Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.280
Filter
1.
Org Biomol Chem ; 22(5): 1038-1046, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38197499

ABSTRACT

This paper describes a simple and practical protocol for the direct synthesis of acyclic and cyclic quinone derivatives via an acid-promoted nickel(II)-catalyzed inner rim C-H oxidation of cyclotriveratrylene (CTV) and its analogues. The cyclic quinone derivatives resulted from trimethoxy-cyclotriveratrylene (TCTV) through C-C bond formation via intramolecular ipso substitution followed by subsequent anionic rearrangement containing stereo-vicinal quaternary centers. The DFT calculations strongly support the experimental findings and reveal the role of Brønsted acids in the C-H bond activation of CTV. All the newly synthesized compounds were screened for their in vitro anti-cancer activity using colorimetric SRB assay analysis. Among them, compounds 3a, 3d, 3h, 4a, 4b, 4c and 4e exhibited moderate anticancer activity against A549, HCT-116, PC-3, MDA-MB-231, HEK-293 and SW620 human cancer cell lines.


Subject(s)
Antineoplastic Agents , Polycyclic Compounds , Humans , Quinones/pharmacology , HEK293 Cells , Antineoplastic Agents/chemistry , Catalysis
2.
Org Biomol Chem ; 22(35): 7187-7193, 2024 09 11.
Article in English | MEDLINE | ID: mdl-39158153

ABSTRACT

L-Cysteine (Cys)-activatable photosensitizer 3 was designed and synthesized based on hypocrellin B (1). Cys is a novel tumor-associated biomarker. 3 exhibited negligible photosensitizing ability without Cys. However, when 1 was released from 3 by reaction with Cys, the photosensitizing activity was restored. Furthermore, 3 showed selective and effective photo-cytotoxicity against only cancer cells such as HeLa and A549 cells that highly express Cys when irradiated with 660 nm light, which is inside the phototherapeutic window.


Subject(s)
Antineoplastic Agents , Cysteine , Perylene , Photosensitizing Agents , Quinones , Humans , Quinones/chemistry , Quinones/pharmacology , Quinones/chemical synthesis , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Perylene/chemistry , Perylene/analogs & derivatives , Perylene/pharmacology , Perylene/chemical synthesis , Cysteine/chemistry , HeLa Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , A549 Cells , Molecular Structure , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Photochemotherapy
3.
J Biochem Mol Toxicol ; 38(9): e23797, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39180369

ABSTRACT

Osteoporosis is a common condition worldwide, affecting millions of people. Women are more commonly affected than men, and the risk increases with age. Inflammatory reaction plays a crucial role in the expansion of osteoporosis. Osteoporosis is characterized by a gradual decline in bone density and bone tissue quality, which increases fragility and raises the risk of fractures. We scrutinized the anti-osteoporosis effect of hydroxysafflor yellow A (HYA) against glucocorticoid-induced osteoporosis (GIOP) in rats. In-silico study was carried out on EGFR receptor (PDBID: 1m17), Estrogen Alpha (PDB id: 2IOG), MTOR (PDB id: 4FA6), RANKL (PDB id: 1S55), and VEGFR2 (PDB id: 1YWN) protein. For this investigation, Sprague-Dawley (SD) rats were used, and they received an oral dose of HYA (5, 10, and 20 mg/kg, b.w.) along with a subcutaneous injection of dexamethasone (0.1 mg/kg/day) to induce osteoporosis. The biomechanical, bone parameters, antioxidant, cytokines, inflammatory, nutrients, hormones, and urine parameters were estimated. HYA treatment significantly suppressed the body weight and altered the organ weight. HYA treatment remarkably suppressed the level of alkaline phosphatase, acid phosphatase, and improved the level of bone mineral density (total, proximal, mild, and dis). HYA treatment restored the level of calcium (Ca), phosphorus (P), estradiol (E2), and parathyroid hormone near to the normal level. HYA treatment remarkably altered the level of biomechanical parameters, antioxidant, cytokines, urine, and inflammatory parameters. HYA treatment altered the level of osteoprotegerin (OPG), receptor activator of nuclear factor kappa beta (RANKL) and RANKL/OPG ratio. The result clearly showed the anti-osteoporosis effect of HYA against GIOP-induced osteoporosis in rats via alteration of antioxidant, cytokines, inflammatory, and bone protective parameters.


Subject(s)
Chalcone , Glucocorticoids , Osteoporosis , Quinones , Rats, Sprague-Dawley , Animals , Osteoporosis/chemically induced , Osteoporosis/prevention & control , Osteoporosis/metabolism , Osteoporosis/drug therapy , Rats , Quinones/pharmacology , Chalcone/analogs & derivatives , Chalcone/pharmacology , Glucocorticoids/adverse effects , Anti-Inflammatory Agents/pharmacology , Bone Density/drug effects , Male , Female , Dexamethasone/pharmacology
4.
Parasitol Res ; 123(2): 121, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308145

ABSTRACT

Chemical defences against parasites and pathogens can be seen in a wide range of animal taxa, including insect pests such as the red flour beetle Tribolium castaneum. Antimicrobial quinone-based secretions can be used by these beetles to defend against various parasites, particularly the fungal entomopathogen Beauveria bassiana. While quinone secretions can inhibit B. bassiana growth, it is unknown how long they remain effective or how individual secretion compounds contribute to growth inhibition. Here, we tested each individual component of the quinone secretions (methyl-1,4-benzoquinone, ethyl-1,4-benzoquinone, and 1-pentadecene), as well as two mixed solutions that represent the composition range found in natural T. castaneum secretions, after aging for 0, 24, or 72 h. The two quinone compounds equally contributed to B. bassiana inhibition, but their efficacy was significantly reduced after 24 h, with no growth inhibition after 72 h. This indicates that quinones protect insects against B. bassiana for only a limited time, perhaps requiring constant secretion into the environment to effectively defend against this fungal threat. Future investigations may consider the extent to which quinone secretions are effective against other parasites, as well as how their ability to cause parasite damage changes with compound age.


Subject(s)
Beauveria , Coleoptera , Animals , Beauveria/physiology , Benzoquinones/pharmacology , Quinones/pharmacology
5.
Chem Pharm Bull (Tokyo) ; 72(4): 389-392, 2024.
Article in English | MEDLINE | ID: mdl-38644164

ABSTRACT

Chagas disease, a neglected tropical disease caused by the protozoan Trypanosoma cruzi poses a significant health challenge in rural areas of Latin America. The current pharmacological options exhibit notable side effects, demand prolonged administration, and display limited efficacy. Consequently, there is an urgent need to develop drugs that are safe and clinically effective. Previously, we identified a quinone compound (designated as compound 2) with potent antiprotozoal activity, based on the chemical structure of komaroviquinone, a natural product renowned for its antitrypanosomal effects. However, compound 2 was demonstrated considerably unstable to light. In this study, we elucidated the structure of the light-induced degradation products of compound 2 and probed the correlation between the quinone ring's substituents and its susceptibility to light. Our findings led to the discovery of quinones with significantly enhanced light stability, some of which exhibiting antitrypanosomal activity. The most promising compound was evaluated for drug efficacy in a mouse model of Chagas disease, revealing where a notable reduction in blood parasitemia.


Subject(s)
Chagas Disease , Quinones , Trypanocidal Agents , Trypanosoma cruzi , Chagas Disease/drug therapy , Animals , Trypanosoma cruzi/drug effects , Mice , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Quinones/chemistry , Quinones/pharmacology , Parasitic Sensitivity Tests , Molecular Structure , Light , Disease Models, Animal , Structure-Activity Relationship
6.
Chem Biodivers ; 21(7): e202301771, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38628065

ABSTRACT

The crude acetone extract of a marine Micromonospora sp. strain associated with Eudistoma vannnamei was fractioned with hexane and ethyl acetate. The crude extract and both soluble fractions were assayed against several bacteria strains. The new polycyclic quinones 12-hydroxy-9-propyltetracene-6,1-dione (1), 5,12-dihydroxy-4-methoxy-9-propyltetracene-5,12-dione (2), and 4,6-dihydroxy-3-methoxycarbonyl- methyl-6a-(oxobutyl)-5,12-anthraquinone (3), along with the known 4,6-dihydroxy-3-methoxycarbonyl-methyl-6a-(oxo-3-methyl-butyl)-5,12-anthraquinone (4) and 4,6-dihydroxy-3-methoxycarbonyl-methyl-6a-(oxopentyl)-5,12-anthraquinone (5) were isolated from the hexane-soluble fraction, while from the active ethyl acetate fraction were isolated the known 4,6,11-trihydroxy-9-propyltetracene-5,12-dione (6), 4-methoxy-9-propyltetracene-6,11-dione (7), 7,8,9,10-tetrahydro-9-hydroxy-4-methoxy-9-propyltetracene-6,11-dione (8), and 10ß-carbomethoxy-7,8,9,10-tetrahydro-4,6,7α,9α,11-pentahydroxy-9-propyltetracene-5,12-dione (9). The structures of the new compounds were established by interpretation of HRMS and NMR techniques. A study of molecular docking was performed with the compounds from the active ethyl acetate fraction to correlate tentatively with the antimicrobial activity. Molecular docking, RMSD, RMSF, and MM-GBSA evaluations were performed to investigate the inhibitory activity of 6-8 against the protein PDB-codex 1MWT, being considered a promising target for studying drug development responsible for inhibiting replication of Staphylococcus aureus. Penicillin G was used as the standard inhibitory. Anthracyclinones 6-8 were the best hydrolase inhibitor with affinity energy -8.1 to -7.9 kcal/mol compared to penicillin G, which presented -6.9 kcal/mol. Both 8 and 7 present potent inhibitory effects against hydrolase through molecular dynamics simulation and exhibit favorable drug-like properties, promising new hydrolase blockers to fight bacterial infections from Staphylococcus aureus.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Micromonospora , Molecular Docking Simulation , Quinones , Micromonospora/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Quinones/chemistry , Quinones/pharmacology , Quinones/isolation & purification , Molecular Structure , Polycyclic Compounds/pharmacology , Polycyclic Compounds/chemistry , Polycyclic Compounds/isolation & purification
7.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062816

ABSTRACT

To assess the effects of hydroxysafflor yellow A (HSYA) on ultraviolet A (UVA)-induced damage in HaCaT keratinocytes. HaCaT keratinocytes were UVA-irradiated, and the effects of HSYA on cell viability, reactive oxygen species (ROS) generation, lipid peroxidation, and messenger (m)RNA expression were measured. mRNA expressions of matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, and cyclooxygenase (COX)-2 were determined by a real-time polymerase chain reaction (RT-PCR). UVA exposure led to a decrease in cell viability and an increase in ROS generation in HaCaT keratinocytes. HSYA effectively increased the viability of HaCaT keratinocytes after UVA exposure and protected them from UVA-induced oxidative stress. Moreover, HSYA inhibited expressions of MMP-1, MMP-2, MMP-9, and COX-2 by HaCaT keratinocytes with UVA-induced photodamage. Our results suggest that HSYA can act as a free radical scavenger when keratinocytes are photodamaged. HSYA has the potential to be a skin-protective ingredient against UVA-induced photodamage.


Subject(s)
Cell Survival , Chalcone , HaCaT Cells , Keratinocytes , Quinones , Reactive Oxygen Species , Ultraviolet Rays , Humans , Quinones/pharmacology , Ultraviolet Rays/adverse effects , Keratinocytes/drug effects , Keratinocytes/radiation effects , Keratinocytes/metabolism , Chalcone/pharmacology , Chalcone/analogs & derivatives , Cell Survival/drug effects , Cell Survival/radiation effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Lipid Peroxidation/drug effects , Cell Line , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics
8.
Inflammopharmacology ; 32(4): 2395-2411, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38858336

ABSTRACT

Quinone-containing compounds have risen as promising anti-inflammatory targets; however, very little research has been directed to investigate their potentials. Accordingly, the current study aimed to design and synthesize group of quinones bearing different substituents to investigate the effect of these functionalities on the anti-inflammatory activities of this important scaffold. The choice of these substituents was carefully done, varying from a directly attached heterocyclic ring to different aromatic moieties linked through a nitrogen spacer. Both in vitro and in vivo anti-inflammatory activities of the synthesized compounds were assessed relative to the positive standards: celecoxib and indomethacin. The in vitro enzymatic and transcription inhibitory actions of all the synthesized compounds were tested against cyclooxygenase-2 (COX-2), cyclooxygenase-1 (COX-1), and 5-lipoxygenase (LOX) and the in vivo gene expression of Interleukin-1, interleukin 10, and Tumor Necrosis Factor-α (TNF-α) were determined. The IC50 against COX-1 and COX-2 enzymes obtained by the immunoassay test revealed promising activities of sixteen compounds with selectivity indices higher than 100-fold COX-2 selectivity. Out of those, four compounds revealed selectivity indices comparable to celecoxib as a reference drug. Furthermore, all the tested compounds inhibited LOX with an IC50 in the range of 1.59-3.11 µM superior to that of the reference drug used; zileuton (IC50 = 3.50 µM). Consequently, these results highlight the promising LOX inhibitory activity of the tested compounds. The obtained in vivo paw edema results showed high inhibitory percentage for the compounds 9a, 9b, and 11a with the significant lower TNF-α relative mRNA expression for compounds 5a, 5d, 9a, 9b, 12d, and 12e. Finally, in silico docking of the most active compounds (5b, 5d, 9a, 9b) against COX2 enzymes presented an acceptable justification of the obtained in vitro inhibitory activities. As a conclusion, Compounds 5b, 5d, 9a, 9b, and 11b showed promising results and thus deserves further investigation.


Subject(s)
Anti-Inflammatory Agents , Cyclooxygenase 2 , Edema , Lipoxygenase Inhibitors , Quinones , Animals , Lipoxygenase Inhibitors/pharmacology , Rats , Cyclooxygenase 2/metabolism , Edema/drug therapy , Quinones/pharmacology , Anti-Inflammatory Agents/pharmacology , Male , Cyclooxygenase Inhibitors/pharmacology , Structure-Activity Relationship , Molecular Docking Simulation/methods , Arachidonate 5-Lipoxygenase/metabolism , Rats, Wistar , Cyclooxygenase 1/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Carrageenan
9.
Pak J Pharm Sci ; 37(2(Special)): 435-442, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822547

ABSTRACT

Depression is a common non-motor symptom of Parkinson's disease. Previous studies demonstrated that hydroxysafflor yellow A had properties of improving motor symptoms of Parkinson's disease. The effect of hydroxysafflor yellow A on depression in Parkinson's disease mice is investigated in this study. To induce Parkinson's disease model, male Swiss mice were exposed to rotenone (30 mg/kg) for 6 weeks. The chronic unpredictable mild stress was employed to induce depression from week 3 to week 6. Sucrose preference, tail suspension, and forced swimming tests were conducted. Golgi and Nissl staining of hippocampus were carried out. The levels of dopamine, 5-hydroxytryptamine and the expression of postsynaptic density protein 95, brain-derived neurotrophic factor in hippocampus were assayed. It showed that HSYA improved the depression-like behaviors of Parkinson's disease mice. Hydroxysafflor yellow A attenuated the injury of nerve and elevated contents of dopamine, 5-hydroxytryptamine in hippocampus. Treatment with hydroxysafflor yellow A also augmented the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor. These findings suggest that hydroxysafflor yellow A ameliorates depression-like behavior in Parkinson's disease mice through regulating the contents of postsynaptic density protein 95 and brain-derived neurotrophic factor, therefore protecting neurons and neuronal dendrites of the hippocampus.


Subject(s)
Behavior, Animal , Brain-Derived Neurotrophic Factor , Chalcone , Depression , Hippocampus , Quinones , Serotonin , Animals , Quinones/pharmacology , Quinones/therapeutic use , Chalcone/analogs & derivatives , Chalcone/pharmacology , Chalcone/therapeutic use , Male , Mice , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Behavior, Animal/drug effects , Serotonin/metabolism , Dopamine/metabolism , Rotenone/pharmacology , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/psychology
10.
Nat Prod Rep ; 40(3): 718-749, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36636914

ABSTRACT

Covering: 2010 to 2021Sesquiterpene quinone/quinols (SQs) are characterized by a C15-sesquiterpenoid unit incorporating a C6-benzoquinone/quinol moiety. Numerous unprecedented carbon skeletons have been constructed with various connection patterns between the two parts. The potent anti-cancer, anti-inflammatory, anti-microbial, anti-viral, and fibrinolytic activities of SQs are associated with their diverse structures. The representative avarol has even entered the stage of clinical phase II research as an anti-HIV agent, and was developed as paramedic medicine against psoriasis. This review provides an overall summary of 558 new natural SQs discovered between 2010 and 2021, including seven groups and sixteen structure-type subgroups, which comprehensively recapitulates their chemical structures, spectral characteristics, source organisms, biological activities, synthesis, and biosynthesis, aiming to expand the application scope of this unique natural product resource.


Subject(s)
Hydroquinones , Sesquiterpenes , Sesquiterpenes/pharmacology , Quinones/pharmacology , Benzoquinones
11.
Phytopathology ; 113(1): 80-89, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35918851

ABSTRACT

Since its reemergence in 2004, Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew (CDM), has experienced significant changes in fungicide sensitivity. Presently, frequent fungicide applications are required to control the disease in cucumber due to the loss of host resistance. Carboxylic acid amides (CAA) and quinone outside inhibitors (QoI) are two fungicide groups used to control foliar diseases in cucurbits, including CDM. Resistance to these fungicides is associated with single nucleotide polymorphism (SNP) mutations. In this study, we used population analyses to determine the occurrence of fungicide resistance mutations to CAA and QoI fungicides in host-adapted clade 1 and clade 2 P. cubensis isolates. Our results revealed that CAA-resistant genotypes occurred more prominently in clade 2 isolates, with more sensitive genotypes observed in clade 1 isolates, while QoI resistance was widespread across isolates from both clades. We also determined that wild cucurbits can serve as reservoirs for P. cubensis isolates containing fungicide resistance alleles. Finally, we report that the G1105W substitution associated with CAA resistance was more prominent within clade 2 P. cubensis isolates while the G1105V resistance substitution and sensitivity genotypes were more prominent in clade 1 isolates. Our findings of clade-specific occurrence of fungicide resistance mutations highlight the importance of understanding the population dynamics of P. cubensis clades by crop and region to design effective fungicide programs and establish accurate baseline sensitivity to active ingredients in P. cubensis populations.


Subject(s)
Fungicides, Industrial , Oomycetes , Peronospora , Fungicides, Industrial/pharmacology , Amides/pharmacology , Carboxylic Acids/pharmacology , Plant Diseases , Oomycetes/genetics , Mutation , Strobilurins/pharmacology , Quinones/pharmacology
12.
Altern Ther Health Med ; 29(4): 146-151, 2023 May.
Article in English | MEDLINE | ID: mdl-36933246

ABSTRACT

Context: KOA characterized by recurrent joint pain and progressive joint dysfunction. Is the present clinical common chronic progressive degenerative osteoarthropathy, how long the disease is difficult to cure and easy to relapse. Exploring new therapeutic approaches and mechanisms is important for the treatment of KOA. One of the main applications for sodium hyaluronate (SH) in the medical field is treatment of osteoarthritis. However, the effects of SH alone in the treatment of KOA are limited. Hydroxysafflor yellow A (HSYA) may have therapeutic effects for KOA. Objective: The study intended to investigate the therapeutic effects and possible mechanisms of action HSYA+SH for cartilage tissue of rabbits with KOA and to provide a theoretical basis for the treatment of KOA. Design: The research team performed an animal study. Setting: The study that took place at Liaoning Jijia Biotechnology, Shenyang, Liaoning, China. Animals: The animals were 30 healthy, adult, New Zealand white rabbits, weighing 2-3 kg. Intervention: The research team randomly divided the rabbits into three groups, with 10 rabbits in each group: (1) a control group, for which the research team didn't induce KOA and provided no treatment; (2) the HSYA+SH group, the intervention group, for which the research team induced KOA and injected the rabbits with the HSYA+SH treatment; and (3) the KOA group, for which the research team induced KOA and injected the rabbits with saline. Outcome Measures: The research team: (1) observed the morphological changes in the cartilage tissue using hematoxylin-eosin (HE) staining; (2) measured levels of serum inflammatory factors, including tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1ß), interferon gamma (IFN-γ), IL-6, and IL-17 using an enzyme-linked immunosorbent assay (ELISA); (3) measured cartilage-cell apoptosis using "terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling" (TUNEL); and (4) used Western Blot to detect the expression of proteins related to the "neurogenic locus notch homolog protein 1" (Notch1) signaling pathway. Results: Compared with the control group, morphological changes had occurred to the cartilage tissue in the KOA group. Compared with the control group, that group's level of apoptosis was higher, the levels of serum inflammatory factors were significantly higher (P < .05), and the protein expression related to the Notch1 signaling pathway was also significantly higher (P < .05). The morphology of the cartilage tissue in the HSYA+SH was better than that of the KOA group but not as good as that of the control group. Compared with the KOA group, the HSYA+SH group's level of apoptosis was lower, the levels of serum inflammatory factors were significantly lower (P < .05), and the protein expression related to the Notch1 signaling pathway was also significantly lower (P < .05). Conclusions: HSYA+SH can reduce the cellular apoptosis in the cartilage tissue of rabbits with KOA, downregulate the levels of inflammatory factors, and protect against KOA-induced cartilage tissue injury, and the mechanism may be related to the regulation of the Notch1 signaling pathway.


Subject(s)
Osteoarthritis, Knee , Rabbits , Animals , Osteoarthritis, Knee/drug therapy , Hyaluronic Acid/therapeutic use , Quinones/pharmacology , Quinones/therapeutic use , Inflammation/drug therapy
13.
Chem Biodivers ; 20(12): e202301365, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37926679

ABSTRACT

Quinones are natural products widely distributed in nature, which are involved in stages of several vital biological processes, with mostly having a variety of pharmacological properties. The main groups comprising most of these compounds are benzoquinones, naphthoquinones, anthraquinones, and phenanthraquinones. Quinone isolation has been a focus of study around the world in recent years; for this reason, this study approaches the junction of natural quinones identified by 13 C Nuclear Magnetic Resonance (NMR) spectroscopic analytical techniques. The methodology used to obtain the data collected articles from various databases on quinones from 2000 to 2022. As a result, 137 compounds were selected, among which 70 were characterized for the first time in the period investigated; moreover, the study also discusses the biosynthetic pathways of quinones and the pharmacological activities of the compounds found, giving an overview of the various applications of these compounds.


Subject(s)
Naphthoquinones , Quinones , Quinones/pharmacology , Quinones/chemistry , Benzoquinones/chemistry , Naphthoquinones/chemistry , Anthraquinones/chemistry , Magnetic Resonance Spectroscopy
14.
Molecules ; 28(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630229

ABSTRACT

A wide range of bioactive compounds with potential medical applications are produced by members of the genus Streptomyces. A new actinomycete producer of the antibiotic γ-rubromycin, designated TA 36, was isolated from an alpine soil sample collected in Peru (Machu Picchu). Morphological, physiological and biochemical characteristics of the strain, together with data obtained via phylogenetic analysis and MALDI-TOF MS, were used for the correct identification of the isolate. The isolate TA 36 showed morphological characteristics that were consistent with its classification within the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequences showed that the TA 36 strain was most similar to S. iakyrus and S. violaceochromogenes with 99% similarity. Phylogenetic analysis together with the profile of whole cell proteins indicated that the strain tested could be identified as S. iakyrus TA 36. The crude extract Ext.5333.TA 36 showed various effects against the tested organisms with strong antimicrobial activity in the growth of Staphylococcus aureus (Newman) (MIC value of 0.00195 µg/µL). HPLC fractionation and LC/MS analysis of the crude extract led to the identification of the quinone antibiotic γ-rubromycin, a promising antitumour and antibacterial antibiotic. To the best of our knowledge, there is currently no report on the production of γ-rubromycin by S. iakyrus. Therefore, this study suggests S. iakyrus TA 36 as the first-reported source of this unique bioactive secondary metabolite.


Subject(s)
Quinones , Streptomyces , Phylogeny , RNA, Ribosomal, 16S/genetics , Quinones/pharmacology , Anti-Bacterial Agents/pharmacology
15.
Molecules ; 28(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37446632

ABSTRACT

Plant flavonoids have attracted increasing attention as new antimicrobial agents or adjuvants. In our previous work, it was confirmed that the cell membrane is the major site of plant flavonoids acting on the Gram-positive bacteria, which likely involves the inhibition of the respiratory chain. Inspired by the similar structural and antioxidant characters of plant flavonoids to hydro-menaquinone (MKH2), we deduced that the quinone pool is probably a key target of plant flavonoids inhibiting Gram-positive bacteria. To verify this, twelve plant flavonoids with six structural subtypes were preliminarily selected, and their minimum inhibitory concentrations (MICs) against Gram-positive bacteria were predicted from the antimicrobial quantitative relationship of plant flavonoids to Gram-positive bacteria. The results showed they have different antimicrobial activities. After their MICs against Staphylococcus aureus were determined using the broth microdilution method, nine compounds with MICs ranging from 2 to 4096 µg/mL or more than 1024 µg/mL were eventually selected, and then their MICs against S. aureus were determined interfered with different concentrations of menaquinone-4 (MK-4) and the MKs extracted from S. aureus. The results showed that the greater the antibacterial activities of plant flavonoids were, the more greatly their antibacterial activities decreased along with the increase in the interfering concentrations of MK-4 (from 2 to 256 µg/mL) and the MK extract (from 4 to 512 µg/mL), while those with the MICs equal to or more than 512 µg/mL decreased a little or remained unchanged. In particular, under the interference of MK-4 (256 µg/mL) and the MK extract (512 µg/mL), the MICs of α-mangostin, a compound with the greatest inhibitory activity to S. aureus out of these twelve plant flavonoids, increased by 16 times and 8 to 16 times, respectively. Based on the above, it was proposed that the quinone pool is a key target of plant flavonoids inhibiting Gram-positive bacteria, and which likely involves multiple mechanisms including some enzyme and non-enzyme inhibitions.


Subject(s)
Anti-Infective Agents , Flavonoids , Flavonoids/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Staphylococcus aureus , Gram-Positive Bacteria , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Quinones/pharmacology , Gram-Negative Bacteria
16.
Molecules ; 28(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36770840

ABSTRACT

The enzyme NRH:quinone oxidoreductase 2 (NQO2) plays an important role in the pathogenesis of various diseases such as neurodegenerative disorders, malaria, glaucoma, COVID-19 and cancer. NQO2 expression is known to be increased in some cancer cell lines. Since 3-arylidene-2-oxindoles are widely used in the design of new anticancer drugs, such as kinase inhibitors, it was interesting to study whether such structures have additional activity towards NQO2. Herein, we report the synthesis and study of 3-arylidene-2-oxindoles as novel NRH:quinone oxidoreductase inhibitors. It was demonstrated that oxindoles with 6-membered aryls in the arylidene moiety were obtained predominantly as E-isomers while for some 5-membered aryls, the Z-isomers prevailed. The most active compounds inhibited NQO2 with an IC50 of 0.368 µM. The presence of a double bond in the oxindoles was crucial for NQO2 inhibition activity. There was no correlation between NQO2 inhibition activity of the synthesized compounds and their cytotoxic effect on the A549 cell line.


Subject(s)
COVID-19 , Quinone Reductases , Humans , Quinone Reductases/chemistry , Oxindoles/pharmacology , Quinones/pharmacology
17.
Molecules ; 28(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38138580

ABSTRACT

Doxorubicin (DOX), an anthracycline-based chemotherapeutic agent, is widely used to treat various types of cancer; however, prolonged treatment induces cardiomyotoxicity. Although studies have been performed to overcome DOX-induced cardiotoxicity (DICT), no effective method is currently available. This study investigated the effects and potential mechanisms of Poncirus trifoliata aqueous extract (PTA) in DICT. Changes in cell survival were assessed in H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells. The C57BL/6 mice were treated with DOX to induce DICT in vivo, and alterations in electrophysiological characteristics, serum biomarkers, and histological features were examined. The PTA treatment inhibited DOX-induced decrease in H9c2 cell viability but did not affect the MDA-MB-231 cell viability. Additionally, the PTA restored the abnormal heart rate, R-R interval, QT interval, and ST segment and inhibited the decrease in serum cardiac and hepatic toxicity indicators in the DICT model. Moreover, the PTA administration protected against myocardial fibrosis and apoptosis in the heart tissue of mice with DICT. PTA treatment restored DOX-induced decrease in the expression of NAD(P)H dehydrogenase quinone acceptor oxidoreductase 1 in a PTA concentration-dependent manner. In conclusion, the PTA inhibitory effect on DICT is attributable to its antioxidant properties, suggesting the potential of PTA as a phytotherapeutic agent for DICT.


Subject(s)
Myocytes, Cardiac , Poncirus , Rats , Mice , Humans , Animals , NAD/metabolism , Poncirus/metabolism , Up-Regulation , Oxidative Stress , Mice, Inbred C57BL , Doxorubicin/toxicity , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Oxidoreductases/metabolism , Quinones/pharmacology
18.
Compr Rev Food Sci Food Saf ; 22(4): 3254-3291, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37219415

ABSTRACT

Polyphenol oxidation is a chemical process impairing food freshness and other desirable qualities, which has become a serious problem in fruit and vegetable processing industry. It is crucial to understand the mechanisms involved in these detrimental alterations. o-Quinones are primarily generated by polyphenols with di/tri-phenolic groups through enzymatic oxidation and/or auto-oxidation. They are highly reactive species, which not only readily suffer the attack by nucleophiles but also powerfully oxidize other molecules presenting lower redox potentials via electron transfer reactions. These reactions and subsequent complicated reactions are capable of initiating quality losses in foods, such as browning, aroma loss, and nutritional decline. To attenuate these adverse influences, a variety of technologies have emerged to restrain polyphenol oxidation via governing different factors, especially polyphenol oxidases and oxygen. Despite tremendous efforts devoted, to date, the loss of food quality caused by quinones has remained a great challenge in the food processing industry. Furthermore, o-quinones are responsible for the chemopreventive effects and/or toxicity of the parent catechols on human health, the mechanisms by which are quite complex. Herein, this review focuses on the generation and reactivity of o-quinones, attempting to clarify mechanisms involved in the quality deterioration of foods and health implications for humans. Potential innovative inhibitors and technologies are also presented to intervene in o-quinone formation and subsequent reactions. In future, the feasibility of these inhibitory strategies should be evaluated, and further exploration on biological targets of o-quinones is of great necessity.


Subject(s)
Benzoquinones , Polyphenols , Humans , Oxidation-Reduction , Quinones/chemistry , Quinones/pharmacology
19.
Pharm Biol ; 61(1): 1054-1064, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37416997

ABSTRACT

CONTEXT: Hydroxysafflor yellow A (HSYA) is the main bioactive ingredient of safflower (Carthamus tinctorius L., [Asteraceae]) for traumatic brain injury (TBI) treatment. OBJECTIVE: To explore the therapeutic effects and underlying mechanisms of HSYA on post-TBI neurogenesis and axon regeneration. MATERIALS AND METHODS: Male Sprague-Dawley rats were randomly assigned into Sham, controlled cortex impact (CCI), and HSYA groups. Firstly, the modified Neurologic Severity Score (mNSS), foot fault test, hematoxylin-eosin staining, Nissl's staining, and immunofluorescence of Tau1 and doublecortin (DCX) were used to evaluate the effects of HSYA on TBI at the 14th day. Next, the effectors of HSYA on post-TBI neurogenesis and axon regeneration were screened out by pathology-specialized network pharmacology and untargeted metabolomics. Then, the core effectors were validated by immunofluorescence. RESULTS: HSYA alleviated mNSS, foot fault rate, inflammatory cell infiltration, and Nissl's body loss. Moreover, HSYA increased not only hippocampal DCX but also cortical Tau1 and DCX following TBI. Metabolomics demonstrated that HSYA significantly regulated hippocampal and cortical metabolites enriched in 'arginine metabolism' and 'phenylalanine, tyrosine and tryptophan metabolism' including l-phenylalanine, ornithine, l-(+)-citrulline and argininosuccinic acid. Network pharmacology suggested that neurotrophic factor (BDNF) and signal transducer and activator of transcription 3 (STAT3) were the core nodes in the HSYA-TBI-neurogenesis and axon regeneration network. In addition, BDNF and growth-associated protein 43 (GAP43) were significantly elevated following HSYA treatment in the cortex and hippocampus. DISCUSSION AND CONCLUSIONS: HSYA may promote TBI recovery by facilitating neurogenesis and axon regeneration through regulating cortical and hippocampal metabolism, BDNF and STAT3/GAP43 axis.


Subject(s)
Brain Injuries, Traumatic , Chalcone , Rats , Male , Animals , Rats, Sprague-Dawley , Brain-Derived Neurotrophic Factor , Axons , Nerve Regeneration , Brain Injuries, Traumatic/drug therapy , Quinones/pharmacology , Chalcone/pharmacology , Metabolomics
20.
Angew Chem Int Ed Engl ; 62(14): e202218021, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36732289

ABSTRACT

Nanostructured materials with tunable structures and functionality are of interest in diverse areas. Herein, metal ions are coordinated with quinones through metal-acetylacetone coordination bonds to generate a class of structurally tunable, universally adhesive, hydrophilic, and pH-degradable materials. A library of metal-quinone networks (MQNs) is produced from five model quinone ligands paired with nine metal ions, leading to the assembly of particles, tubes, capsules, and films. Importantly, MQNs show bidirectional pH-responsive disassembly in acidic and alkaline solutions, where the quinone ligands mediate the disassembly kinetics, enabling temporal and spatial control over the release of multiple components using multilayered MQNs. Leveraging this tunable release and the inherent medicinal properties of quinones, MQN prodrugs with a high drug loading (>89 wt %) are engineered using doxorubicin for anti-cancer therapy and shikonin for the inhibition of the main protease in the SARS-CoV-2 virus.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Metals/chemistry , Quinones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL