Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Mol Cell ; 81(3): 514-529.e6, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33385327

ABSTRACT

Termination of RNA polymerase II (RNAPII) transcription in metazoans relies largely on the cleavage and polyadenylation (CPA) and integrator (INT) complexes originally found to act at the ends of protein-coding and small nuclear RNA (snRNA) genes, respectively. Here, we monitor CPA- and INT-dependent termination activities genome-wide, including at thousands of previously unannotated transcription units (TUs), producing unstable RNA. We verify the global activity of CPA occurring at pA sites indiscriminately of their positioning relative to the TU promoter. We also identify a global activity of INT, which is largely sequence-independent and restricted to a ~3-kb promoter-proximal region. Our analyses suggest two functions of genome-wide INT activity: it dampens transcriptional output from weak promoters, and it provides quality control of RNAPII complexes that are unfavorably configured for transcriptional elongation. We suggest that the function of INT in stable snRNA production is an exception from its general cellular role, the attenuation of non-productive transcription.


Subject(s)
Cleavage And Polyadenylation Specificity Factor/metabolism , DNA-Binding Proteins/metabolism , RNA Polymerase II/metabolism , RNA, Small Nuclear/biosynthesis , Transcription Termination, Genetic , Cleavage And Polyadenylation Specificity Factor/genetics , DNA-Binding Proteins/genetics , HeLa Cells , Humans , Polyadenylation , Promoter Regions, Genetic , RNA Polymerase II/genetics , RNA, Small Nuclear/genetics
2.
Genes Dev ; 34(13-14): 989-1001, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32499401

ABSTRACT

Polymerases and exonucleases act on 3' ends of nascent RNAs to promote their maturation or degradation but how the balance between these activities is controlled to dictate the fates of cellular RNAs remains poorly understood. Here, we identify a central role for the human DEDD deadenylase TOE1 in distinguishing the fates of small nuclear (sn)RNAs of the spliceosome from unstable genome-encoded snRNA variants. We found that TOE1 promotes maturation of all regular RNA polymerase II transcribed snRNAs of the major and minor spliceosomes by removing posttranscriptional oligo(A) tails, trimming 3' ends, and preventing nuclear exosome targeting. In contrast, TOE1 promotes little to no maturation of tested U1 variant snRNAs, which are instead targeted by the nuclear exosome. These observations suggest that TOE1 is positioned at the center of a 3' end quality control pathway that selectively promotes maturation and stability of regular snRNAs while leaving snRNA variants unprocessed and exposed to degradation in what could be a widespread mechanism of RNA quality control given the large number of noncoding RNAs processed by DEDD deadenylases.


Subject(s)
Nuclear Proteins/metabolism , RNA 3' End Processing/genetics , RNA Stability/genetics , RNA, Small Nuclear/genetics , Cell Line , Cell Nucleus/metabolism , Gene Deletion , HeLa Cells , Humans , Nucleocytoplasmic Transport Proteins/metabolism , Phosphoproteins/metabolism , RNA, Small Nuclear/biosynthesis
3.
EMBO J ; 36(7): 934-948, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28254838

ABSTRACT

The 7SK small nuclear RNP (snRNP), composed of the 7SK small nuclear RNA (snRNA), MePCE, and Larp7, regulates the mRNA elongation capacity of RNA polymerase II (RNAPII) through controlling the nuclear activity of positive transcription elongation factor b (P-TEFb). Here, we demonstrate that the human 7SK snRNP also functions as a canonical transcription factor that, in collaboration with the little elongation complex (LEC) comprising ELL, Ice1, Ice2, and ZC3H8, promotes transcription of RNAPII-specific spliceosomal snRNA and small nucleolar RNA (snoRNA) genes. The 7SK snRNA specifically associates with a fraction of RNAPII hyperphosphorylated at Ser5 and Ser7, which is a hallmark of RNAPII engaged in snRNA synthesis. Chromatin immunoprecipitation (ChIP) and chromatin isolation by RNA purification (ChIRP) experiments revealed enrichments for all components of the 7SK snRNP on RNAPII-specific sn/snoRNA genes. Depletion of 7SK snRNA or Larp7 disrupts LEC integrity, inhibits RNAPII recruitment to RNAPII-specific sn/snoRNA genes, and reduces nascent snRNA and snoRNA synthesis. Thus, through controlling both mRNA elongation and sn/snoRNA synthesis, the 7SK snRNP is a key regulator of nuclear RNA production by RNAPII.


Subject(s)
Gene Expression Regulation , RNA, Small Nuclear/biosynthesis , Ribonucleoproteins/metabolism , Transcription Factors/metabolism , Chromatin Immunoprecipitation , HeLa Cells , Humans , RNA Polymerase II/metabolism
4.
Nat Chem Biol ; 15(4): 340-347, 2019 04.
Article in English | MEDLINE | ID: mdl-30778204

ABSTRACT

Small nuclear RNAs (snRNAs) are core spliceosome components and mediate pre-mRNA splicing. Here we show that snRNAs contain a regulated and reversible nucleotide modification causing them to exist as two different methyl isoforms, m1 and m2, reflecting the methylation state of the adenosine adjacent to the snRNA cap. We find that snRNA biogenesis involves the formation of an initial m1 isoform with a single-methylated adenosine (2'-O-methyladenosine, Am), which is then converted to a dimethylated m2 isoform (N6,2'-O-dimethyladenosine, m6Am). The relative m1 and m2 isoform levels are determined by the RNA demethylase FTO, which selectively demethylates the m2 isoform. We show FTO is inhibited by the oncometabolite D-2-hydroxyglutarate, resulting in increased m2-snRNA levels. Furthermore, cells that exhibit high m2-snRNA levels show altered patterns of alternative splicing. Together, these data reveal that FTO controls a previously unknown central step of snRNA processing involving reversible methylation, and suggest that epitranscriptomic information in snRNA may influence mRNA splicing.


Subject(s)
Adenosine/analogs & derivatives , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/physiology , RNA, Small Nuclear/biosynthesis , Adenosine/biosynthesis , Adenosine/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alternative Splicing , Animals , HEK293 Cells , Humans , Male , Methylation , Mice , Mice, Knockout , RNA Precursors/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Small Nuclear/metabolism
5.
RNA ; 24(4): 437-460, 2018 04.
Article in English | MEDLINE | ID: mdl-29367453

ABSTRACT

Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.


Subject(s)
RNA Splice Sites/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Small Nuclear/genetics , Spliceosomes/metabolism , Humans , Nucleic Acid Conformation , RNA Polymerase III/metabolism , RNA Processing, Post-Transcriptional/genetics , RNA, Small Nuclear/biosynthesis , Saccharomyces cerevisiae/genetics
6.
Plant Cell ; 29(12): 3214-3233, 2017 12.
Article in English | MEDLINE | ID: mdl-29093215

ABSTRACT

Phosphorylation of the RNA polymerase II (Pol II) C-terminal domain (CTD) regulates transcription of protein-coding mRNAs and noncoding RNAs. CTD function in transcription of protein-coding RNAs has been studied extensively, but its role in plant noncoding RNA transcription remains obscure. Here, using Arabidopsis thaliana CTD PHOSPHATASE-LIKE4 knockdown lines (CPL4RNAi ), we showed that CPL4 functions in genome-wide, conditional production of 3'-extensions of small nuclear RNAs (snRNAs) and biogenesis of novel transcripts from protein-coding genes downstream of the snRNAs (snRNA-downstream protein-coding genes [snR-DPGs]). Production of snR-DPGs required the Pol II snRNA promoter (PIIsnR), and CPL4RNAi plants showed increased read-through of the snRNA 3'-end processing signal, leading to continuation of transcription downstream of the snRNA gene. We also discovered an unstable, intermediate-length RNA from the SMALL SCP1-LIKE PHOSPHATASE14 locus (imRNASSP14 ), whose expression originated from the 5' region of a protein-coding gene. Expression of the imRNASSP14 was driven by a PIIsnR and was conditionally 3'-extended to produce an mRNA. In the wild type, salt stress induced the snRNA-to-snR-DPG switch, which was associated with alterations of Pol II-CTD phosphorylation at the target loci. The snR-DPG transcripts occur widely in plants, suggesting that the transcriptional snRNA-to-snR-DPG switch may be a ubiquitous mechanism to regulate plant gene expression in response to environmental stresses.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Phosphoprotein Phosphatases/metabolism , RNA, Messenger/biosynthesis , RNA, Small Nuclear/biosynthesis , Salt Stress/physiology , Arabidopsis/genetics , DNA Transposable Elements/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Genetic Loci , Luciferases/metabolism , Models, Biological , Mutation/genetics , Nucleotide Motifs/genetics , Open Reading Frames/genetics , Phosphorylation , Plants, Genetically Modified , RNA Polymerase II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/metabolism , RNA, Small Nuclear/genetics , Transcription Factors/metabolism , Up-Regulation/genetics
7.
Nucleic Acids Res ; 42(1): 264-75, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24097444

ABSTRACT

RNA polymerase II transcribes both protein coding and non-coding RNA genes and, in yeast, different mechanisms terminate transcription of the two gene types. Transcription termination of mRNA genes is intricately coupled to cleavage and polyadenylation, whereas transcription of small nucleolar (sno)/small nuclear (sn)RNA genes is terminated by the RNA-binding proteins Nrd1, Nab3 and Sen1. The existence of an Nrd1-like pathway in humans has not yet been demonstrated. Using the U1 and U2 genes as models, we show that human snRNA genes are more similar to mRNA genes than yeast snRNA genes with respect to termination. The Integrator complex substitutes for the mRNA cleavage and polyadenylation specificity factor complex to promote cleavage and couple snRNA 3'-end processing with termination. Moreover, members of the associated with Pta1 (APT) and cleavage factor I/II complexes function as transcription terminators for human snRNA genes with little, if any, role in snRNA 3'-end processing. The gene-specific factor, proximal sequence element-binding transcription factor (PTF), helps clear the U1 and U2 genes of nucleosomes, which provides an easy passage for pol II, and the negative elongation factor facilitates termination at the end of the genes where nucleosome levels increase. Thus, human snRNA genes may use chromatin structure as an additional mechanism to promote efficient transcription termination in vivo.


Subject(s)
RNA, Small Nuclear/genetics , Transcription Termination, Genetic , mRNA Cleavage and Polyadenylation Factors/metabolism , Chromatin/chemistry , HeLa Cells , Humans , RNA 3' End Processing , RNA, Small Nuclear/biosynthesis , RNA, Small Nuclear/metabolism , Transcription Factors/physiology
8.
J Biol Chem ; 288(38): 27564-27570, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23955442

ABSTRACT

In the fruit fly Drosophila melanogaster, RNA polymerase III transcription was found to be dependent not upon the canonical TATA box-binding protein (TBP) but instead upon the TBP-related factor 1 (TRF1) (Takada, S., Lis, J. T., Zhou, S., and Tjian, R. (2000) Cell 101, 459-469). Here we confirm that transcription of fly tRNA genes requires TRF1. However, we unexpectedly find that U6 snRNA gene promoters are occupied primarily by TBP in cells and that knockdown of TBP, but not TRF1, inhibits U6 transcription in cells. Moreover, U6 transcription in vitro effectively utilizes TBP, whereas TBP cannot substitute for TRF1 to promote tRNA transcription in vitro. Thus, in fruit flies, different classes of RNA polymerase III promoters differentially utilize TBP and TRF1 for the initiation of transcription.


Subject(s)
Drosophila Proteins/metabolism , Promoter Regions, Genetic/physiology , RNA Polymerase III/metabolism , TATA Box Binding Protein-Like Proteins/metabolism , TATA-Box Binding Protein/metabolism , Transcription, Genetic/physiology , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , RNA Polymerase III/genetics , RNA, Small Nuclear/biosynthesis , RNA, Small Nuclear/genetics , RNA, Transfer/biosynthesis , RNA, Transfer/genetics , TATA Box Binding Protein-Like Proteins/genetics , TATA-Box Binding Protein/genetics
9.
J Biol Chem ; 287(10): 7039-50, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22219193

ABSTRACT

The human small nuclear RNA (snRNA) and small cytoplasmic RNA (scRNA) gene families encode diverse non-coding RNAs that influence cellular growth and division. Many snRNA and scRNA genes are related via their compact and yet powerful promoters that support RNA polymerase III transcription. We have utilized the human U6 snRNA gene family to examine the mechanism for regulated transcription of these potent transcription units. Analysis of nine U6 family members showed enriched CpG density within the promoters of actively transcribed loci relative to inert genes, implying a relationship between gene potency and DNA methylation. Indeed, both pharmacological inhibition of DNA methyltransferase (DNMT) activity and the forced diminution of DNMT-1, DNMT-3a, and DNMT-3b by siRNA targeting resulted in increased U6 levels in asynchronously growing MCF7 adenocarcinoma cells. In vitro transcription assays further showed that template methylation impedes U6 transcription by RNA polymerase III. Both DNMT-1 and DNMT-3a were detected at the U6-1 locus by chromatin immunoprecipitation directly linking these factors to RNA polymerase III regulation. Despite this association, the endogenous U6-1 locus was not substantially methylated in actively growing cells. However, both DNMT occupancy and low frequency methylation were correlated with increased Retinoblastoma tumor suppressor (RB) expression, suggesting that the RB status can influence specific epigenetic marks.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Epigenesis, Genetic , RNA Polymerase III/metabolism , RNA, Small Nuclear/biosynthesis , Transcription, Genetic , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Genetic Loci , HeLa Cells , Humans , RNA Polymerase III/genetics , RNA, Small Interfering/pharmacology , RNA, Small Nuclear/genetics , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
10.
J Biol Chem ; 287(47): 39369-79, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-23038247

ABSTRACT

Myb repeats ∼52 amino acid residues in length were first characterized in the oncogenic Myb transcription factor, which contains three tandem Myb repeats in its DNA-binding domain. Proteins of this family normally contain either one, two, or three tandem Myb repeats that are involved in protein-DNA interactions. The small nuclear RNA (snRNA)-activating protein complex (SNAPc) is a heterotrimeric transcription factor that is required for expression of small nuclear RNA genes. This complex binds to an essential promoter element, the proximal sequence element, centered ∼50 base pairs upstream of the transcription start site of snRNA genes. SNAP190, the largest subunit of SNAPc, uncharacteristically contains 4.5 tandem Myb repeats. Little is known about the arrangement of the Myb repeats in the SNAPc-DNA complex, and it has not been clear whether all 4.5 Myb repeats contact the DNA. By using a site-specific protein-DNA photo-cross-linking assay, we have now mapped specific nucleotides where each of the Myb repeats of Drosophila melanogaster SNAP190 interacts with a U1 snRNA gene proximal sequence element. The results reveal the topological arrangement of the 4.5 SNAP190 Myb repeats relative to the DNA and to each other when SNAP190 is bound to a U1 promoter as a subunit of SNAPc.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , Drosophila Proteins/metabolism , Proto-Oncogene Proteins c-myb/metabolism , RNA, Small Nuclear/biosynthesis , Response Elements/physiology , Amino Acid Motifs , Animals , Cell Cycle Proteins/genetics , Cell Line , DNA/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Protein Structure, Tertiary , Proto-Oncogene Proteins c-myb/genetics , RNA, Small Nuclear/genetics , Repetitive Sequences, Amino Acid
11.
J Biol Chem ; 285(51): 40303-11, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-20956530

ABSTRACT

The recent discovery of induced pluripotent stem cell (iPSC) technology provides an invaluable tool for creating in vitro representations of human genetic conditions. This is particularly relevant for those diseases that lack adequate animal models or where the species comparison is difficult, e.g. imprinting diseases such as the neurogenetic disorder Prader-Willi syndrome (PWS). However, recent reports have unveiled transcriptional and functional differences between iPSCs and embryonic stem cells that in cases are attributable to imprinting errors. This has suggested that human iPSCs may not be useful to model genetic imprinting diseases. Here, we describe the generation of iPSCs from a patient with PWS bearing a partial translocation of the paternally expressed chromosome 15q11-q13 region to chromosome 4. The resulting iPSCs match all standard criteria of bona fide reprogramming and could be readily differentiated into tissues derived from the three germ layers, including neurons. Moreover, these iPSCs retain a high level of DNA methylation in the imprinting center of the maternal allele and show concomitant reduced expression of the disease-associated small nucleolar RNA HBII-85/SNORD116. These results indicate that iPSCs may be a useful tool to study PWS and perhaps other genetic imprinting diseases as well.


Subject(s)
DNA Methylation , Genomic Imprinting , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Prader-Willi Syndrome/metabolism , Cell Dedifferentiation/genetics , Cells, Cultured , Chromosomes, Human, Pair 15/genetics , Chromosomes, Human, Pair 15/metabolism , Chromosomes, Human, Pair 4/genetics , Chromosomes, Human, Pair 4/metabolism , Humans , Induced Pluripotent Stem Cells/pathology , Prader-Willi Syndrome/genetics , Prader-Willi Syndrome/pathology , RNA, Small Nuclear/biosynthesis , RNA, Small Nuclear/genetics , Translocation, Genetic/genetics
12.
J Biol Chem ; 285(8): 5630-8, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-20018856

ABSTRACT

prp13-1 is one of the mutants isolated in a screen for defective pre-mRNA splicing at a nonpermissive temperature in fission yeast Schizosaccharomyces pombe. We cloned the prp13(+) gene and found that it encodes U4 small nuclear RNA (snRNA) involved in the assembly of the spliceosome. The prp13-1 mutant produced elongated cells, a phenotype similar to cell division cycle mutants, and displays a high incidence of lagging chromosomes on anaphase spindles. The mutant is hypersensitive to the microtubule-destabilizing drug thiabendazole, supporting that prp13-1 has a defect in chromosomal segregation. We found that the prp13-1 mutation resulted in expression of the ura4(+) gene inserted in the pericentromeric heterochromatin region and reduced recruitment of the heterochromatin protein Swi6p to that region, indicating defects in the formation of pericentromeric heterochromatin, which is essential for the segregation of chromosomes, in prp13-1. The formation of centromeric heterochromatin is induced by the RNA interference (RNAi) system in S. pombe. In prp13-1, the processing of centromeric noncoding RNAs to siRNAs, which direct the heterochromatin formation, was impaired and unprocessed noncoding RNAs were accumulated. These results suggest that U4 snRNA is required for the RNAi-directed heterochromatic gene silencing at the centromeres. In relation to the linkage between the spliceosomal U4 snRNA and the RNAi-directed formation of heterochromatin, we identified a mRNA-type intron in the centromeric noncoding RNAs. We propose a model in which the assembly of the spliceosome or a sub-spliceosome complex on the intron-containing centromeric noncoding RNAs facilitates the RNAi-directed formation of heterochromatin at centromeres, through interaction with the RNA-directed RNA polymerase complex.


Subject(s)
Centromere/metabolism , Chromosomes, Fungal/metabolism , Gene Silencing/physiology , Heterochromatin/metabolism , RNA, Fungal/biosynthesis , RNA, Small Nuclear/biosynthesis , Schizosaccharomyces/metabolism , Centromere/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation/physiology , Chromosomes, Fungal/genetics , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Fungal/physiology , Heterochromatin/genetics , Introns/physiology , RNA, Fungal/genetics , RNA, Small Nuclear/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism
13.
Biotechnol Bioeng ; 108(3): 621-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21246509

ABSTRACT

Although Saccharomyces cerevisiae is capable of fermenting galactose into ethanol, ethanol yield and productivity from galactose are significantly lower than those from glucose. An inverse metabolic engineering approach was undertaken to improve ethanol yield and productivity from galactose in S. cerevisiae. A genome-wide perturbation library was introduced into S. cerevisiae, and then fast galactose-fermenting transformants were screened using three different enrichment methods. The characterization of genetic perturbations in the isolated transformants revealed three target genes whose overexpression elicited enhanced galactose utilization. One confirmatory (SEC53 coding for phosphomannomutase) and two novel targets (SNR84 coding for a small nuclear RNA and a truncated form of TUP1 coding for a general repressor of transcription) were identified as overexpression targets that potentially improve galactose fermentation. Beneficial effects of overexpression of SEC53 may be similar to the mechanisms exerted by overexpression of PGM2 coding for phosphoglucomutase. While the mechanism is largely unknown, overexpression of SNR84, improved both growth and ethanol production from galactose. The most remarkable improvement of galactose fermentation was achieved by overexpression of the truncated TUP1 (tTUP1) gene, resulting in unrivalled galactose fermentation capability, that is 250% higher in both galactose consumption rate and ethanol productivity compared to the control strain. Moreover, the overexpression of tTUP1 significantly shortened lag periods that occurs when substrate is changed from glucose to galactose. Based on these results we proposed a hypothesis that the mutant Tup1 without C-terminal repression domain might bring in earlier and higher expression of GAL genes through partial alleviation of glucose repression. mRNA levels of GAL genes (GAL1, GAL4, and GAL80) indeed increased upon overexpression of tTUP. The results presented in this study illustrate that alteration of global regulatory networks through overexpression of the identified targets (SNR84 and tTUP1) is as effective as overexpression of a rate limiting metabolic gene (PGM2) in the galactose assimilation pathway for efficient galactose fermentation in S. cerevisiae. In addition, these results will be industrially useful in the biofuels area as galactose is one of the abundant sugars in marine plant biomass such as red seaweed as well as cheese whey and molasses.


Subject(s)
Ethanol/metabolism , Galactose/metabolism , Gene Expression Regulation, Fungal , Genetic Engineering , Metabolic Networks and Pathways/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Fermentation , Gene Expression , Nuclear Proteins/biosynthesis , RNA, Small Nuclear/biosynthesis , Repressor Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/biosynthesis
14.
Trends Biochem Sci ; 18(4): 131-5, 1993 Apr.
Article in English | MEDLINE | ID: mdl-8493724

ABSTRACT

Despite their early discovery, research into the small RNAs associated with the eukaryotic nucleolus (snoRNAs) has lagged behind that of their cousins, the small nuclear RNAs which are known to function in mRNA splicing (spliceosomal snRNAs). Recent progress has now shown that the snoRNAs also occupy a vital niche in the RNA world, participating in the processing of ribosomal RNA. Like the spliceosomal snRNAs, the snoRNAs exist as ribonucleoprotein (RNP) particles which appear to assemble into a large multi-RNA RNP complex for pre-rRNA maturation.


Subject(s)
Cell Nucleolus/chemistry , RNA, Fungal/metabolism , RNA, Small Nuclear/metabolism , Saccharomyces cerevisiae/genetics , Spliceosomes/chemistry , Animals , RNA, Small Nuclear/biosynthesis , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/genetics , Ribosomes/metabolism
15.
Biomed Res Int ; 2019: 1425281, 2019.
Article in English | MEDLINE | ID: mdl-31058184

ABSTRACT

Leishmania major, a protozoan parasite that diverged early from the main eukaryotic lineage, exhibits unusual mechanisms of gene expression. Little is known in this organism about the transcription factors involved in the synthesis of tRNA, 5S rRNA, and snRNAs, transcribed by RNA Polymerase III (Pol III). Here we identify and characterize the TFIIIB subunit Bdp1 in L. major (LmBdp1). Bdp1 plays key roles in Pol III transcription initiation in other organisms, as it participates in Pol III recruitment and promoter opening. In silico analysis showed that LmBdp1 contains the typical extended SANT domain as well as other Bdp1 conserved regions. Nevertheless, LmBdp1 also displays distinctive features, including the presence of only one aromatic residue in the N-linker region. We were not able to produce null mutants of LmBdp1 by homologous recombination, as the obtained double replacement cell line contained an extra copy of LmBdp1, indicating that LmBdp1 is essential for the viability of L. major promastigotes. Notably, the mutant cell line showed reduced levels of the LmBdp1 protein, and its growth was significantly decreased in relation to wild-type cells. Nuclear run-on assays demonstrated that Pol III transcription was affected in the mutant cell line, and ChIP experiments showed that LmBdp1 binds to 5S rRNA, tRNA, and snRNA genes. Thus, our results indicate that LmBdp1 is an essential protein required for Pol III transcription in L. major.


Subject(s)
Leishmania major/genetics , RNA Polymerase III/genetics , Transcription Factor TFIIIB/genetics , Transcription, Genetic , Computer Simulation , Conserved Sequence/genetics , Gene Expression Regulation/genetics , Homologous Recombination/genetics , Mutant Proteins/genetics , Promoter Regions, Genetic , Protein Domains/genetics , Protein Subunits/genetics , RNA, Ribosomal, 5S/biosynthesis , RNA, Small Nuclear/biosynthesis , RNA, Transfer/biosynthesis
16.
Genes (Basel) ; 10(11)2019 11 18.
Article in English | MEDLINE | ID: mdl-31752243

ABSTRACT

In the ciliate Stylonychia, somatic macronuclei differentiate from germline micronuclei during sexual reproduction, accompanied by developmental sequence reduction. Concomitantly, over 95% of micronuclear sequences adopt a heterochromatin structure characterized by the histone variant H3.4 and H3K27me3. RNAi-related genes and histone variants dominate the list of developmentally expressed genes. Simultaneously, 27nt-ncRNAs that match sequences retained in new macronuclei are synthesized and bound by PIWI1. Recently, we proposed a mechanistic model for 'RNA-induced DNA replication interference' (RIRI): during polytene chromosome formation PIWI1/27nt-RNA-complexes target macronucleus-destined sequences (MDS) by base-pairing and temporarily cause locally stalled replication. At polytene chromosomal segments with ongoing replication, H3.4K27me3-nucleosomes become selectively deposited, thus dictating the prospective heterochromatin structure of these areas. Consequently, these micronucleus-specific sequences become degraded, whereas 27nt-RNA-covered sites remain protected. However, the biogenesis of the 27nt-RNAs remains unclear. It was proposed earlier that in stichotrichous ciliates 27nt-RNA precursors could derive from telomere-primed bidirectional transcription of nanochromosomes and subsequent Dicer-like (DCL) activity. As a minimalistic explanation, we propose here that the 27nt-RNA precursor could rather be mRNA or pre-mRNA and that the transition of coding RNA from parental macronuclei to non-coding RNAs, which act in premature developing macronuclei, could involve RNA-dependent RNA polymerase (RDRP) activity creating dsRNA intermediates prior to a DCL-dependent pathway. Interestingly, by such mechanism the partition of a parental somatic genome and possibly also the specific nanochromosome copy numbers could be vertically transmitted to the differentiating nuclei of the offspring.


Subject(s)
Ciliophora/genetics , Gene Expression Regulation, Developmental , Micronucleus, Germline/genetics , RNA, Messenger/biosynthesis , RNA, Small Nuclear/biosynthesis , DNA Replication , Genome, Protozoan/genetics , Histones/genetics , Histones/metabolism , Micronucleus, Germline/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , RNA Interference , RNA Precursors/biosynthesis , RNA Precursors/genetics , RNA, Messenger/genetics , RNA, Small Nuclear/genetics , Telomere/genetics , Telomere/metabolism
17.
Gene ; 421(1-2): 89-94, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18619527

ABSTRACT

Promoters for vertebrate small nuclear RNA (snRNA) genes contain a relatively simple array of transcriptional control elements, divided into proximal and distal regions. Most of these genes are transcribed by RNA polymerase II (e.g., U1, U2), whereas the U6 gene is transcribed by RNA polymerase III. Previously identified vertebrate U6 snRNA gene promoters consist of a proximal sequence element (PSE) and TATA element in the proximal region, plus a distal region with octamer (OCT) and SphI postoctamer homology (SPH) elements. We have found that zebrafish U6 snRNA promoters contain the SPH element in a novel proximal position immediately upstream of the TATA element. The zebrafish SPH element is recognized by SPH-binding factor/selenocysteine tRNA gene transcription activating factor/zinc finger protein 143 (SBF/Staf/ZNF143) in vitro. Furthermore, a zebrafish U6 promoter with a defective SPH element is inefficiently transcribed when injected into embryos.


Subject(s)
Promoter Regions, Genetic , RNA, Small Nuclear/genetics , Zebrafish/genetics , 5' Flanking Region , Animals , Base Sequence , Consensus Sequence , Humans , Molecular Sequence Data , RNA, Small Nuclear/biosynthesis , Sequence Alignment , Trans-Activators/metabolism , Transcription, Genetic
18.
FEBS Lett ; 582(27): 3734-8, 2008 Nov 12.
Article in English | MEDLINE | ID: mdl-18948103

ABSTRACT

Small nuclear RNA activating protein complex (SNAPc) is a multi-subunit transcription factor required for expression of small nuclear RNA genes. This protein binds to a promoter element located approximately 40-65 bp upstream of the transcription start site. In Drosophila melanogaster, DmSNAPc contains three distinct polypeptide subunits: DmSNAP190, DmSNAP50, and DmSNAP43. The subunit stoichiometry in SNAPc complexed with DNA has not been examined. Therefore, the ability of differently tagged but otherwise identical subunits to associate with each other into the same protein-DNA complex was assayed by antibody super-shift analysis. The results reveal that DmSNAPc contains only a single copy of each of the three subunits.


Subject(s)
DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Animals , DNA/metabolism , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Electrophoretic Mobility Shift Assay , Molecular Sequence Data , Protein Subunits/metabolism , RNA, Small Nuclear/biosynthesis , Transcription Factors/genetics
19.
Mol Cell Biol ; 5(9): 2332-40, 1985 Sep.
Article in English | MEDLINE | ID: mdl-2942763

ABSTRACT

Transcription-proximal stages of U1 small nuclear RNA biosynthesis were studied by 32P labeling of nascent chains in isolated HeLa cell nuclei. Labeled RNA was hybridized to nitrocellulose-immobilized, single-stranded M13 DNA clones corresponding to regions within or flanking a human U1 RNA gene. Transcription of U1 RNA was inhibited by greater than 95% by alpha-amanitin at 1 microgram/ml, consistent with previous evidence that it is synthesized by RNA polymerase II. No hybridization to DNA immediately adjacent to the 5' end of mature U1 RNA (-6 to -105 nucleotides) was detected, indicating that, like all studied polymerase II initiation, transcription of U1 RNA starts at or very near the cap site. However, in contrast to previously described transcription units for mRNA, in which equimolar transcription occurs for hundreds or thousands of nucleotides beyond the mature 3' end of the mRNA, labeled U1 RNA hybridization dropped off sharply within a very short region (approximately 60 nucleotides) immediately downstream from the 3' end of mature U1 RNA. Also in contrast to pre-mRNA, which is assembled into ribonucleoprotein (RNP) particles while still nascent RNA chains, the U1 RNA transcribed in isolated nuclei did not form RNP complexes by the criterion of reaction with a monoclonal antibody for the small nuclear RNP Sm proteins. This suggests that, unlike pre-mRNA-RNP particle formation, U1 small nuclear RNP assembly does not occur until after the completion of transcription. These results show that, despite their common synthesis by RNA polymerase II, mRNA and U1 small nuclear RNA differ markedly both in their extents of 3' processing and their temporal patterns of RNP assembly.


Subject(s)
RNA, Small Nuclear/genetics , Base Sequence , Cell Nucleus , HeLa Cells , Humans , Nucleic Acid Hybridization , RNA Processing, Post-Transcriptional , RNA, Small Nuclear/biosynthesis , Ribonucleoproteins/analysis , Ribonucleoproteins, Small Nuclear , Transcription, Genetic
20.
Mol Cell Biol ; 6(3): 745-50, 1986 Mar.
Article in English | MEDLINE | ID: mdl-3773892

ABSTRACT

It has been shown previously that the synthesis of small nuclear RNAs (snRNAs) U1, U2, U3, U4, and U5, in contrast to that of all other RNA species tested, decreases markedly within 2 h of cell incubation after exposure to UV light (254 nm), while pyrimidine dimers are being removed from DNA. We examined the possibility that the postirradiation cell incubation-dependent, UV light-induced inhibition of snRNA synthesis might reflect hypersensitivity of the snRNA transcriptional domains to single-stranded DNA nicks or relaxation of DNA torsional stress or both that occur during DNA repair. This late suppression of snRNA biosynthesis was as pronounced in UV light-irradiated (DNA incision-deficient) xeroderma pigmentosum fibroblasts (complementation group A) as in irradiated normal human fibroblasts. The synthesis of snRNAs was not preferentially sensitive to gamma radiation (which produces single-stranded DNA breaks) or novobiocin or nalidixic acid (which induce DNA relaxation). Neither of these two drugs prevented the UV light-induced inhibition of snRNA synthesis observed during postirradiation cell incubation. These results suggest that the late suppression of snRNA synthesis does not result from hypersensitivity of snRNA transcriptional domains to single-stranded DNA cleavages or relaxation of DNA torsional strain. The UV light-induced late inhibition of snRNA synthesis: shows an inactivation curve whose slope differs from that observed immediately after irradiation; is seen in untransformed cells as well as established cells lines; and has been conserved between birds and mammals.


Subject(s)
RNA, Small Nuclear/radiation effects , Transcription, Genetic/radiation effects , Ultraviolet Rays , Animals , Chick Embryo , DNA Repair , Dose-Response Relationship, Radiation , Fibroblasts/radiation effects , Gamma Rays , Kinetics , Molecular Weight , RNA, Small Nuclear/biosynthesis , Tritium , Uridine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL