Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 423
Filter
1.
Proc Natl Acad Sci U S A ; 117(8): 4109-4116, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32041866

ABSTRACT

The UDP-2,3-diacylglucosamine pyrophosphate hydrolase LpxH is an essential lipid A biosynthetic enzyme that is conserved in the majority of gram-negative bacteria. It has emerged as an attractive novel antibiotic target due to the recent discovery of an LpxH-targeting sulfonyl piperazine compound (referred to as AZ1) by AstraZeneca. However, the molecular details of AZ1 inhibition have remained unresolved, stymieing further development of this class of antibiotics. Here we report the crystal structure of Klebsiella pneumoniae LpxH in complex with AZ1. We show that AZ1 fits snugly into the L-shaped acyl chain-binding chamber of LpxH with its indoline ring situating adjacent to the active site, its sulfonyl group adopting a sharp kink, and its N-CF3-phenyl substituted piperazine group reaching out to the far side of the LpxH acyl chain-binding chamber. Intriguingly, despite the observation of a single AZ1 conformation in the crystal structure, our solution NMR investigation has revealed the presence of a second ligand conformation invisible in the crystalline state. Together, these distinct ligand conformations delineate a cryptic inhibitor envelope that expands the observed footprint of AZ1 in the LpxH-bound crystal structure and enables the design of AZ1 analogs with enhanced potency in enzymatic assays. These designed compounds display striking improvement in antibiotic activity over AZ1 against wild-type K. pneumoniae, and coadministration with outer membrane permeability enhancers profoundly sensitizes Escherichia coli to designed LpxH inhibitors. Remarkably, none of the sulfonyl piperazine compounds occupies the active site of LpxH, foretelling a straightforward path for rapid optimization of this class of antibiotics.


Subject(s)
Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Acyltransferases/genetics , Bacterial Proteins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/drug effects , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Lipid Metabolism , Microbial Sensitivity Tests , Mutation , Piperazines/chemistry , Piperazines/pharmacology , Protein Conformation , Pyrophosphatases/genetics
2.
J Biol Chem ; 296: 100568, 2021.
Article in English | MEDLINE | ID: mdl-33753169

ABSTRACT

The enzyme NUDT15 efficiently hydrolyzes the active metabolites of thiopurine drugs, which are routinely used for treating cancer and inflammatory diseases. Loss-of-function variants in NUDT15 are strongly associated with thiopurine intolerance, such as leukopenia, and preemptive NUDT15 genotyping has been clinically implemented to personalize thiopurine dosing. However, understanding the molecular consequences of these variants has been difficult, as no structural information was available for NUDT15 proteins encoded by clinically actionable pharmacogenetic variants because of their inherent instability. Recently, the small molecule NUDT15 inhibitor TH1760 has been shown to sensitize cells to thiopurines, through enhanced accumulation of 6-thio-guanine in DNA. Building upon this, we herein report the development of the potent and specific NUDT15 inhibitor, TH7755. TH7755 demonstrates a greatly improved cellular target engagement and 6-thioguanine potentiation compared with TH1760, while showing no cytotoxicity on its own. This potent inhibitor also stabilized NUDT15, enabling analysis by X-ray crystallography. We have determined high-resolution structures of the clinically relevant NUDT15 variants Arg139Cys, Arg139His, Val18Ile, and V18_V19insGlyVal. These structures provide clear insights into the structural basis for the thiopurine intolerance phenotype observed in patients carrying these pharmacogenetic variants. These findings will aid in predicting the effects of new NUDT15 sequence variations yet to be discovered in the clinic.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Mutation , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/genetics , Thioguanine/chemistry , Thioguanine/pharmacology , Crystallography, X-Ray , Models, Molecular , Protein Conformation , Pyrophosphatases/chemistry
3.
J Biol Chem ; 296: 100015, 2021.
Article in English | MEDLINE | ID: mdl-33139328

ABSTRACT

African swine fever, caused by the African swine fever virus (ASFV), is among the most significant swine diseases. There are currently no effective treatments against ASFV. ASFV contains a gene encoding a dUTPase (E165R), which is required for viral replication in swine macrophages, making it an attractive target for inhibitor development. However, the full structural details of the ASFV dUTPase and those of the comparable swine enzyme are not available, limiting further insights. Herein, we determine the crystal structures of ASFV dUTPase and swine dUTPase in both their ligand-free and ligand-bound forms. We observe that the swine enzyme employs a classical dUTPase architecture made up of three-subunit active sites, whereas the ASFV enzyme employs a novel two-subunit active site. We then performed a comparative analysis of all dUTPase structures uploaded in the Protein Data Bank (PDB), which showed classical and non-classical types were mainly determined by the C-terminal ß-strand orientation, and the difference was mainly related to the four amino acids behind motif IV. Thus, our study not only explains the reason for the structural diversity of dUTPase but also reveals how to predict dUTPase type, which may have implications for the dUTPase family. Finally, we tested two dUTPase inhibitors developed for the Plasmodium falciparum dUTPase against the swine and ASFV enzymes. One of these compounds inhibited the ASFV dUTPase at low micromolar concentrations (Kd = 15.6 µM) and with some selectivity (∼2x) over swine dUTPase. In conclusion, our study expands our understanding of the dUTPase family and may aid in the development of specific ASFV inhibitors.


Subject(s)
African Swine Fever Virus/enzymology , Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/chemistry , African Swine Fever Virus/drug effects , African Swine Fever Virus/physiology , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Catalytic Domain , Crystallography, X-Ray , Drug Development , Enzyme Inhibitors/chemistry , Host-Pathogen Interactions , Macrophages/virology , Plasmodium falciparum/enzymology , Protein Conformation , Swine , Virus Replication/drug effects
4.
Plant J ; 107(2): 493-510, 2021 07.
Article in English | MEDLINE | ID: mdl-33949016

ABSTRACT

Geraniol, citronellol and their esters are high-value acyclic monoterpenes used in food technology, perfumery and cosmetics. A major source of these compounds is the essential oil of rose-scented geraniums of the genus Pelargonium. We provide evidence that their biosynthesis mainly takes place in the cytosol of glandular trichomes via geranyl monophosphate (GP) through the action of a Nudix hydrolase. Protein preparations could convert geranyl diphosphate (GDP) to geraniol in in vitro assays, a process which could be blocked by inorganic phosphatase inhibitors, suggesting a two-step conversion of GDP to geraniol. Pelargonium graveolens chemotypes enriched in either geraniol or (-)-citronellol accumulate GP or citronellyl monophosphate (CP), respectively, the presumed precursors to their monoterpenoid end products. Geranyl monophosphate was highly enriched in isolated glandular trichomes of lines producing high amounts of geraniol. In contrast, (-)-isomenthone-rich lines are depleted in these prenyl monophosphates and monoterpene alcohols and instead feature high levels of GDP, the precursor to plastidic p-menthane biosynthesis. A Nudix hydrolase cDNA from Pelargonium glandular trichomes, dubbed PgNdx1, encoded a cytosolic protein capable of hydrolyzing GDP to GP with a KM of about 750 nm but is only weakly active towards farnesyl diphosphate. In citronellol-rich lines, GDP, GP and CP were detected in nearly equimolar amounts, while citronellyl diphosphate was absent, suggesting that citronellol biosynthesis may proceed by reduction of GP to CP in this species. These findings highlight the cytosol as a compartment that supports monoterpene biosynthesis and expands the roles of Nudix hydrolases in the biosynthesis of plant volatiles.


Subject(s)
Acyclic Monoterpenes/metabolism , Pelargonium/metabolism , Plant Proteins/metabolism , Pyrophosphatases/metabolism , Cytosol/metabolism , Diphosphates/metabolism , Diterpenes/metabolism , Enzyme Inhibitors/pharmacology , Pelargonium/enzymology , Pelargonium/genetics , Phylogeny , Plant Proteins/genetics , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/genetics , Sequence Alignment , Trichomes/metabolism , Nudix Hydrolases
5.
Acc Chem Res ; 54(7): 1623-1634, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33720682

ABSTRACT

Bacterial infections caused by multi-drug-resistant Gram-negative pathogens pose a serious threat to public health. Gram-negative bacteria are characterized by the enrichment of lipid A-anchored lipopolysaccharide (LPS) or lipooligosaccharide (LOS) in the outer leaflet of their outer membrane. Constitutive biosynthesis of lipid A via the Raetz pathway is essential for bacterial viability and fitness in the human host. The inhibition of early-stage lipid A enzymes such as LpxC not only suppresses the growth of Pseudomonas aeruginosa, Klebsiella pneumoniae, Enterobacter spp., and other clinically important Gram-negative pathogens but also sensitizes these bacteria to other antibiotics. The inhibition of late-stage lipid A enzymes such as LpxH is uniquely advantageous because it has an extra mechanism of bacterial killing through the accumulation of toxic lipid A intermediates, rendering LpxH inhibition additionally lethal to Acinetobacter baumannii. Because essential enzymes of the Raetz pathway have never been exploited by commercial antibiotics, they are excellent targets for the development of novel antibiotics against multi-drug-resistant Gram-negative infections.This Account describes the ongoing research on characterizing the structure and inhibition of LpxC and LpxH, the second and fourth enzymes of the Raetz pathway of lipid A biosynthesis, in the laboratories of Dr. Pei Zhou and Dr. Jiyong Hong at Duke University. Our studies have elucidated the molecular basis of LpxC inhibition by the first broad-spectrum inhibitor, CHIR-090, as well as the mechanism underlying its spectrum of activity. Such an analysis has provided a molecular explanation for the broad-spectrum antibiotic activity of diacetylene-based LpxC inhibitors. Through the structural and biochemical investigation of LpxC inhibition by diacetylene LpxC inhibitors and the first nanomolar LpxC inhibitor, L-161,240, we have elucidated the intrinsic conformational and dynamics difference in individual LpxC enzymes near the active site. A similar approach has been taken to investigate LpxH inhibition, leading to the establishment of the pharmacophore model of LpxH inhibitors and subsequent structural elucidation of LpxH in complex with its first reported small-molecule inhibitor based on a sulfonyl piperazine scaffold.Intriguingly, although our crystallographic analysis of LpxC- and LpxH-inhibitor complexes detected only a single inhibitor conformation in the crystal lattice, solution NMR studies revealed the existence of multiple ligand conformations that together delineate a cryptic ligand envelope expanding the ligand-binding footprint beyond that observed in the crystal structure. By harnessing the ligand dynamics information and structural insights, we demonstrate the feasibility to design potent LpxC and LpxH inhibitors by merging multiple ligand conformations. Such an approach has enabled us to rationally design compounds with significantly enhanced potency in enzymatic assays and outstanding antibiotic activities in vitro and in animal models of bacterial infection. We anticipate that continued efforts with structure and ligand dynamics-based lead optimization will ultimately lead to the discovery of LpxC- and LpxH-targeting clinical antibiotics against a broad range of Gram-negative pathogens.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Gram-Negative Bacteria/drug effects , Molecular Dynamics Simulation , Pyrophosphatases/antagonists & inhibitors , Amidohydrolases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Gram-Negative Bacteria/enzymology , Humans , Ligands , Molecular Structure , Pyrophosphatases/metabolism
6.
Nat Chem Biol ; 16(10): 1120-1128, 2020 10.
Article in English | MEDLINE | ID: mdl-32690945

ABSTRACT

The NUDIX hydrolase NUDT15 was originally implicated in sanitizing oxidized nucleotides, but was later shown to hydrolyze the active thiopurine metabolites, 6-thio-(d)GTP, thereby dictating the clinical response of this standard-of-care treatment for leukemia and inflammatory diseases. Nonetheless, its physiological roles remain elusive. Here, we sought to develop small-molecule NUDT15 inhibitors to elucidate its biological functions and potentially to improve NUDT15-dependent chemotherapeutics. Lead compound TH1760 demonstrated low-nanomolar biochemical potency through direct and specific binding into the NUDT15 catalytic pocket and engaged cellular NUDT15 in the low-micromolar range. We also employed thiopurine potentiation as a proxy functional readout and demonstrated that TH1760 sensitized cells to 6-thioguanine through enhanced accumulation of 6-thio-(d)GTP in nucleic acids. A biochemically validated, inactive structural analog, TH7285, confirmed that increased thiopurine toxicity takes place via direct NUDT15 inhibition. In conclusion, TH1760 represents the first chemical probe for interrogating NUDT15 biology and potential therapeutic avenues.


Subject(s)
Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Binding Sites , Cell Line , Drug Design , Drug Development , Escherichia coli , Humans , Inorganic Pyrophosphatase/antagonists & inhibitors , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Structure-Activity Relationship
7.
Bioorg Chem ; 119: 105549, 2022 02.
Article in English | MEDLINE | ID: mdl-34929517

ABSTRACT

Ecto-nucleotide pyrophosphatase/phosphodiesterases 1 (ENPP1 or NPP1), is an attractive therapeutic target for various diseases, primarily cancer and mineralization disorders. The ecto-enzyme is located on the cell surface and has been implicated in the control of extracellular levels of nucleotide, nucleoside and (di) phosphate. Recently, it has emerged as a critical phosphodiesterase that hydrolyzes cyclic 2'3'- cGAMP, the endogenous ligand for STING (STimulator of INterferon Genes). STING plays an important role in innate immunity by activating type I interferon in response to cytosolic 2'3'-cGAMP. ENPP1 negatively regulates the STING pathway and hence its inhibition makes it an attractive therapeutic target for cancer immunotherapy. Herein, we describe the design, optimization and biological evaluation studies of a series of novel non-nucleotidic thioguanine based small molecule inhibitors of ENPP1. The lead compound 43 has shown good in vitro potency, stability in SGF/SIF/PBS, selectivity, ADME properties and pharmacokinetic profile and finally potent anti-tumor response in vivo. These compounds are a good starting point for the development of potentially effective cancer immunotherapy agents.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Immunotherapy , Lung Neoplasms/therapy , Pyrophosphatases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Thioguanine/pharmacology , A549 Cells , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Female , Humans , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Molecular Structure , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/therapy , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Thioguanine/chemical synthesis , Thioguanine/chemistry
8.
Am J Respir Crit Care Med ; 203(5): 614-627, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33021405

ABSTRACT

Rationale: Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by abnormally elevated pulmonary pressures and right ventricular failure. Excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is one of the most important drivers of vascular remodeling in PAH, for which available treatments have limited effectiveness.Objectives: To gain insights into the mechanisms leading to the development of the disease and identify new actionable targets.Methods: Protein expression profiling was conducted by two-dimensional liquid chromatography coupled to tandem mass spectrometry in isolated PASMCs from controls and patients with PAH. Multiple molecular, biochemical, and pharmacologic approaches were used to decipher the role of NUDT1 (nudrix hyrolase 1) in PAH.Measurements and Main Results: Increased expression of the detoxifying DNA enzyme NUDT1 was detected in cells and tissues from patients with PAH and animal models. In vitro, molecular or pharmacological inhibition of NUDT1 in PAH-PASMCs induced accumulation of oxidized nucleotides in the DNA, irresolvable DNA damage (comet assay), disruption of cellular bioenergetics (Seahorse), and cell death (terminal deoxynucleotidyl transferase dUTP nick end labeling assay). In two animal models with established PAH (i.e., monocrotaline and Sugen/hypoxia-treated rats), pharmacological inhibition of NUDT1 using (S)-Crizotinib significantly decreased pulmonary vascular remodeling and improved hemodynamics and cardiac function.Conclusions: Our results indicate that, by overexpressing NUDT1, PAH-PASMCs hijack persistent oxidative stress in preventing incorporation of oxidized nucleotides into DNA, thus allowing the cell to escape apoptosis and proliferate. Given that NUDT1 inhibitors are under clinical investigation for cancer, they may represent a new therapeutic option for PAH.


Subject(s)
DNA Repair Enzymes/genetics , DNA/metabolism , Oxidative Stress/genetics , Phosphoric Monoester Hydrolases/genetics , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/metabolism , Vascular Remodeling/genetics , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Adult , Aged , Animals , Apoptosis/genetics , Blotting, Western , Case-Control Studies , Cell Proliferation/genetics , Chromatography, Liquid , Comet Assay , DNA Repair Enzymes/antagonists & inhibitors , DNA Repair Enzymes/metabolism , Disease Models, Animal , Female , Forkhead Box Protein M1/metabolism , Humans , In Vitro Techniques , Male , Middle Aged , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Oxidation-Reduction , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/metabolism , Pulmonary Arterial Hypertension/metabolism , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , RNA, Messenger/metabolism , Rats , Tandem Mass Spectrometry , Up-Regulation
9.
Proc Natl Acad Sci U S A ; 116(47): 23698-23704, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31690656

ABSTRACT

Pyrophosphate deficiency may explain the excessive vascular calcification found in children with Hutchinson-Gilford progeria syndrome (HGPS) and in a mouse model of this disease. The present study found that hydrolysis products of ATP resulted in a <9% yield of pyrophosphate in wild-type blood and aortas, showing that eNTPD activity (ATP → phosphate) was greater than eNPP activity (ATP → pyrophosphate). Moreover, pyrophosphate synthesis from ATP was reduced and pyrophosphate hydrolysis (via TNAP; pyrophosphate → phosphate) was increased in both aortas and blood obtained from mice with HGPS. The reduced production of pyrophosphate, together with the reduction in plasma ATP, resulted in marked reduction of plasma pyrophosphate. The combination of TNAP inhibitor levamisole and eNTPD inhibitor ARL67156 increased the synthesis and reduced the degradation of pyrophosphate in aortas and blood ex vivo, suggesting that these combined inhibitors could represent a therapeutic approach for this devastating progeroid syndrome. Treatment with ATP prevented vascular calcification in HGPS mice but did not extend longevity. By contrast, combined treatment with ATP, levamisole, and ARL67156 prevented vascular calcification and extended longevity by 12% in HGPS mice. These findings suggest a therapeutic approach for children with HGPS.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Alkaline Phosphatase/physiology , Aortic Diseases/prevention & control , Apyrase/antagonists & inhibitors , Calcinosis/prevention & control , Diphosphates/metabolism , Levamisole/therapeutic use , Progeria/drug therapy , Pyrophosphatases/antagonists & inhibitors , Adenosine Triphosphate/therapeutic use , Alkaline Phosphatase/antagonists & inhibitors , Animals , Antigens, CD/physiology , Aortic Diseases/enzymology , Apyrase/deficiency , Apyrase/physiology , Calcinosis/enzymology , Disease Models, Animal , Gene Knock-In Techniques , Humans , Lamin Type A/genetics , Longevity/drug effects , Male , Mice , Mice, Transgenic , Myocytes, Smooth Muscle/metabolism , Phosphoric Diester Hydrolases/deficiency , Phosphoric Diester Hydrolases/physiology , Progeria/genetics , Progeria/metabolism , Progeria/pathology , Pyrophosphatases/deficiency , Pyrophosphatases/physiology , RNA Interference , RNA, Small Interfering/pharmacology , Real-Time Polymerase Chain Reaction
10.
Cancer Sci ; 112(1): 422-432, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33140501

ABSTRACT

Deficiency in DNA repair proteins confers susceptibility to DNA damage, making cancer cells vulnerable to various cancer chemotherapies. 5-Fluorouracil (5-FU) is an anticancer nucleoside analog that both inhibits thymidylate synthase (TS) and causes DNA damage via the misincorporation of FdUTP and dUTP into DNA under the conditions of dTTP depletion. However, the role of the DNA damage response to its antitumor activity is still unclear. To determine which DNA repair pathway contributes to DNA damage caused by 5-FU and uracil misincorporation, we examined cancer cells treated with 2'-deoxy-5-fluorouridine (FdUrd) in the presence of TAS-114, a highly potent inhibitor of dUTPase that restricts aberrant base misincorporation. Addition of TAS-114 increased FdUTP and dUTP levels in HeLa cells and facilitated 5-FU and uracil misincorporation into DNA, but did not alter TS inhibition or 5-FU incorporation into RNA. TAS-114 showed synergistic potentiation of FdUrd cytotoxicity and caused aberrant base misincorporation, leading to DNA damage and induced cell death even after short-term exposure to FdUrd. Base excision repair (BER) and homologous recombination (HR) were found to be involved in the DNA repair of 5-FU and uracil misincorporation caused by dUTPase inhibition in genetically modified chicken DT40 cell lines and siRNA-treated HeLa cells. These results suggested that BER and HR are major pathways that protect cells from the antitumor effects of massive incorporation of 5-FU and uracil. Further, dUTPase inhibition has the potential to maximize the antitumor activity of fluoropyrimidines in cancers that are defective in BER or HR.


Subject(s)
DNA Repair/drug effects , Floxuridine/pharmacology , Pyrimidines/pharmacology , Pyrophosphatases/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chickens , DNA Damage/drug effects , Enzyme Inhibitors/pharmacology , HeLa Cells , Humans , Thymidylate Synthase/antagonists & inhibitors
11.
Mar Drugs ; 19(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499103

ABSTRACT

Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer.


Subject(s)
Adenosine Triphosphate/antagonists & inhibitors , Apyrase/antagonists & inhibitors , Polysaccharides/physiology , Pyrophosphatases/antagonists & inhibitors , Seaweed , Sulfuric Acid Esters/pharmacology , Adenosine Triphosphate/metabolism , Apyrase/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Hydrolysis/drug effects , Phosphoric Diester Hydrolases/metabolism , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Pyrophosphatases/metabolism , Seaweed/chemistry , Seaweed/isolation & purification , Sulfuric Acid Esters/chemistry , Sulfuric Acid Esters/isolation & purification
12.
Invest New Drugs ; 38(5): 1588-1597, 2020 10.
Article in English | MEDLINE | ID: mdl-32246224

ABSTRACT

Introduction TAS-114 is a potent inhibitor of deoxyuridine triphosphatase, which is a gatekeeper protein preventing uracil and 5-fluorouracil (5-FU) misincorporation into DNA. TAS-114 has been suggested to enhance the antitumor activity of 5-FU. This randomized, phase 2 study investigated TAS-114 plus S-1 (TAS-114/S-1) vs. S-1 in non-small-cell lung cancer (NSCLC) patients. Methods Patients with advanced NSCLC, previously treated with ≥ 2 regimens, were randomized 1:1 to receive TAS-114 (400 mg)/S-1 (30 mg/m2) or S-1 (30 mg/m2). Progression-free survival (PFS, independent central review) was the primary endpoint. Secondary endpoints included disease control rate (DCR), overall survival (OS), overall response rate (ORR), and safety. Results In total, 127 patients received treatment. Median PFS was 3.65 and 4.17 months in the TAS-114/S-1 and S-1 groups, respectively (hazard ratio [HR] 1.16, 95% confidence interval [CI] 0.71-1.88; P = 0.2744). DCR was similar between groups (TAS-114/S-1 80.3%, S-1 75.9%) and median OS was 7.92 and 9.82 months for the TAS-114/S-1 and S-1 groups, respectively (HR 1.31, 95% CI 0.80-2.14; P = 0.1431). The ORR was higher in the TAS-114/S-1 group than the S-1 group (19.7% vs. 10.3%), and more patients with tumor shrinkage were observed in the TAS-114/S-1 group. Incidence rates of anemia, skin toxicities, and Grade ≥ 3 treatment-related adverse events were higher in the TAS-114/S-1 group compared with the monotherapy group. Conclusions Although the TAS-114/S-1 combination improved the response rate, this did not translate into improvements in PFS. Clinical Trial Registration No. NCT02855125 (ClinicalTrials.gov) registered on 4 August 2016.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Oxonic Acid/administration & dosage , Pyrimidines/administration & dosage , Pyrophosphatases/antagonists & inhibitors , Sulfonamides/administration & dosage , Tegafur/administration & dosage , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Drug Combinations , Female , Humans , Male , Middle Aged , Oxonic Acid/adverse effects , Pyrimidines/adverse effects , Sulfonamides/adverse effects , Tegafur/adverse effects , Treatment Outcome
13.
Bioorg Chem ; 99: 103783, 2020 06.
Article in English | MEDLINE | ID: mdl-32224334

ABSTRACT

A series of six compounds (1a-f) possessing pyridine-pyrazole-benzenethiourea or pyridine-pyrazole-benzenesulfonamide scaffold were synthesized. The target compounds were screened to evaluate their inhibitory effect on human nucleotide pyrophosphatase/phosphodiesterase 1 and -3 (ENPP1 and ENPP3) isoenzymes. Compounds 1c-e were the most potent inhibitors of ENPP1 with sub-micromolar IC50 values (0.69, 0.18, and 0.40 µM, respectively. Moreover, compound 1b was the most potent inhibitor of ENPP3 (IC50 = 0.21 µM). They were much more potent than the reference standard inhibitor, suramin (IC50 values against ENPP1 and -3 were 7.77 and 0.89 µM, respectively). Furthermore, all the six compounds were investigated for cytotoxic effect against cancerous cell lines (HeLa, MCF-7, and 1321N1) and normal cell line (BHK-21). Compound 1e was active against all the three cancer cell lines, however, showed preferential cytotoxicity against MCF-7 (IC50 = 16.05 µM), which is comparable to the potency of cisplatin. All the tested compounds exhibited low or negligible cytotoxic effect against the normal cells. They have the merit of superior selectivity towards cancer cells than normal cells compared to cisplatin. The relative selectivity and potency of the inhibitors was justified by molecular docking studies. All the docked structures showed considerable binding interactions with amino acids residues of active sites of ENPP isoenzymes.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Thiourea/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Phosphoric Diester Hydrolases/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Thiourea/chemical synthesis , Thiourea/chemistry
14.
Bioorg Chem ; 104: 104305, 2020 11.
Article in English | MEDLINE | ID: mdl-33017718

ABSTRACT

Ectonucleotidases are a broad family of ectoenzymes that play a crucial role in purinergic cell signaling. Ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs) belong to this group and are important drug targets. In particular, NPP1 and NPP3 are known to be druggable targets for treatment of impaired calcification disorders (including pathological aortic calcification) and cancer, respectively. In this study, we investigated a series of sulfonate and sulfamate derivatives of benzofuran and benzothiophene as potent and selective inhibitors of NPP1 and NPP3. Compounds 1c, 1g, 1n, and 1s are the most active NPP1 inhibitors (IC50 values in the range 0.12-0.95 µM). Moreover, compounds 1e, 1f, 1j, and 1l are the most potent inhibitors of NPP3 (IC50 ranges from 0.12 to 0.95 µM). Compound 1d, 1f and 1t are highly selective inhibitors of NPP1 over NPP3, whereas compounds 1m and 1s are found to be highly selective towards NPP3 over NPP1. Structure-activity relationship (SAR) study has been discussed in detailed. With the aid of molecular docking studies, a common binding mode of these compounds and suramin (the standard inhibitor) was revealed, where the sulfonate group acts as a cation-binding moiety that comes in close contact with the zinc ion of the active site. Moreover, cytotoxic evaluation against MCF-7 and HT-29 cancer cell lines revealed that compound 1r is the most cytotoxic towards MCF-7 cell line with IC50 value of 0.19 µM. Compound 1r is more potent and selective against cancer cells than normal cells (WI-38) as compared to doxorubicin.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Enzyme Inhibitors/pharmacology , Sulfonic Acids/pharmacology , Thiophenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzofurans/chemical synthesis , Benzofurans/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Structure-Activity Relationship , Sulfonic Acids/chemical synthesis , Sulfonic Acids/chemistry , Thiophenes/chemical synthesis , Thiophenes/chemistry , Tumor Cells, Cultured
15.
Nature ; 508(7495): 215-21, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24695224

ABSTRACT

Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.


Subject(s)
DNA Repair Enzymes/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/metabolism , Nucleotides/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Animals , Catalytic Domain , Cell Death/drug effects , Cell Survival/drug effects , Crystallization , DNA Damage , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/metabolism , Deoxyguanine Nucleotides/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Humans , Male , Mice , Models, Molecular , Molecular Conformation , Molecular Targeted Therapy , Neoplasms/pathology , Oxidation-Reduction/drug effects , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrophosphatases/antagonists & inhibitors , Reproducibility of Results , Xenograft Model Antitumor Assays , Nudix Hydrolases
16.
J Virol ; 92(19)2018 10 01.
Article in English | MEDLINE | ID: mdl-30045981

ABSTRACT

A third of humans carry genetic variants of the ITP pyrophosphatase (ITPase) gene (ITPA) that lead to reduced enzyme activity. Reduced ITPase activity was earlier reported to protect against ribavirin-induced hemolytic anemia and to diminish relapse following ribavirin and interferon therapy for hepatitis C virus (HCV) genotype 2 or 3 infections. While several hypotheses have been put forward to explain the antiviral actions of ribavirin, details regarding the mechanisms of interaction between reduced ITPase activity and ribavirin remain unclear. The in vitro effect of reduced ITPase activity was assessed by means of transfection of hepatocytes (Huh7.5 cells) with a small interfering RNA (siRNA) directed against ITPA or a negative-control siRNA in the presence or absence of ribavirin in an HCV culture system. Low ribavirin concentrations strikingly depleted intracellular GTP levels in HCV-infected hepatocytes whereas higher ribavirin concentrations induced G-to-A and C-to-U single nucleotide substitutions in the HCV genome, with an ensuing reduction of HCV RNA expression and HCV core antigen production. Ribavirin triphosphate (RTP) was dephosphorylated in vitro by recombinant ITPase to a similar extent as ITP, a naturally occurring substrate of ITPase, and reducing ITPA expression in Huh 7.5 cells by siRNA increased intracellular levels of RTP in addition to increasing HCV mutagenesis and reducing progeny virus production. Our results extend the understanding of the biological impact of reduced ITPase activity, demonstrate that RTP is a substrate of ITPase, and may point to personalized ribavirin dosage according to ITPA genotype in addition to novel antiviral strategies.IMPORTANCE This study highlights the multiple modes of action of ribavirin, including depletion of intracellular GTP and increased hepatitis C virus mutagenesis. In cell culture, reduced ITP pyrophosphatase (ITPase) enzyme activity affected the intracellular concentrations of ribavirin triphosphate (RTP) and augmented the impact of ribavirin on the mutation rate and virus production. Additionally, our results imply that RTP, similar to ITP, a naturally occurring substrate of ITPase, is dephosphorylated in vitro by ITPase.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Mutagenesis , Pyrophosphatases/genetics , Ribavirin/pharmacology , Antiviral Agents/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Gene Expression Regulation , Guanosine Triphosphate/metabolism , Hepacivirus/genetics , Hepacivirus/growth & development , Hepacivirus/metabolism , Hepatitis B Core Antigens/genetics , Hepatitis B Core Antigens/metabolism , Hepatocytes/drug effects , Hepatocytes/enzymology , Hepatocytes/virology , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Humans , Nucleotides/metabolism , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Ribavirin/metabolism , Signal Transduction
17.
Invest New Drugs ; 37(3): 507-518, 2019 06.
Article in English | MEDLINE | ID: mdl-30511200

ABSTRACT

Background This first-in-human phase 1 study assessed the safety of TAS-114, a novel deoxyuridine triphosphatase inhibitor, combined with S-1 to determine its maximum tolerated dose (MTD) and recommended dose (RD). Methods In this dose-escalation study with a 3 + 3 design, TAS-114 and S-1 were concurrently administered orally under fasting conditions at 5-240 mg/m2 and 30-36 mg/m2, respectively, in patients with advanced solid tumors. Safety, efficacy, and pharmacokinetics (PK) were evaluated. Results Seventy-six patients were enrolled. The MTD and RD were TAS-114 200 mg/m2 plus S-1 36 mg/m2 and TAS-114 240 mg/m2 plus S-1 30 mg/m2, respectively. Common treatment-related adverse events were anemia, lymphocytopenia, leukopenia, neutropenia, decreased appetite, rash, nausea, and pigmentation disorder. Partial response (PR) was observed in 10 patients (non-small cell lung cancer [NSCLC], n = 5; pancreatic neuroendocrine tumor, n = 2; gastric cancer, n = 2; gallbladder cancer, n = 1). Of these, four patients achieved PR despite prior treatment history with S-1. Patients administered TAS-114 exhibited linear PK and CYP3A4 induction, with no effect on the PK of S-1. Conclusion TAS-114 plus S-1 showed tolerable, safe, and potentially effective results. To confirm safety and efficacy, two phase 2 studies are ongoing in NSCLC and gastric cancer patients. Clinical trial registration ClinicalTrials.gov ( NCT01610479 ) .


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Enzyme Inhibitors/therapeutic use , Neoplasms/drug therapy , Oxonic Acid/therapeutic use , Pyrimidines/therapeutic use , Pyrophosphatases/antagonists & inhibitors , Sulfonamides/therapeutic use , Tegafur/therapeutic use , Adult , Aged , Aged, 80 and over , Antimetabolites, Antineoplastic/pharmacokinetics , Drug Combinations , Drug Therapy, Combination , Enzyme Inhibitors/pharmacokinetics , Female , Follow-Up Studies , Humans , Male , Maximum Tolerated Dose , Middle Aged , Neoplasms/pathology , Oxonic Acid/pharmacokinetics , Prognosis , Pyrimidines/pharmacokinetics , Sulfonamides/pharmacokinetics , Tegafur/pharmacokinetics , Tissue Distribution
18.
Purinergic Signal ; 15(2): 247-263, 2019 06.
Article in English | MEDLINE | ID: mdl-31025169

ABSTRACT

Overproduction of extracellular diphosphate due to hydrolysis of ATP by NPP1 leads to pathological calcium diphosphate (pyrophosphate) dihydrate deposition (CPPD) in cartilage, resulting in a degenerative joint disease that today lacks a cure. Here, we targeted the identification of novel NPP1 inhibitors as potential therapeutic agents for CPPD deposition disease. Specifically, we synthesized novel analogs of AMP (NPP1 reaction product) and ADP (NPP1 inhibitor). These derivatives incorporate several chemical modifications of the natural nucleotides including (1) a methylene group replacing the Pα,ß-bridging oxygen atom to provide metabolic resistance, (2) sulfonate group(s) replacing phosphonate(s) to improve binding to NPP1's catalytic zinc ions, (3) an acyclic nucleotide analog to allow flexible binding in the NPP1 catalytic site, and (4) a benzimidazole base replacing adenine. Among the investigated compounds, adenine-N9-(methoxy)ethyl-ß-bisphosphonate, 10, was identified as an NPP1 inhibitor (Ki 16.3 µM vs. the artificial substrate p-nitrophenyl thymidine-5'-monophosphate (p-Nph-5'-TMP), and 9.60 µM vs. the natural substrate, ATP). Compound 10 was selective for NPP1 vs. human NPP3, human CD39, and tissue non-specific alkaline phosphatase (TNAP), but also inhibited human CD73 (Ki 12.6 µM). Thus, 10 is a dual NPP1/CD73 inhibitor, which could not only be of interest for treating CPPD deposition disease and calcific aortic valve disease but may also be considered for the immunotherapy of cancer. Compound 10 proved to be a promising inhibitor, which almost completely reduces NPPase activity in human osteoarthritic chondrocytes at a concentration of 100 µM.


Subject(s)
Adenosine Diphosphate/analogs & derivatives , Adenosine Triphosphate/analogs & derivatives , Enzyme Inhibitors/pharmacology , Pyrophosphatases/antagonists & inhibitors , Chondrocalcinosis , Chondrocytes/drug effects , Humans , Osteoarthritis , Phosphoric Diester Hydrolases
19.
Org Biomol Chem ; 17(46): 9913-9923, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31720670

ABSTRACT

Nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) inhibitors have been suggested as a potential treatment for calcium pyrophosphate dihydrate (CPPD) deposition disease. Here, we targeted the development of improved NPP1 inhibitors based on acyclic mimics of Pα,α-phosphorodithioate-substituted adenine nucleotides, 7-10. The latter were obtained in a facile two-step synthesis from adenine-(methoxy)ethanol. Among analogs 7-10, adenine-(methoxy)ethoxy-Pα,α-dithio-triphosphate, 8, was the most potent NPP1 inhibitor both with purified enzyme (IC50 0.645 µM) and in osteoarthritic human chondrocytes (IC50 0.033 µM). Furthermore, it efficaciously (10-fold vs. control) inhibited ATP-induced CPPD in human articular chondrocytes. Importantly, 8 was a highly selective NPP1 inhibitor which showed only minor inhibition of NPP3, CD39 and CD73, and did not inhibit TNAP (tissue nonspecific alkaline phosphatase) activity in human chondrocytes. Furthermore, 8 did not activate P2Y1,2,6 receptors. Analog 8 was not toxic to cultured chondrocytes at 100 µM. Therefore, 8 may be suitable for further development as a drug candidate for the treatment of CPPD arthritis and other NPP1-related diseases.


Subject(s)
Adenine/pharmacology , Calcium Pyrophosphate/antagonists & inhibitors , Chondrocytes/drug effects , Enzyme Inhibitors/pharmacology , Osteoarthritis, Knee/drug therapy , Polyphosphates/pharmacology , Pyrophosphatases/antagonists & inhibitors , Sulfhydryl Compounds/pharmacology , Adenine/chemical synthesis , Adenine/chemistry , Calcium Pyrophosphate/metabolism , Cell Survival/drug effects , Cells, Cultured , Chondrocytes/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Phosphoric Diester Hydrolases/metabolism , Polyphosphates/chemistry , Pyrophosphatases/metabolism , Structure-Activity Relationship , Sulfhydryl Compounds/chemistry
20.
Bioorg Chem ; 88: 102893, 2019 07.
Article in English | MEDLINE | ID: mdl-30986550

ABSTRACT

With the aim to discover novel, efficient and selective inhibitors of human alkaline phosphatase and nucleotide pyrophosphatase enzymes, two new series of pyrazolyl pyrimidinetriones (PPTs) (6a-g) and thioxopyrimidinediones (PTPs) (6h-n) were synthesized in good chemical yields using Knoevenagel condensation reaction between pyrazole carbaldehydes (4a-g) and pharmacologically active N-alkylated pyrimidinetrione (5a) and thioxopyrimidinedione (5b). The inhibition potential of the synthesized hybrid compounds was evaluated against human alkaline phosphatase (h-TNAP and h-IAP) and ectonucleotidase (h-NPP1 and h-NPP3) enzymes. Most of the tested analogs were highly potent with a variable degree of inhibition depending on the functionalized hybrid structure. The detailed structure-activity relationship (SAR) of PPT and PTP derivatives suggested that the compound with unsubstituted phenyl ring from PPT series led to selective and potent inhibition (6a; IC50 = 0.33 ±â€¯0.02 µM) of h-TNAP, whereas compound 6c selectively inhibited h-IAP isozyme with IC50 value of 0.86 ±â€¯0.04 µM. Similarly, compounds 6b and 6h were identified as the lead scaffolds against h-NPP1 and h-NPP3, respectively. The probable binding modes for the most potent inhibitors were elucidated through molecular docking analysis. Structure-activity relationships, mechanism of action, cytotoxic effects and druglikeness properties are also discussed.


Subject(s)
Barbiturates/pharmacology , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Thiones/pharmacology , Alkaline Phosphatase/antagonists & inhibitors , Alkaline Phosphatase/chemistry , Alkaline Phosphatase/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Barbiturates/chemical synthesis , Barbiturates/metabolism , Catalytic Domain , Cell Line, Tumor , Drug Design , Enzyme Assays , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , Humans , Kinetics , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Protein Binding , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/chemistry , Pyrophosphatases/metabolism , Structure-Activity Relationship , Thiones/chemical synthesis , Thiones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL