When combined with other environmental differences associated with aspect, the model predicted 60% more growth on southwest exposures than on northeast exposures. The model simulations support field observations that drought is rare in the wetter zones, but common on the eastern side of Vancouver Island at lower elevations and on more exposed slopes. We illustrate the current limitations on growth caused by suboptimal temperature, high vapor pressure deficits and other factors. The modeling approach complements ecological classifications and offers the potential to identify the most favorable sites for management of other native tree species under current and future climatic conditions.


Subject(s)
Ecology , Pseudotsuga/growth & development , British Columbia , Computer Simulation , Pseudotsuga/radiation effects , Sunlight , Temperature
5.
Sci Rep ; 7: 40145, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28071755

ABSTRACT

For long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation, including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, ß-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, ß-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change.


Subject(s)
Biological Variation, Population , Photosynthesis , Pigments, Biological/metabolism , Pseudotsuga/physiology , Soil/chemistry , Terpenes/metabolism , Water/analysis , Adaptation, Physiological , Droughts , Light , Pseudotsuga/metabolism , Pseudotsuga/radiation effects
6.
J Photochem Photobiol B ; 66(2): 125-33, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11897512

ABSTRACT

Chromatographic analyses of foliage from several tree species illustrate the species-specific effects of UV-B radiation on both quantity and composition of foliar flavonoids. Pinus ponderosa, Quercus rubra and Pseudotsuga menziesii were field-grown under modulated ambient (1x) and enhanced (2x) biologically effective UV-B radiation. Foliage was harvested seasonally over a 3-year period, extracted, purified and the flavonoid fraction applied to a mu Bondapak/C(18) column HPLC system sampling at 254 nm. Total flavonoid concentrations in Quercus rubra foliage were more than twice (leaf area basis) that of the other species; Pseudotsuga menziesii foliage had intermediate levels and P. ponderosa had the lowest concentrations of total flavonoids. No statistically significant UV-B radiation-induced effects were found in total foliar flavonoid concentrations for any species; however, concentrations of specific compounds within each species exhibited significant treatment effects. Higher (but statistically insignificant) levels of flavonoids were induced by UV-B irradiation in 1- and 2-year-old P. ponderosa foliage. Total flavonoid concentrations in 2-year-old needles increased by 50% (1x ambient UV-B radiation) or 70% (2x ambient UV-B radiation) from that of 1-year-old tissue. Foliar flavonoids of Q. rubra under enhanced UV-B radiation tended to shift from early-eluting compounds to less polar flavonoids eluting later. There were no clear patterns of UV-B radiation effects on 1-year-old P. menziesii foliage. However, 2-year-old tissue had slightly higher foliar flavonoids under the 2x UV-B radiation treatment compared to ambient levels. Results suggest that enhanced UV-B radiation will alter foliar flavonoid composition and concentrations in forest tree species, which could impact tissue protection, and ultimately, competition, herbivory or litter decomposition.


Subject(s)
Flavins/metabolism , Pinus/radiation effects , Pseudotsuga/radiation effects , Pinus/metabolism , Pinus ponderosa , Plant Leaves/metabolism , Plant Leaves/radiation effects , Pseudotsuga/metabolism , Ultraviolet Rays
7.
Tree Physiol ; 22(12): 829-38, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12184972

ABSTRACT

We investigated the effects of an ambient dose of ultraviolet-B (UV-B) radiation on chamber-grown Pseudotsuga menziesii var. glauca (Beissn.) Franco (Douglas-fir) seedlings, to determine if the presence of UV-B radiation in the growth light regime induces tolerance to environmental stresses such as high light and drought. Douglas-fir seedlings were grown without UV-B radiation or with 6 kJ m-2 day-1 of biologically effective UV-B, which is ambient for the intermountain regions of Idaho. Non-stressed seedlings grown with UV-B radiation had 35% lower seedling dry mass, 36% higher concentrations of UV-B absorbing compounds per unit leaf area, 30% lower stomatal frequencies, 25% lower light-saturated photochemical efficiencies of Photosystem II and 45% lower light-saturated stomatal conductance than non-stressed seedlings grown without UV-B radiation. After 4 days of high-light stress, seedlings grown with UV-B radiation had 32% higher light-saturated carbon assimilation rates (A(CO2)) than seedlings grown without UV-B radiation. After water was withheld from the seedlings for up to 15 days, seedlings grown with UV-B radiation had 50% higher A(CO2) and 40% higher seedling water potentials than seedlings grown without UV-B radiation. The results support the hypothesis that UV-B radiation can act as an environmental signal to induce tolerance to high-light and drought stress in Douglas-fir seedlings. Possible mechanisms for the enhanced stress tolerance are discussed.


Subject(s)
Photosynthesis/physiology , Pseudotsuga/physiology , Trees/physiology , Dehydration , Light , Photosynthesis/radiation effects , Photosynthetic Reaction Center Complex Proteins/radiation effects , Photosystem II Protein Complex , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Transpiration/physiology , Plant Transpiration/radiation effects , Pseudotsuga/radiation effects , Seedlings/growth & development , Seedlings/physiology , Seedlings/radiation effects , Trees/growth & development , Trees/radiation effects , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL