Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 701
Filter
1.
Proc Natl Acad Sci U S A ; 121(7): e2316164121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315867

ABSTRACT

Tree mortality due to global change-including range expansion of invasive pests and pathogens-is a paramount threat to forest ecosystems. Oak forests are among the most prevalent and valuable ecosystems both ecologically and economically in the United States. There is increasing interest in monitoring oak decline and death due to both drought and the oak wilt pathogen (Bretziella fagacearum). We combined anatomical and ecophysiological measurements with spectroscopy at leaf, canopy, and airborne levels to enable differentiation of oak wilt and drought, and detection prior to visible symptom appearance. We performed an outdoor potted experiment with Quercus rubra saplings subjected to drought stress and/or artificially inoculated with the pathogen. Models developed from spectral reflectance accurately predicted ecophysiological indicators of oak wilt and drought decline in both potted and field experiments with naturally grown saplings. Both oak wilt and drought resulted in blocked water transport through xylem conduits. However, oak wilt impaired conduits in localized regions of the xylem due to formation of tyloses instead of emboli. The localized tylose formation resulted in more variable canopy photosynthesis and water content in diseased trees than drought-stressed ones. Reflectance signatures of plant photosynthesis, water content, and cellular damage detected oak wilt and drought 12 d before visual symptoms appeared. Our results show that leaf spectral reflectance models predict ecophysiological processes relevant to detection and differentiation of disease and drought. Coupling spectral models that detect physiological change with spatial information enhances capacity to differentiate plant stress types such as oak wilt and drought.


Subject(s)
Ecosystem , Quercus , Quercus/physiology , Droughts , Forests , Trees/physiology , Water/physiology
2.
Plant Physiol ; 194(2): 741-757, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-37874743

ABSTRACT

Progressively warmer and drier climatic conditions impact tree phenology and carbon cycling with large consequences for forest carbon balance. However, it remains unclear how individual impacts of warming and drier soils differ from their combined effects and how species interactions modulate tree responses. Using mesocosms, we assessed the multiyear impact of continuous air warming and lower soil moisture alone or in combination on phenology, leaf-level photosynthesis, nonstructural carbohydrate concentrations, and aboveground growth of young European beech (Fagus sylvatica L.) and Downy oak (Quercus pubescens Willd.) trees. We further tested how species interactions (in monocultures and in mixtures) modulated these effects. Warming prolonged the growing season of both species but reduced growth in oak. In contrast, lower moisture did not impact phenology but reduced carbon assimilation and growth in both species. Combined impacts of warming and drier soils did not differ from their single effects. Under warmer and drier conditions, performances of both species were enhanced in mixtures compared to monocultures. Our work revealed that higher temperature and lower soil moisture have contrasting impacts on phenology vs. leaf-level assimilation and growth, with the former being driven by temperature and the latter by moisture. Furthermore, we showed a compensation in the negative impacts of chronic heat and drought by tree species interactions.


Subject(s)
Fagus , Quercus , Seasons , Soil/chemistry , Carbon , Fagus/physiology , Quercus/physiology , Trees
3.
BMC Plant Biol ; 24(1): 325, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658813

ABSTRACT

BACKGROUND: With the dramatic uplift of the Qinghai-Tibet Plateau (QTP) and the increase in altitude in the Pliocene, the environment became dry and cold, thermophilous plants that originally inhabited ancient subtropical forest essentially disappeared. However, Quercus sect. Heterobalanus (QSH) have gradually become dominant or constructive species distributed on harsh sites in the Hengduan Mountains range in southeastern QTP, Southwest China. Ecological stoichiometry reveals the survival strategies plants adopt to adapt to changing environment by quantifying the proportions and relationships of elements in plants. Simultaneously, as the most sensitive organs of plants to their environment, the structure of leaves reflects of the long-term adaptability of plants to their surrounding environments. Therefore, ecological adaptation mechanisms related to ecological stoichiometry and leaf anatomical structure of QSH were explored. In this study, stoichiometric characteristics were determined by measuring leaf carbon (C), nitrogen (N), and phosphorus (P) contents, and morphological adaptations were determined by examining leaf anatomical traits with microscopy. RESULTS: Different QSH life forms and species had different nutrient allocation strategies. Leaves of QSH plants had higher C and P and lower N contents and higher N and lower P utilization efficiencies. According to an N: P ratio threshold, the growth of QSH species was limited by N, except that of Q. aquifolioides and Q. longispica, which was limited by both N and P. Although stoichiometric homeostasis of C, N, and P and C: N, C: P, and N: P ratios differed slightly across life forms and species, the overall degree of homeostasis was strong, with strictly homeostatic, homeostatic, and weakly homeostatic regulation. In addition, QSH leaves had compound epidermis, thick cuticle, developed palisade tissue and spongy tissue. However, leaves were relatively thin overall, possibly due to leaf leathering and lignification, which is strategy to resist stress from UV radiation, drought, and frost. Furthermore, contents of C, N, and P and stoichiometric ratios were significantly correlated with leaf anatomical traits. CONCLUSIONS: QSH adapt to the plateau environment by adjusting the content and utilization efficiencies of C, N, and P elements. Strong stoichiometric homeostasis of QSH was likely a strategy to mitigate nutrient limitation. The unique leaf structure of the compound epidermis, thick cuticle, well-developed palisade tissue and spongy tissue is another adaptive mechanism for QSH to survive in the plateau environment. The anatomical adaptations and nutrient utilization strategies of QSH may have coevolved during long-term succession over millions of years.


Subject(s)
Adaptation, Physiological , Carbon , Nitrogen , Phosphorus , Plant Leaves , Quercus , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Quercus/anatomy & histology , Quercus/physiology , Phosphorus/metabolism , Nitrogen/metabolism , Tibet , Carbon/metabolism , China , Ecosystem
4.
Plant Cell Environ ; 47(8): 3166-3180, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38693830

ABSTRACT

Urban trees possess different capacities to mitigate ozone (O3) pollution through stomatal uptake. Stomatal closure protects trees from oxidative damage but limits their growth. To date, it is unclear how plant hydraulic function affect stomatal behaviour and determine O3 resistance. We assessed gas exchange and hydraulic traits in three subtropical urban tree species, Celtis sinensis, Quercus acutissima, and Q. nuttallii, under nonfiltered ambient air (NF) and elevated O3 (NF60). NF60 decreased photosynthetic rate (An) and stomatal conductance (gs) only in Q. acutissima and Q. nuttallii. Maintained An in C. sinensis suggested high O3 resistance and was attributed to higher leaf capacitance at the full turgor. However, this species exhibited a reduced stomatal sensitivity to vapour pressure deficit and an increased minimal gs under NF60. Such stomatal dysfunction did not decrease intrinsic water use efficiency (WUE) due to a tight coupling of An and gs. Conversely, Q. acutissima and Q. nuttallii showed maintained stomatal sensitivity and increased WUE, primarily correlated with gs and leaf water relations, including relative water content and osmotic potential at turgor loss point. Our findings highlight a trade-off between O3 resistance and stomatal functionality, with efficient stomatal control reducing the risk of hydraulic failure under combined stresses.


Subject(s)
Ozone , Photosynthesis , Plant Leaves , Plant Stomata , Quercus , Trees , Water , Ozone/pharmacology , Plant Stomata/physiology , Plant Stomata/drug effects , Water/metabolism , Water/physiology , Trees/physiology , Trees/drug effects , Plant Leaves/physiology , Plant Leaves/drug effects , Plant Leaves/metabolism , Quercus/physiology , Quercus/drug effects , Photosynthesis/drug effects , Plant Transpiration/physiology , Plant Transpiration/drug effects
5.
Ecol Appl ; 34(4): e2971, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581136

ABSTRACT

Climate change is increasing the frequency of droughts and the risk of severe wildfires, which can interact with shrub encroachment and browsing by wild ungulates. Wild ungulate populations are expanding due, among other factors, to favorable habitat changes resulting from land abandonment or land-use changes. Understanding how ungulate browsing interacts with drought to affect woody plant mortality, plant flammability, and fire hazard is especially relevant in the context of climate change and increasing frequency of wildfires. The aim of this study is to explore the combined effects of cumulative drought, shrub encroachment, and ungulate browsing on the fire hazard of Mediterranean oak woodlands in Portugal. In a long-term (18 years) ungulate fencing exclusion experiment that simulated land abandonment and management neglect, we investigated the population dynamics of the native shrub Cistus ladanifer, which naturally dominates the understory of woodlands and is browsed by ungulates, comparing areas with (no fencing) and without (fencing) wild ungulate browsing. We also modeled fire behavior in browsed and unbrowsed plots considering drought and nondrought scenarios. Specifically, we estimated C. ladanifer population density, biomass, and fuel load characteristics, which were used to model fire behavior in drought and nondrought scenarios. Overall, drought increased the proportion of dead C. ladanifer shrub individuals, which was higher in the browsed plots. Drought decreased the ratio of live to dead shrub plant material, increased total fuel loading, shrub stand flammability, and the modeled fire parameters, that is, rate of surface fire spread, fireline intensity, and flame length. However, total fuel load and fire hazard were lower in browsed than unbrowsed plots, both in drought and nondrought scenarios. Browsing also decreased the population density of living shrubs, halting shrub encroachment. Our study provides long-term experimental evidence showing the role of wild ungulates in mitigating drought effects on fire hazard in shrub-encroached Mediterranean oak woodlands. Our results also emphasize that the long-term effects of land abandonment can interact with climate change drivers, affecting wildfire hazard. This is particularly relevant given the increasing incidence of land abandonment.


Subject(s)
Droughts , Forests , Quercus , Wildfires , Animals , Quercus/physiology , Portugal , Fires , Deer/physiology , Cistaceae/physiology , Population Dynamics , Climate Change , Herbivory
6.
Ecol Appl ; 34(4): e2970, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602711

ABSTRACT

Tree growth is a key mechanism driving carbon sequestration in forest ecosystems. Environmental conditions are important regulators of tree growth that can vary considerably between nearby urban and rural forests. For example, trees growing in cities often experience hotter and drier conditions than their rural counterparts while also being exposed to higher levels of light, pollution, and nutrient inputs. However, the extent to which these intrinsic differences in the growing conditions of trees in urban versus rural forests influence tree growth response to climate is not well known. In this study, we tested for differences in the climate sensitivity of tree growth between urban and rural forests along a latitudinal transect in the eastern United States that included Boston, Massachusetts, New York City, New York, and Baltimore, Maryland. Using dendrochronology analyses of tree cores from 55 white oak trees (Quercus alba), 55 red maple trees (Acer rubrum), and 41 red oak trees (Quercus rubra) we investigated the impacts of heat stress and water stress on the radial growth of individual trees. Across our three-city study, we found that tree growth was more closely correlated with climate stress in the cooler climate cities of Boston and New York than in Baltimore. Furthermore, heat stress was a significant hindrance to tree growth in higher latitudes while the impacts of water stress appeared to be more evenly distributed across latitudes. We also found that the growth of oak trees, but not red maple trees, in the urban sites of Boston and New York City was more adversely impacted by heat stress than their rural counterparts, but we did not see these urban-rural differences in Maryland. Trees provide a wide range of important ecosystem services and increasing tree canopy cover was typically an important component of urban sustainability strategies. In light of our findings that urbanization can influence how tree growth responds to a warming climate, we suggest that municipalities consider these interactions when developing their tree-planting palettes and when estimating the capacity of urban forests to contribute to broader sustainability goals in the future.


Subject(s)
Climate Change , Trees , Urbanization , Trees/growth & development , Acer/growth & development , Acer/physiology , Quercus/growth & development , Quercus/physiology , Forests , Cities
7.
Am J Bot ; 111(5): e16333, 2024 May.
Article in English | MEDLINE | ID: mdl-38757608

ABSTRACT

PREMISE: During the last centuries, the area covered by urban landscapes is increasing all over the world. Urbanization can change local habitats and decrease connectivity among these habitats, with important consequences for species interactions. While several studies have found a major imprint of urbanization on plant-insect interactions, the effects of urbanization on seed predation remain largely unexplored. METHODS: We investigated the relative impact of sunlight exposure, leaf litter, and spatial connectivity on predation by moth and weevil larvae on acorns of the pedunculate oak across an urban landscape during 2018 and 2020. We also examined whether infestations by moths and weevils were independent of each other. RESULTS: While seed predation varied strongly among trees, seed predation was not related to differences in sunlight exposure, leaf litter, or spatial connectivity. Seed predation by moths and weevils was negatively correlated at the level of individual acorns in 2018, but positively correlated at the acorn and the tree level in 2020. CONCLUSIONS: Our study sets the baseline expectation that urban seed predators are unaffected by differences in sunlight exposure, leaf litter, and spatial connectivity. Overall, our findings suggest that the impact of local and spatial factors on insects within an urban context may depend on the species guild. Understanding the impact of local and spatial factors on biodiversity, food web structure, and ecosystem functioning can provide valuable insights for urban planning and management strategies aimed at promoting urban insect diversity.


Subject(s)
Ecosystem , Moths , Quercus , Seeds , Weevils , Animals , Seeds/physiology , Moths/physiology , Weevils/physiology , Quercus/physiology , Larva/physiology , Urbanization , Cities , Sunlight , Food Chain
8.
Biochem J ; 480(17): 1429-1443, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37497606

ABSTRACT

Elevated CO2 (eCO2) is a determinant factor of climate change and is known to alter plant processes such as physiology, growth and resistance to pathogens. Quercus robur, a tree species integrated in most forest regeneration strategies, shows high vulnerability to powdery mildew (PM) disease at the seedling stage. PM is present in most oak forests and it is considered a bottleneck for oak woodland regeneration. Our study aims to decipher the effect of eCO2 on plant responses to PM. Oak seedlings were grown in controlled environment at ambient (aCO2, ∼400 ppm) and eCO2 (∼1000 ppm), and infected with Erysiphe alphitoides, the causal agent of oak PM. Plant growth, physiological parameters and disease progression were monitored. In addition, to evaluate the effect of eCO2 on induced resistance (IR), these parameters were assessed after treatments with IR elicitor ß-aminobutyric acid (BABA). Our results show that eCO2 increases photosynthetic rates and aerial growth but in contrast, reduces root length. Importantly, under eCO2 seedlings were more susceptible to PM. Treatments with BABA protected seedlings against PM and this protection was maintained under eCO2. Moreover, irrespectively of the concentration of CO2, BABA did not significantly change aerial growth but resulted in longer radicular systems, thus mitigating the effect of eCO2 in root shortening. Our results demonstrate the impact of eCO2 in plant physiology, growth and defence, and warrant further biomolecular studies to unravel the mechanisms by which eCO2 increases oak seedling susceptibility to PM.


Subject(s)
Quercus , Seedlings , Carbon Dioxide/pharmacology , Quercus/physiology , Photosynthesis
9.
Environ Monit Assess ; 196(7): 634, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900402

ABSTRACT

The present study investigates the seasonal variations in leaf ecophysiological traits and strategies employed by co-occurring evergreen and deciduous tree species within a white oak forest (Quercus leucotrichophora A. Camus) ecosystem in the central Himalaya. Seasonal variations in physiological, morphological, and chemical traits were observed from leaf initiation until senescence in co-occurring deciduous and evergreen tree species. We compared various parameters, including net photosynthetic capacity (Aarea and Amass), leaf stomatal conductance (gswarea and gswmass), transpiration rate (Earea and Emass), specific leaf area (SLA), mid-day water potential (Ψmd), leaf nitrogen (N) and phosphorus (P) concentration, leaf total chlorophyll concentration, photosynthetic nitrogen- and phosphorus-use efficiency (PNUE and PPUE), and water use efficiency (WUE) across four evergreen and four deciduous tree species. Our findings reveal that evergreen and deciduous trees exhibit divergent strategies in coping with seasonal changes, which are crucial for their survival and growth. Deciduous trees consistently exhibited significantly higher photosynthetic rates, transpiration rates, mass-based N and P concentrations (Nmass and Pmass), mass-based chlorophyll concentration (Chlmass), SLA, and leaf Ψmd, while maintaining lower leaf structural investments throughout the year compared to evergreen trees. These findings indicate that deciduous trees achieve greater assimilation rates per unit mass and higher nutrient-use efficiency. Physiological, morphological, and leaf N and P concentrations were higher in the summer (fully expanded leaf) than in the fall (senesced leaf). These insights provide valuable contributions to our understanding of tree species coexistence and their ecological roles in temperate forest ecosystems, with implications for forest management and conservation in the Himalayan region.


Subject(s)
Forests , Nitrogen , Photosynthesis , Plant Leaves , Quercus , Seasons , Trees , Plant Leaves/physiology , Quercus/physiology , Trees/physiology , Nitrogen/metabolism , Phosphorus/metabolism , Chlorophyll/metabolism , Environmental Monitoring , India , Ecosystem , Water/metabolism
10.
New Phytol ; 239(3): 888-904, 2023 08.
Article in English | MEDLINE | ID: mdl-37282764

ABSTRACT

Distinct survival strategies can result from trade-offs in plant function under contrasting environments. Investment in drought resistance mechanisms can enhance survivorship but result in conservative growth. We tested the hypothesis that the widespread oaks (Quercus spp.) of the Americas exhibit an interspecific trade-off between drought resistance and growth capacity. Using experimental water treatments, we isolated adaptive trait associations among species in relation to their broad climates of origin and tested for correlated evolution between plant functional responses to water availability and habitat. Across all lineages, oaks displayed plastic drought responses - typically acclimating through osmolyte accumulation in leaves and/or employing conservative growth. Oaks from xeric climates had higher osmolytes and reduced stomatal pore area index, which allows for moderated gas exchange and limits tissue loss. Patterns suggest drought resistance strategies are convergent and under strong adaptive pressure. Leaf habit, however, mediates the growth and drought resistance strategies of oaks. Deciduous species, and evergreen species from xeric climates, have increased drought tolerance through osmoregulation, which allows for continuous, conservative growth. Evergreen mesic species show limited drought resistance but could enhance growth under well-watered conditions. Consequently, evergreen species from mesic environments are especially vulnerable to chronic drought and climate change.


Subject(s)
Quercus , Quercus/physiology , Droughts , Plant Leaves/physiology , Drought Resistance , Americas
11.
Glob Chang Biol ; 29(7): 2015-2029, 2023 04.
Article in English | MEDLINE | ID: mdl-36600482

ABSTRACT

Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP ), a property that integrates the drought response of an ecosystem's plant community across the soil-plant-atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an "ecosystem pressure-volume (PV) curve," which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd ) was above ΨEWP (=-2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP , the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP , the forest is commonly only 2-4 weeks of intense drought away from reaching ΨEWP , and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP , and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.


Subject(s)
Carya , Quercus , Ecosystem , Droughts , Quercus/physiology , Trees/physiology , Forests , Water/physiology , Plant Leaves/physiology , Soil
12.
Oecologia ; 201(4): 915-927, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36932216

ABSTRACT

Branch architecture is a key determinant of plant performance owing to its role in a light interception by photosynthetic tissues. However, under stressed conditions, excess light may be harmful to the photosynthetic apparatus, and plants often present structural mechanisms to avoid photoinhibition. Three-dimensional models were constructed of the aerial parts in different locations within the crown of three co-occurring tree species (Quercus ilex, Q. suber and Q. faginea) growing in a Mediterranean environment. We hypothesized that the species with the shorter leaf life span would exhibit higher leaf display efficiency (silhouette to total leaf area, STAR), maximizing light interception and photosynthesis in the short term. In addition, more exposed positions within a canopy should develop more structural avoidance mechanisms to minimize excessive radiation. Significant differences were detected in architectural traits at both the intra- and interspecific level. Architectural traits promoting greater self-shading were more frequent in the species with longer leaf longevity and in the canopy locations experiencing higher temperatures at the times of maximum sunlight. However, these trends were in part counteracted by the changes in individual leaf area, which tended to be larger in the species with shorter leaf longevity and in the less exposed canopy locations. We conclude that the variation in architectural traits occurs mainly as a means to avoid the excessive self-shading of branches with the largest leaf size.


Subject(s)
Quercus , Quercus/physiology , Photosynthesis/physiology , Plant Leaves/physiology , Trees/physiology , Light
13.
Environ Monit Assess ; 195(2): 258, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36595133

ABSTRACT

The difference in maintaining a safety margin with regard to hydraulic conductance between pine and oak species influences their distribution in a region. Chir pine (Pinus roxburghii) and banj oak (Quercus leucotrichophora) are the principal species of Central Himalayan forests between 1000 and 2000 m elevations. Nearly 80% of annual precipitation of ~ 1400 mm in the region occurs during monsoon, from mid-June to September, whereafter droughts of varying length and intensity are common. The main objective of the study is to find out the responses of these two evergreen tree species to pre-monsoon (March to mid-June) water stress and topographical heterogeneity that occur in Central Himalaya. We measured soil and tree water potential and osmotic adjustment across five seasons on three slope positions, namely, hill base, mid-slope, and hill top, on north and south slope aspects. Chir pine showed an early response to pre-monsoon drought by restraining daily change in Ψ to 0.89 MPa, while predawn Ψ (ΨPD) was still moderate (isohydric tendency). In contrast, the daily reduction in Ψ of banj oak kept on increasing up to 1.49 MPa, despite severely low ΨPD (anisohydric tendency). In both tree species, Ψ was invariably lower on south aspect than north aspect and declined from hill base to hill top. Such responses to slope aspect and position, however, were relatively less apparent in chir pine, which tended to maintain a wide safety margin when under stress. As for soil Ψ, banj oak site retained monsoon rainwater more effectively than chir pine.


Subject(s)
Pinus , Quercus , Quercus/physiology , Droughts , Environmental Monitoring , Trees/physiology , Soil
14.
Environ Monit Assess ; 195(7): 827, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37294356

ABSTRACT

The Chir-Pine (Pinus roxburghii) and Banj-Oak (Quercus leucotrichophora)-dominated ecosystems of central Himalaya provide significant green services. However, responses of these ecosystems, with respect to ecosystem carbon flux variability, to changing microclimate are not yet studied. Since quantification of ecosystem responses to fluctuation in the microclimate, particularly rainfall, is expected to be beneficial for management of these ecosystems, this study aims (i) to quantify and compare amplitude of rainfall-induced change in the carbon fluxes of Chir-Pine and Banj-Oak-dominated ecosystems using wavelet methods, and (ii) to quantify and compare dissimilarities in the ecosystem exchanges due to varying rainfall spell and amount. Eddy covariance-based continuous daily micrometeorological and flux data, during the 2016-2017 monsoon seasons (total 244 days, 122 days of June-September), from two sites in Uttarakhand, India, are used for this purpose. We find that both Chir-Pine and Banj-Oak-dominated ecosystems are the sinks of carbon, and Chir-Pine-dominated ecosystem sequesters around 1.8 times higher carbon than the Banj-Oak. A systematic enhancement in the carbon assimilation of the Chir-Pine-dominated ecosystem is noted with increasing rainfall spell following a statistically significant power-law relationship. We have also identified a rainfall amount threshold for Chir-Pine and Banj-Oak-dominated ecosystems (10 ± 0.7 and 17 ± 1.2 mm, respectively) that resulted in highest ecosystem carbon assimilation in monsoon. The general inference of this study accentuates that Banj-Oak-dominated ecosystem is more sensitive to maximum rain within a spell whereas the Chir-Pine-dominated ecosystem is more responsive to increasing rainfall spell duration.


Subject(s)
Pinus , Quercus , Ecosystem , Quercus/physiology , Seasons , Carbon , Trees/physiology , Environmental Monitoring , Forests
15.
New Phytol ; 234(2): 462-478, 2022 04.
Article in English | MEDLINE | ID: mdl-35028942

ABSTRACT

Resource-use strategies are hypothesized to evolve along climatic gradients. However, our understanding of the environmental factors driving divergent evolution of resource-use strategies and the relationship between trait genetic variation and phenotypic plasticity is far from complete. Using the Mediterranean tree Quercus faginea as study system, we tested the hypothesis that a conservative resource-use strategy with increased drought tolerance and reduced phenotypic plasticity has evolved in areas with longer and more severe dry seasons. We conducted a glasshouse experiment in which we measured leaf morphological, physiological, growth and allocation traits in seedlings from 10 range-wide climatically contrasting populations, grown under two different watering treatments. Both univariate and multivariate analyses revealed a genetic gradient of resource-use strategies and phenotypic plasticity associated with provenance climate. In particular, populations from harsher (drier and colder) environments had more sclerophyllous leaves, lower growth rates, better physiological performance under dry conditions and reduced multi-trait phenotypic plasticity compared to populations from more mesic and milder environments. Our results suggest that contrasting precipitation and temperature regimes play an important role in the adaptive intraspecific evolution of multivariate phenotypes and their plasticity, resulting in coordinated morphology, physiology, growth and allometry according to alternative resource-use strategies.


Subject(s)
Quercus , Adaptation, Physiological/genetics , Genetic Variation , Phenotype , Quercus/physiology , Water
16.
New Phytol ; 235(6): 2237-2251, 2022 09.
Article in English | MEDLINE | ID: mdl-35491749

ABSTRACT

Climate change and pathogen outbreaks are the two major causes of decline in Mediterranean holm oak trees (Quercus ilex L. subsp. ballota (Desf.) Samp.). Crown-level changes in response to these stressful conditions have been widely documented but the responses of the root systems remain unexplored. The effects of environmental stress over roots and its potential role during the declining process need to be evaluated. We aimed to study how key morphological and architectural root parameters and nonstructural carbohydrates of roots are affected along a holm oak health gradient (i.e. within healthy, susceptible and declining trees). Holm oaks with different health statuses had different soil resource-uptake strategies. While healthy and susceptible trees showed a conservative resource-uptake strategy independently of soil nutrient availability, declining trees optimized soil resource acquisition by increasing the phenotypic plasticity of their fine root system. This increase in fine root phenotypic plasticity in declining holm oaks represents an energy-consuming strategy promoted to cope with the stress and at the expense of foliage maintenance. Our study describes a potential feedback loop resulting from strong unprecedented belowground stress that ultimately may lead to poor adaptation and tree death in the Spanish dehesa.


Subject(s)
Quercus , Adaptation, Physiological , Climate Change , Quercus/physiology , Soil , Stress, Physiological , Trees/physiology
17.
New Phytol ; 234(5): 1629-1638, 2022 06.
Article in English | MEDLINE | ID: mdl-35306670

ABSTRACT

Traits enabling seeds to survive post-dispersal desiccation and subsequently germinate are important aspects of plant regeneration for species with desiccation-sensitive seeds. However, how desiccation and germination-related traits co-vary and relate to patterns of climate variation are unknown. We investigated physiological traits related to desiccation and germination of desiccation-sensitive seeds from 19 Quercus species, which typically dominate subalpine, subtropical and temperate forests in China. The results demonstrate a strong relationship between climate and seed traits consistent with a hypothesis of minimizing seed death from desiccation. Seeds of subalpine species were most desiccation sensitive and died fastest when dried. These species avoided drought and cold by germinating rapidly. Subtropical and temperate oaks had more variable strategies to minimize the risk of mortality reflecting a continuum between traits that facilitate rapid germination (with the risk of rapid desiccation) and slow germination (and slow desiccation). Across the Quercus species, the relative level of seed desiccation sensitivity, which we predicted to be important for reducing the risk of drying related mortality, was independent of climate. For desiccation-sensitive seeds this suggests a more diverse range of strategies for minimizing desiccation risk than reported previously.


Subject(s)
Quercus , China , Climate , Germination/physiology , Quercus/physiology , Seeds/physiology
18.
Plant Cell Environ ; 45(7): 1967-1984, 2022 07.
Article in English | MEDLINE | ID: mdl-35394675

ABSTRACT

Increasing temperature and drought can result in leaf dehydration and defoliation even in drought-adapted tree species such as the Mediterranean evergreen Quercus ilex L. The stomatal regulation of leaf water potential plays a central role in avoiding this phenomenon and is constrained by a suite of leaf traits including hydraulic conductance and vulnerability, hydraulic capacitance, minimum conductance to water vapour, osmotic potential and cell wall elasticity. We investigated whether the plasticity in these traits may improve leaf tolerance to drought in two long-term rainfall exclusion experiments in Mediterranean forests. Osmotic adjustment was observed to lower the water potential at turgor loss in the rainfall-exclusion treatments, thus suggesting a stomatal closure at more negative water potentials and a more anisohydric behaviour in drier conditions. Conversely, leaf hydraulic conductance and vulnerability did not exhibit any plasticity between treatments so the hydraulic safety margins were narrower in the rainfall-exclusion treatments. The sequence of leaf responses to seasonal drought and dehydration was conserved among treatments and sites but trees were more likely to suffer losses of turgor and hydraulic functioning in the rainfall-exclusion treatments. We conclude that leaf plasticity might help the trees to tolerate moderate drought but not to resist severe water stress.


Subject(s)
Quercus , Acclimatization , Dehydration , Droughts , Plant Leaves/physiology , Quercus/physiology , Trees
19.
Plant Cell Environ ; 45(2): 329-346, 2022 02.
Article in English | MEDLINE | ID: mdl-34902165

ABSTRACT

The coordination of plant leaf water potential (ΨL ) regulation and xylem vulnerability to embolism is fundamental for understanding the tradeoffs between carbon uptake and risk of hydraulic damage. There is a general consensus that trees with vulnerable xylem more conservatively regulate ΨL than plants with resistant xylem. We evaluated if this paradigm applied to three important eastern US temperate tree species, Quercus alba L., Acer saccharum Marsh. and Liriodendron tulipifera L., by synthesizing 1600 ΨL observations, 122 xylem embolism curves and xylem anatomical measurements across 10 forests spanning pronounced hydroclimatological gradients and ages. We found that, unexpectedly, the species with the most vulnerable xylem (Q. alba) regulated ΨL less strictly than the other species. This relationship was found across all sites, such that coordination among traits was largely unaffected by climate and stand age. Quercus species are perceived to be among the most drought tolerant temperate US forest species; however, our results suggest their relatively loose ΨL regulation in response to hydrologic stress occurs with a substantial hydraulic cost that may expose them to novel risks in a more drought-prone future.


Subject(s)
Acer/physiology , Droughts , Liriodendron/physiology , Quercus/physiology , Water/physiology , Xylem/physiology , Trees/physiology
20.
Plant Cell Environ ; 45(11): 3275-3289, 2022 11.
Article in English | MEDLINE | ID: mdl-36030547

ABSTRACT

Temperature (T) and vapour pressure deficit (VPD) are important drivers of plant hydraulic conductivity, growth, mortality, and ecosystem productivity, independently of soil water availability. Our goal was to disentangle the effects of T and VPD on plant hydraulic responses. Young trees of Fagus sylvatica L., Quercus pubescens Willd. and Quercus ilex L. were exposed to a cross-combination of a T and VPD manipulation under unlimited soil water availability. Stem hydraulic conductivity and leaf-level hydraulic traits (e.g., gas exchange and osmotic adjustment) were tracked over a full growing season. Significant loss of xylem conductive area (PLA) was found in F. sylvatica and Q. pubescens due to rising VPD and T, but not in Q. ilex. Increasing T aggravated the effects of high VPD in F. sylvatica only. PLA was driven by maximum hydraulic conductivity and minimum leaf conductance, suggesting that high transpiration and water loss after stomatal closure contributed to plant hydraulic stress. This study shows for the first time that rising VPD and T lead to losses of stem conductivity even when soil water is not limiting, highlighting their rising importance in plant mortality mechanisms in the future.


Subject(s)
Quercus , Soil , Droughts , Ecosystem , Plant Leaves/physiology , Plant Transpiration/physiology , Polyesters , Quercus/physiology , Temperature , Vapor Pressure , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL