Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.569
Filter
1.
Cell ; 177(4): 970-985.e20, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31031000

ABSTRACT

Prolonged behavioral challenges can cause animals to switch from active to passive coping strategies to manage effort-expenditure during stress; such normally adaptive behavioral state transitions can become maladaptive in psychiatric disorders such as depression. The underlying neuronal dynamics and brainwide interactions important for passive coping have remained unclear. Here, we develop a paradigm to study these behavioral state transitions at cellular-resolution across the entire vertebrate brain. Using brainwide imaging in zebrafish, we observed that the transition to passive coping is manifested by progressive activation of neurons in the ventral (lateral) habenula. Activation of these ventral-habenula neurons suppressed downstream neurons in the serotonergic raphe nucleus and caused behavioral passivity, whereas inhibition of these neurons prevented passivity. Data-driven recurrent neural network modeling pointed to altered intra-habenula interactions as a contributory mechanism. These results demonstrate ongoing encoding of experience features in the habenula, which guides recruitment of downstream networks and imposes a passive coping behavioral strategy.


Subject(s)
Adaptation, Psychological/physiology , Habenula/physiology , Animals , Behavior, Animal/physiology , Brain/metabolism , Habenula/metabolism , Larva , Neural Pathways/metabolism , Neurons/metabolism , Raphe Nuclei/metabolism , Serotonergic Neurons/metabolism , Serotonin , Stress, Physiological/physiology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
2.
Cell ; 167(4): 886-887, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27814515

ABSTRACT

To adapt to their environment, animals subconsciously calculate how motor commands can be efficiently translated into the actual movements. Kawashima et al. discovered that serotonergic neurons in the dorsal raphe nucleus regulate the transient memory of such efficacy; thus, successive behaviors do not require repeated cumbersome readjustment of efficacy.


Subject(s)
Raphe Nuclei , Serotonin , Animals , Neurons
3.
Cell ; 167(4): 933-946.e20, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27881303

ABSTRACT

To execute accurate movements, animals must continuously adapt their behavior to changes in their bodies and environments. Animals can learn changes in the relationship between their locomotor commands and the resulting distance moved, then adjust command strength to achieve a desired travel distance. It is largely unknown which circuits implement this form of motor learning, or how. Using whole-brain neuronal imaging and circuit manipulations in larval zebrafish, we discovered that the serotonergic dorsal raphe nucleus (DRN) mediates short-term locomotor learning. Serotonergic DRN neurons respond phasically to swim-induced visual motion, but little to motion that is not self-generated. During prolonged exposure to a given motosensory gain, persistent DRN activity emerges that stores the learned efficacy of motor commands and adapts future locomotor drive for tens of seconds. The DRN's ability to track the effectiveness of motor intent may constitute a computational building block for the broader functions of the serotonergic system. VIDEO ABSTRACT.


Subject(s)
Learning , Models, Neurological , Swimming , Zebrafish/physiology , Animals , Brain Mapping , Larva , Optogenetics , Raphe Nuclei/physiology , Serotonergic Neurons/cytology , Serotonergic Neurons/physiology , Spatial Processing
4.
PLoS Comput Biol ; 20(5): e1012111, 2024 May.
Article in English | MEDLINE | ID: mdl-38805554

ABSTRACT

The dorsal (DRN) and median (MRN) raphe are important nuclei involved in similar functions, including mood and sleep, but playing distinct roles. These nuclei have a different composition of neuronal types and set of neuronal connections, which among other factors, determine their neuronal dynamics. Most works characterize the neuronal dynamics using classic measures, such as using the average spiking frequency (FR), the coefficient of variation (CV), and action potential duration (APD). In the current study, to refine the characterization of neuronal firing profiles, we examined the neurons within the raphe nuclei. Through the utilization of nonlinear measures, our objective was to discern the redundancy and complementarity of these measures, particularly in comparison with classic methods. To do this, we analyzed the neuronal basal firing profile in both nuclei of urethane-anesthetized rats using the Shannon entropy (Bins Entropy) of the inter-spike intervals, permutation entropy of ordinal patterns (OP Entropy), and Permutation Lempel-Ziv Complexity (PLZC). Firstly, we found that classic (i.e., FR, CV, and APD) and nonlinear measures fail to distinguish between the dynamics of DRN and MRN neurons, except for the OP Entropy. We also found strong relationships between measures, including the CV with FR, CV with Bins entropy, and FR with PLZC, which imply redundant information. However, APD and OP Entropy have either a weak or no relationship with the rest of the measures tested, suggesting that they provide complementary information to the characterization of the neuronal firing profiles. Secondly, we studied how these measures are affected by the oscillatory properties of the firing patterns, including rhythmicity, bursting patterns, and clock-like behavior. We found that all measures are sensitive to rhythmicity, except for the OP Entropy. Overall, our work highlights OP Entropy as a powerful and useful quantity for the characterization of neuronal discharge patterns.


Subject(s)
Action Potentials , Models, Neurological , Neurons , Nonlinear Dynamics , Animals , Rats , Action Potentials/physiology , Neurons/physiology , Raphe Nuclei/physiology , Male , Computational Biology , Rats, Sprague-Dawley
5.
Behav Pharmacol ; 35(7): 408-417, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39230572

ABSTRACT

Omeprazole, a drug of choice for the management of gastric hyperacidity, influences serotonergic neurotransmission in brain regions and its long-term use is known to cause stress-related behavioral deficits including anxiety. Aim of the current study was to explore the effects of omeprazole treatment on immobilization-induced anxiety in rats, specifically on the role of serotonin (5-HT). In view of the role of serotonin-1A (5-HT1A) autoreceptor in the availability of 5-HT in brain regions, mRNA expression of this autoreceptor was performed in raphe nuclei. Similarly, because of the role of hippocampal 5-HT neurotransmission in anxiety-like disorders, expression of the 5-HT1A heteroreceptors was determined in this region. We found that the treatment with omeprazole reduces anxiety-like behavior in rats, increases the expression of 5-HT1A autoreceptor in the raphe and decreases the hippocampal expression of 5-HT1A heteroreceptor. This suggests a role of 5-HT1A receptor types in omeprazole-induced behavioral changes. It also indicates a potential role of omeprazole in the management of serotonergic disorders.


Subject(s)
Anxiety , Disease Models, Animal , Hippocampus , Omeprazole , Receptor, Serotonin, 5-HT1A , Stress, Psychological , Animals , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/drug effects , Omeprazole/pharmacology , Male , Rats , Anxiety/drug therapy , Anxiety/metabolism , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Hippocampus/metabolism , Hippocampus/drug effects , Rats, Wistar , Brain/metabolism , Brain/drug effects , Serotonin/metabolism , Raphe Nuclei/metabolism , Raphe Nuclei/drug effects , RNA, Messenger/metabolism , Restraint, Physical , Immobilization
6.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673899

ABSTRACT

According to previous studies, the median raphe region (MRR) is known to contribute significantly to social behavior. Besides serotonin, there have also been reports of a small population of dopaminergic neurons in this region. Dopamine is linked to reward and locomotion, but very little is known about its role in the MRR. To address that, we first confirmed the presence of dopaminergic cells in the MRR of mice (immunohistochemistry, RT-PCR), and then also in humans (RT-PCR) using healthy donor samples to prove translational relevance. Next, we used chemogenetic technology in mice containing the Cre enzyme under the promoter of the dopamine transporter. With the help of an adeno-associated virus, designer receptors exclusively activated by designer drugs (DREADDs) were expressed in the dopaminergic cells of the MRR to manipulate their activity. Four weeks later, we performed an extensive behavioral characterization 30 min after the injection of the artificial ligand (Clozapine-N-Oxide). Stimulation of the dopaminergic cells in the MRR decreased social interest without influencing aggression and with an increase in social discrimination. Additionally, inhibition of the same cells increased the friendly social behavior during social interaction test. No behavioral changes were detected in anxiety, memory or locomotion. All in all, dopaminergic cells were present in both the mouse and human samples from the MRR, and the manipulation of the dopaminergic neurons in the MRR elicited a specific social response.


Subject(s)
Clozapine/analogs & derivatives , Dopaminergic Neurons , Social Behavior , Animals , Dopaminergic Neurons/metabolism , Male , Mice , Humans , Clozapine/pharmacology , Raphe Nuclei/metabolism , Behavior, Animal , Dopamine/metabolism , Mice, Inbred C57BL
7.
Georgian Med News ; (346): 14-20, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38501615

ABSTRACT

In neurodegenerative diseases, particularly in Parkinson's disease (PD), antinociceptive centers are often implicated in neurodegeneration, leading to persistent pain unresponsive to narcotic substances. This study investigated the periaqueductal gray matter (PAG) and the nucleus raphe magnus (NRM), components of the brain's antinociceptive system. In conditions of rotenone intoxication (an experimental PD model), morphological changes in intracellular structures were observed in PAG and NRM neurons, indicating metabolic disorders characteristic of PD (alterations in the shape and size of neuronal bodies and processes, disruption of acid phosphatase activity in neuron cytoplasm). Under the influence of bacterial melanin and in combination with synoestrol, positive changes in structural properties were observed in PAG and NRM neurons compared to the rotenone model of PD. This included the preservation of the morphological characteristics typical of these brain regions, with cells exhibiting shapes and sizes close to normal. Furthermore, under the influence of these therapeutic agents, an increase in phosphatase activity in cell cytoplasm was detected, indicating an acceleration of metabolic processes (metabolic activation) disrupted by rotenone intoxication. The data obtained suggests that bacterial melanin and synoestrol may act as potential neuroprotective agents against PAG and NRM neurons in the rat brain in the rotenone model of PD. Further research is needed to elucidate the mechanisms of action of therapeutic doses and propose their use in the treatment of PD, either in isolation or combination therapy.


Subject(s)
Parkinson Disease , Raphe Nuclei , Animals , Raphe Nuclei/physiology , Parkinson Disease/drug therapy , Rotenone/pharmacology , Rotenone/analysis , Melanins/analysis , Analgesics
8.
J Neurosci ; 42(10): 1987-1998, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35064000

ABSTRACT

Hippocampal theta oscillations (HTOs) during rapid eye movement (REM) sleep play an important role in mnemonic processes by coordinating hippocampal and cortical activities. However, it is not fully understood how HTOs are modulated by subcortical regions, including the median raphe nucleus (MnR). The MnR is thought to suppress HTO through its serotonergic outputs. Here, our study on male mice revealed a more complex framework indicating roles of nonserotonergic MnR outputs in regulating HTO. We found that nonselective optogenetic activation of MnR neurons at theta frequency increased HTO amplitude. Granger causality analysis indicated that MnR theta oscillations during REM sleep influence HTO. By using three transgenic mouse lines, we found that MnR serotonergic neurons exhibited little or no theta-correlated activity during HTO. Instead, most MnR GABAergic neurons and Vglut3 neurons respectively increased and decreased activities during HTO and exhibited hippocampal theta phase-locked activities. Although MnR GABAergic neurons do not directly project to the hippocampus, they could modulate HTO through local Vglut3 and serotonergic neurons as we found that MnR GABAergic neurons monosynaptically targeted Vglut3 and serotonergic neurons. Additionally, pontine wave recorded from the MnR during REM sleep accompanied nonserotonergic activity increase and HTO acceleration. These results suggest that MnR nonserotonergic neurons modulate hippocampal theta activity during REM sleep, which regulates memory processes.SIGNIFICANCE STATEMENT The MnR is the major source of serotonergic inputs to multiple brain regions including the hippocampus and medial septal area. It has long been thought that those serotonergic outputs suppress HTOs. However, our results revealed that MnR serotoninergic neurons displayed little firing changes during HTO. Instead, MnR Vglut3 neurons were largely silent during HTO associated with REM sleep. Additionally, many MnR GABAergic neurons fired rhythmically phase-locked to HTO. These results indicate an important role of MnR nonserotonergic neurons in modulating HTO.


Subject(s)
Hippocampus , Raphe Nuclei , Animals , GABAergic Neurons/physiology , Hippocampus/physiology , Male , Mice , Septum of Brain , Serotonergic Neurons , Theta Rhythm/physiology
9.
J Neurosci ; 42(11): 2234-2252, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35078925

ABSTRACT

Theta oscillations are key brain rhythm involved in memory formation, sensorimotor integration, and control of locomotion and behavioral states. Generation and spatiotemporal synchronization of theta oscillations rely on interactions between brain nuclei forming a large neural network, which includes pontine nucleus incertus (NI). Here we identified distinct populations of NI neurons, based on the relationship of their firing to hippocampal waves, with a special focus on theta oscillations, and the direction and type of interaction with the medial septum (MS) in male, urethane-anesthetized rats. By recording NI neuronal firing and hippocampal LFP, we described NI neurons that fire action potentials in a theta phase-independent or theta phase-locked and delta wave-independent or delta wave-locked manner. Among hippocampal activity-independent NI neurons, irregular, slow-firing, and regular, fast-firing cells were observed, while hippocampal oscillation-/wave-locked NI neurons were of a bursting or nonbursting type. By projection-specific optotagging, we revealed that only fast-firing theta phase-independent NI neurons innervate the MS, rarely receiving feedback information. In contrast, the majority of theta-bursting NI neurons were inhibited by MS stimulation, and this effect was mediated by direct GABAergic input. Described NI neuronal populations differ in reciprocal connections with the septohippocampal system, plausibly forming separate neuronal loops. Our results suggest that theta phase-independent NI neurons participate in theta rhythm generation through direct innervation of the MS, while theta-bursting NI neurons further transmit the rhythmic signal received from the MS to stabilize and/or strengthen rhythmic activity in other structures.SIGNIFICANCE STATEMENT The generation and spatiotemporal synchronization of theta oscillations rely on interactions between nuclei forming a large neural network, part of which is the pontine nucleus incertus (NI). Here we describe that within NI there are populations of neurons that can be distinguished based on the relationship of their firing to hippocampal theta oscillations and delta waves. We show that these neuronal populations largely do not have reciprocal connections with the septohippocampal system, but form separate neuronal loops. Our results suggest that medial septum (MS)-projecting, fast-firing, theta phase-independent NI neurons may participate in theta rhythm generation through direct innervation of the MS, while theta-bursting NI neurons may further transmit the rhythmic signal received from the MS to other structures.


Subject(s)
Neurons , Theta Rhythm , Action Potentials/physiology , Animals , Hippocampus/physiology , Male , Neurons/physiology , Raphe Nuclei , Rats
10.
Neurobiol Dis ; 189: 106358, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37977434

ABSTRACT

The raphe nuclei, the primary resource of forebrain 5-HT, play an important but heterogeneous role in regulating subcortical excitabilities. Fundamental circuit organizations of different median raphe (MR) subsystems are far from completely understood. In the present study, using cell-specific viral tracing, Ca2+ fiber photometry and epilepsy model, we map out the forebrain efferent and afferent of different MR Pet+ subpopulations and their divergent roles in epilepsy. We found that PetMR neurons send both collateral and parallel innervations to different downstream regions through different subpopulations. Notably, CA3-projecting PetMR subpopulations are largely distinct from habenula (Hb)-projecting PetMR subpopulations in anatomical distribution and topological organization, while majority of the CA3-projecting PetMR subpopulations are overlapped with the medial septum (MS)-projecting PetMR subpopulations. Further, using Ca2+ fiber photometry, we monitor activities of PetMR neurons in hippocampal-kindling seizure, a classical epilepsy model with pathological mechanisms caused by excitation-inhibition imbalance. We found that soma activities of PetMR neurons are heterogeneous during different periods of generalized seizures. These divergent activities are contributed by different projection-defined PetMR subpopulations, manifesting as increased activities in CA3 but decreased activity in Hb resulting from their upstream differences. Together, our findings provide a novel framework of MR subsystems showing that projection-defined MR Pet+ subpopulations are topologically heterogenous with divergent circuit connections and are diversely implicated in seizures. This may help in the understanding of heterogeneous nature of MR 5-HTergic subsystems and the paradox roles of 5-HTergic systems in epilepsy.


Subject(s)
Epilepsy , Neurons , Humans , Neural Pathways/physiology , Neurons/physiology , Raphe Nuclei/physiology , Seizures/diagnostic imaging , Epilepsy/diagnostic imaging
11.
Am J Physiol Gastrointest Liver Physiol ; 324(6): G466-G475, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37096901

ABSTRACT

The supraspinal brain regions controlling defecation reflex remain to be elucidated. The purpose of this study was to determine the roles of the hypothalamic A11 region and the medullary raphe nuclei in regulation of defecation. For chemogenetic manipulation of specific neurons, we used the double virus vector infection method in rats. hM3Dq or hM4Di was expressed in neurons of the A11 region and/or the raphe nuclei that send output to the lumbosacral defecation center. Immunohistological and functional experiments revealed that both the A11 region and the raphe nuclei directly connected with the lumbosacral spinal cord through descending pathways composed of stimulatory monoaminergic neurons. Stimulation of the hM3Dq-expressing neurons in the A11 region or the raphe nuclei enhanced colorectal motility only when GABAergic transmission in the lumbosacral spinal cord was blocked by bicuculline. Experiments using inhibitory hM4Di-expressing rats revealed that enhancement of colorectal motility caused by noxious stimuli in the colon is mediated by both the A11 region and the raphe nuclei. Furthermore, suppression of the A11 region and/or the raphe nuclei significantly inhibited water avoidance stress-induced defecation. These findings demonstrate that the A11 region and the raphe nuclei play an essential role in the regulation of colorectal motility. This is important because brain regions that mediate both intracolonic noxious stimuli-induced defecation and stress-induced defecation have been clarified for the first time.NEW & NOTEWORTHY The A11 region and the raphe nuclei, constituting descending pain inhibitory pathways, are related to both intracolonic noxious stimuli-induced colorectal motility and stress-induced defecation. Our findings may provide an explanation for the concurrent appearance of abdominal pain and defecation disorders in patients with irritable bowel syndrome. Furthermore, overlap of the pathway controlling colorectal motility with the pathway mediating stress responses may explain why stress exacerbates bowel symptoms.


Subject(s)
Colorectal Neoplasms , Raphe Nuclei , Animals , Rats , Medulla Oblongata , Raphe Nuclei/physiology , Spinal Cord/physiology
12.
Mol Psychiatry ; 27(11): 4599-4610, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36195637

ABSTRACT

Alcohol-use-disorders are chronic relapsing illnesses, often co-morbid with anxiety. We have previously shown using the "drinking-in-the-dark" model in mice that the stimulation of the serotonin receptor 1A (5-HT1A) reduces ethanol binge-drinking behaviour and withdrawal-induced anxiety. The 5-HT1A receptor is located either on Raphe neurons as autoreceptors, or on target neurons as heteroreceptors. By combining a pharmacological approach with biased agonists targeting the 5-HT1A auto- or heteroreceptor and a chemogenetic approach (DREADDs), here we identified that ethanol-binge drinking behaviour is dependent on 5-HT1A autoreceptors and 5-HT neuronal function, with a transition from DRN-dependent regulation of short-term (6 weeks) ethanol intake, to MRN-dependent regulation after longer ethanol exposure (12 weeks). We further identified a serotonergic microcircuit (5-HTMRN→DG) originating from the MRN and projecting to the dentate gyrus (DG) of the hippocampus, that is specifically affected by, and modulates long-term ethanol consumption. The present study indicates that targeting Raphe nuclei 5-HT1A autoreceptors with agonists might represent an innovative pharmacotherapeutic strategy to combat alcohol abuse.


Subject(s)
Alcohol Drinking , Alcoholism , Serotonin , Animals , Mice , Alcohol Drinking/metabolism , Alcoholism/metabolism , Autoreceptors/physiology , Ethanol/metabolism , Ethanol/pharmacology , Raphe Nuclei , Receptor, Serotonin, 5-HT1A , Serotonin/metabolism
13.
J Neurosci ; 41(12): 2581-2600, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33547164

ABSTRACT

Brainstem median raphe (MR) neurons expressing the serotonergic regulator gene Pet1 send collateralized projections to forebrain regions to modulate affective, memory-related, and circadian behaviors. Some Pet1 neurons express a surprisingly incomplete battery of serotonin pathway genes, with somata lacking transcripts for tryptophan hydroxylase 2 (Tph2) encoding the rate-limiting enzyme for serotonin [5-hydroxytryptamine (5-HT)] synthesis, but abundant for vesicular glutamate transporter type 3 (Vglut3) encoding a synaptic vesicle-associated glutamate transporter. Genetic fate maps show these nonclassical, putatively glutamatergic Pet1 neurons in the MR arise embryonically from the same progenitor cell compartment-hindbrain rhombomere 2 (r2)-as serotonergic TPH2+ MR Pet1 neurons. Well established is the distribution of efferents en masse from r2-derived, Pet1-neurons; unknown is the relationship between these efferent targets and the specific constituent source-neuron subgroups identified as r2-Pet1Tph2-high versus r2-Pet1Vglut3-high Using male and female mice, we found r2-Pet1 axonal boutons segregated anatomically largely by serotonin+ versus VGLUT3+ identity. The former present in the suprachiasmatic nucleus, paraventricular nucleus of the thalamus, and olfactory bulb; the latter are found in the hippocampus, cortex, and septum. Thus r2-Pet1Tph2-high and r2-Pet1Vglut3-high neurons likely regulate distinct brain regions and behaviors. Some r2-Pet1 boutons encased interneuron somata, forming specialized presynaptic "baskets" of VGLUT3+ or VGLUT3+/5-HT+ identity; this suggests that some r2-Pet1Vglut3-high neurons may regulate local networks, perhaps with differential kinetics via glutamate versus serotonin signaling. Fibers from other Pet1 neurons (non-r2-derived) were observed in many of these same baskets, suggesting multifaceted regulation. Collectively, these findings inform brain organization and new circuit nodes for therapeutic considerations.SIGNIFICANCE STATEMENT Our findings match axonal bouton neurochemical identity with distant cell bodies in the brainstem raphe. The results are significant because they suggest that disparate neuronal subsystems derive from Pet1+ precursor cells of the embryonic progenitor compartment rhombomere 2 (r2). Of these r2-Pet1 neuronal subsystems, one appears largely serotonergic, as expected given expression of the serotonergic regulator PET1, and projects to the olfactory bulb, thalamus, and suprachiasmatic nucleus. Another expresses VGLUT3, suggesting principally glutamate transmission, and projects to the hippocampus, septum, and cortex. Some r2-Pet1 boutons-those that are VGLUT3+ or VGLUT3+/5-HT+ co-positive-comprise "baskets" encasing interneurons, suggesting that they control local networks perhaps with differential kinetics via glutamate versus serotonin signaling. Results inform brain organization and circuit nodes for therapeutic consideration.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Brain Chemistry/physiology , Raphe Nuclei/metabolism , Rhombencephalon/metabolism , Serotonin/metabolism , Transcription Factors/metabolism , Amino Acid Transport Systems, Acidic/analysis , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Raphe Nuclei/chemistry , Rhombencephalon/chemistry , Serotonin/analysis , Transcription Factors/analysis
14.
J Neurosci Res ; 100(7): 1506-1523, 2022 07.
Article in English | MEDLINE | ID: mdl-35443076

ABSTRACT

Heterodimerization between 5-HT7 and 5-HT1A receptors seems to play an important role in the mechanism of depression and antidepressant drug action. It was suggested that the shift of the ratio between 5-HT1A /5-HT7 hetero- and 5-HT1A /5-HT1A homodimers in presynaptic neurons toward 5-HT1A /5-HT1A homodimers is one of the reasons of depression. Consequently, the artificial elevation of 5-HT7 receptor number in presynaptic terminals might restore physiological homo-/heterodimer ratio resulting in antidepressive effect. Here we showed that adeno-associated virus (AAV)-based 5-HT7 receptor overexpression in the midbrain raphe nuclei area produced antidepressive effect in male mice of both C57Bl/6J and genetically predisposed to depressive-like behavior ASC (antidepressant sensitive cataleptics) strains. These changes were accompanied by the elevation of 5-HT7 receptor mRNA level in the frontal cortex of C57Bl/6J and its reduction in the hippocampus of ASC mice. The presence of engineered 5-HT7 receptor in the midbrain of both mouse strains was further demonstrated. Importantly that 5-HT7 receptor overexpression resulted in the reduction of 5-HT1A receptor level in the membrane protein fraction from the midbrain samples of C57Bl/6J, but not ASC, mice. 5-HT7 receptor overexpression caused an increase of 5-HIAA/5-HT ratio in the midbrain and the frontal cortex of C57Bl/6J and in all investigated brain structures of ASC mice. Thus, 5-HT7 receptor overexpression in the raphe nuclei area affects brain 5-HT system and causes antidepressive effect both in C57Bl/6J and in "depressive" ASC male mice. Obtained results indicate the involvement of 5-HT7 receptor in the mechanisms underlying depressive behavior.


Subject(s)
Raphe Nuclei , Receptors, Serotonin , Serotonin , Animals , Antidepressive Agents/metabolism , Brain/metabolism , Dependovirus , Genetic Vectors , Male , Mice , Mice, Inbred C57BL , Raphe Nuclei/metabolism , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Serotonin/metabolism
15.
Acta Pharmacol Sin ; 43(11): 2777-2788, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35614227

ABSTRACT

The raphe nuclei comprise nearly all of 5-hydroxytryptaminergic (5-HTergic) neurons in the brain and are widely acknowledged to participate in the modulation of neural excitability. "Excitability-inhibition imbalance" results in a variety of brain disorders, including epilepsy. Epilepsy is a common neurological disorder characterized by hypersynchronous epileptic seizures accompanied by many psychological, social, cognitive consequences. Current antiepileptic drugs and other therapeutics are not ideal to control epilepsy and its comorbidities. Cumulative evidence suggests that the raphe nuclei and 5-HTergic system play an important role in epilepsy and epilepsy-associated comorbidities. Seizure activities propagate to the raphe nuclei and induce various alterations in different subregions of the raphe nuclei at the cellular and molecular levels. Intervention of the activity of raphe nuclei and raphe 5-HTergic system with pharmacological or genetic approaches, deep brain stimulation or optogenetics produces indeed diverse and even contradictory effects on seizure and epilepsy-associated comorbidities in different epilepsy models. Nevertheless, there are still many open questions left, especially regarding to the relationship between 5-HTergic neural circuit and epilepsy. Understanding of 5-HTergic network in a circuit- and molecule-specific way may not only be therapeutically relevant for increasing the drug specificity and precise treatment in epilepsy, but also provide critical hints for other brain disorders with abnormal neural excitability. In this review we focus on the roles of the raphe 5-HTergic system in epilepsy and epilepsy-associated comorbidities. Besides, further perspectives about the complexity and diversity of the raphe nuclei in epilepsy are also addressed.


Subject(s)
Epilepsy , Raphe Nuclei , Humans , Brain , Seizures , Neurons
16.
Neurol Sci ; 43(5): 3175-3185, 2022 May.
Article in English | MEDLINE | ID: mdl-35000015

ABSTRACT

BACKGROUND AND OBJECTIVE: There are indicates that raphe nuclei may be involved in the occurrence of chronic pain in Parkinson's disease (PD). In the study, we investigated the functional connectivity pattern of raphe nuclei in Parkinson's disease with chronic pain (PDP) to uncover its possible pathophysiology. METHODS: Fifteen PDP, who suffered from pain, lasted longer than 3 months, sixteen Parkinson's disease patients with no pain (nPDP) and eighteen matched normal health controls (NCs) were recruited. All subjects completed the King's Parkinson's Pain Scale (KPPS) besides Parkinson-related scale and demographics. We performed a seed-based resting-state analysis of functional magnetic resonance imaging to explore whole-brain functional connectivity of the raphe nuclei. Multiple regression model was used to explore the related factors of pain including disease duration, disease severity, Hamilton Depression Rating Scale, age, sex, levodopa equivalent dose and the strength of network functional connectivity. RESULTS: Compared with the nPDP, the PDP group showed stronger functional connectivity between raphe nuclei and pain-related brain regions, including parietal lobe, insular lobe, cingulum cortex and prefrontal cortex, and the functional connectivity values of those areas were significantly positively correlated with KPPS independent of the clinical variables. Compared with NCs, the combined PD groups showed decreased functional connectivity including prefrontal cortex and cingulum cortex. CONCLUSIONS: Abnormal functional connectivity model of raphe nuclei may be partly involved in pathophysiological mechanism of pain in PD.


Subject(s)
Chronic Pain , Parkinson Disease , Brain Mapping/methods , Chronic Pain/diagnostic imaging , Chronic Pain/etiology , Humans , Levodopa , Magnetic Resonance Imaging/methods , Neural Pathways , Parietal Lobe , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Raphe Nuclei/pathology
17.
Gac Med Mex ; 158(4): 182-189, 2022.
Article in English | MEDLINE | ID: mdl-36256550

ABSTRACT

INTRODUCTION: Diabetes mellitus (DM) inhibits brain serotonin biosynthesis through changes in tryptophan-5-hydroxylase (TPH) activity and expression. OBJECTIVES: To determine whether DM-induced changes in brain TPH1 or TPH2 expression and in the number of serotonergic neurons return to normal in diabetic rats treated with insulin. METHODS: Rats with streptozotocin-induced diabetes were divided in two groups: one treated with insulin and the other without treatment. On day 14, brain stems were obtained in order to quantify L-tryptophan and 5-hydroxytryptamine levels, as well as to determine TPH activity. The expression of TPH1 and TPH2 by West-ern blot, and the number of serotonergic neurons by immunohistochemistry. RESULTS: In diabetic rats, a decrease in the levels of L-tryptophan, 5-hydroxytryptamine, and TPH activity was confirmed, as well as lower TPH1 and TPH2 expression and lower numbers of serotonergic neurons. When diabetic rats were treated with insulin, L-tryptophan returned to normal, but not 5-hy-droxytryptamine, TPH expression, or the number of serotonergic neurons. CONCLUSIONS: DM chronically inhibits the synthesis of brain 5-hydroxytryptamine through changes in TPH1 and TPH2 expression and a decrease in the number of serotonergic neurons, which persist despite insulin treatment.


INTRODUCCIÓN: La diabetes mellitus (DM) inhibe la biosíntesis de serotonina cerebral mediante cambios en la actividad y expresión de la triptófano-5-hidroxilasa (TPH). OBJETIVOS: Determinar si los cambios en la expresión de TPH1 o TPH2 cerebral y en el número de neuronas serotoninérgicas causados por la DM retornan a la normalidad en las ratas con diabetes tratadas con insulina. MÉTODOS: Ratas con diabetes inducida con estreptozotocina se dividieron en dos grupos: uno tratado con insulina y otro sin tratamiento. En el día 14, se obtuvieron tallos cerebrales para cuantificar niveles de L-triptófano, 5-hidroxitriptamina y la actividad de la TPH. La expresión de TPH1 y TPH2 fue mediante Western blot y el número de neuronas serotoninérgicas por inmu­nohistoquímica. RESULTADOS: En las ratas con diabetes se confirmó disminución de los niveles de L-triptófano, 5-hidroxitriptamina y la actividad de la TPH, así como una menor expresión de TPH1 y 2 y un menor número de neuronas serotoninérgicas. Cuando las ratas diabéticas fueron tratadas con insulina, el L-triptófano regreso a la normalidad, no así la 5-hidroxitriptamina, la expresión de TPH y el número de neuronas serotoninérgicas. CONCLUSIONES: La DM inhibe crónicamente la síntesis de 5-hidroxitriptamina cerebral mediante modificaciones en la expresión de TPH1 y TPH2 y disminución de las neuronas seroto­ninérgicas, que persisten a pesar del tratamiento con insulina.


Subject(s)
Diabetes Mellitus, Experimental , Serotonin , Animals , Rats , Serotonin/metabolism , Tryptophan/metabolism , Raphe Nuclei/metabolism , Serotonergic Neurons/metabolism , Streptozocin/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Tryptophan Hydroxylase/metabolism , Brain/metabolism , Insulin/metabolism
18.
J Neurosci ; 40(6): 1248-1264, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31896670

ABSTRACT

Cardiovascular dysfunction often occurs after high-level spinal cord injury. Disrupting supraspinal vasomotor pathways affects basal hemodynamics and contributes to the development of autonomic dysreflexia (AD). Transplantation of early-stage neurons to the injured cord may reconstruct the descending projections to enhance cardiovascular performance. To determine the specific role of reestablishing serotonergic regulation of hemodynamics, we implanted serotonergic (5-HT+) neuron-enriched embryonic raphe nucleus-derived neural stem cells/progenitors (RN-NSCs) into a complete spinal cord transection lesion site in adult female rats. Grafting embryonic spinal cord-derived NSCs or injury alone served as 2 controls. Ten weeks after injury/grafting, histological analysis revealed well-survived grafts and partial integration with host tissues in the lesion site. Numerous graft-derived serotonergic axons topographically projected to the caudal autonomic regions. Neuronal tracing showed that host supraspinal vasomotor pathways regenerated into the graft, and 5-HT+ neurons within graft and host brainstem neurons were transsynaptically labeled by injecting pseudorabies virus (PRV-614) into the kidney, indicating reconnected serotonergic circuits regulating autonomic activity. Using an implanted telemeter to record cardiovascular parameters, grafting RN-NSCs restored resting mean arterial pressure to normal levels and remarkably alleviated naturally occurring and colorectal distension-induced AD. Subsequent pharmacological blockade of 5-HT2A receptors with ketanserin in RN-NSC-grafted rats reduced resting mean arterial pressure and increased heart rate in all but 2 controls. Furthermore, spinal cord retransection below RN-NSC grafts partially eliminated the recovery in AD. Collectively, these data indicate that RN-NSCs grafted into a spinal cord injury site relay supraspinal control of serotonergic regulation for sympathetic activity to improve cardiovascular function.SIGNIFICANCE STATEMENT Disruption of supraspinal vasomotor pathways results in cardiovascular dysfunction following high-level spinal cord injury. To reestablish the descending regulation of autonomic function, we transplanted serotonergic neuron enriched embryonic raphe nucleus-derived neural stem cells/progenitors into the lesion site of completely transected rat spinal cord. Consequently, grafted raphe nucleus-derived neural stem cells/progenitors acted as a neuronal relay to reconnect supraspinal center and spinal sympathetic neurons below the injury. The reconstituted serotonergic regulation of sympathetic activity led to the improvement of hemodynamic parameters and mitigated autonomic dysreflexia. Based on morphological and physiological results, this study validates the effectiveness of transplanting early-stage serotonergic neurons into the spinal cord for cardiovascular functional recovery after spinal cord injury.


Subject(s)
Autonomic Dysreflexia/physiopathology , Cardiovascular System/physiopathology , Hemodynamics/physiology , Neural Stem Cells/transplantation , Serotonergic Neurons/transplantation , Animals , Embryonic Stem Cells/transplantation , Female , Raphe Nuclei/cytology , Rats , Rats, Inbred F344 , Spinal Cord Injuries/physiopathology , Stem Cell Transplantation/methods , Sympathetic Nervous System/physiopathology
19.
J Neurophysiol ; 125(4): 1279-1288, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33596722

ABSTRACT

Animal models indicate that serotonin (5-HT) release onto motoneurons facilitates motor output, particularly during strong motor activities. However, evidence for 5-HT effects during human movement are limited. This study examined how antagonism of the 5-HT2 receptor, which is a 5-HT receptor that promotes motoneuron excitability, affects human movement. Ten healthy participants (24.2 ± 1.9 yr) ingested 8 mg of cyproheptadine (competitive 5-HT2 antagonist) in a double-blinded, placebo-controlled, repeated-measures design. Transcranial magnetic stimulation (TMS) of the motor cortex was used to elicit motor evoked potentials (MEPs) from biceps brachii. First, stimulus-response curves (90%-160% active motor threshold) were obtained during very weak elbow flexions (10% of maximal). Second, to determine if 5-HT effects are scaled to the intensity of muscle contraction, TMS at a fixed intensity was applied during elbow flexions of 20%, 40%, 60%, 80%, and 100% of maximal. Cyproheptadine reduced the size of MEPs across the stimulus-response curves (P = 0.045). Notably, MEP amplitude was 22.3% smaller for the cyproheptadine condition for the strongest TMS intensity. In addition, cyproheptadine reduced maximal torque (P = 0.045), lengthened the biceps silent period during maximal elbow flexions (P = 0.037), and reduced superimposed twitch amplitude during moderate-intensity elbow flexions (P = 0.035). This study presents novel evidence that 5-HT2 receptors influence corticospinal-motoneuronal output, which was particularly evident when a large number of descending inputs to motoneurons were active. Although it is likely that antagonism of 5-HT2 receptors reduces motoneuron gain to ionotropic inputs, supraspinal mechanisms may have also contributed to the study findings.NEW & NOTEWORTHY Voluntary contractions and responses to magnetic stimulation of the motor cortex are dependent on serotonin activity in the central nervous system. 5-HT2 antagonism decreased evoked potential size to high-intensity stimulation, and reduced torque and lengthened inhibitory silent periods during maximal contractions. We provide novel evidence that 5-HT2 receptors are involved in muscle activation, where 5-HT effects are strongest when a large number of descending inputs activate motoneurons.


Subject(s)
Cyproheptadine/pharmacology , Evoked Potentials, Motor/drug effects , Motor Cortex/drug effects , Motor Neurons/drug effects , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Pyramidal Tracts/drug effects , Raphe Nuclei/drug effects , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Spinal Cord/drug effects , Adult , Cross-Over Studies , Cyproheptadine/administration & dosage , Double-Blind Method , Female , Humans , Male , Motor Cortex/metabolism , Motor Neurons/metabolism , Raphe Nuclei/metabolism , Serotonin/physiology , Serotonin 5-HT2 Receptor Antagonists/administration & dosage , Spinal Cord/metabolism , Transcranial Magnetic Stimulation , Young Adult
20.
J Neurochem ; 156(6): 1020-1032, 2021 03.
Article in English | MEDLINE | ID: mdl-32785947

ABSTRACT

Propofol is the most common intravenous anesthetic agent for induction and maintenance of anesthesia, and has been used clinically for more than 30 years. However, the mechanism by which propofol induces loss of consciousness (LOC) remains largely unknown. The adenosine A2A receptor (A2A R) has been extensively proven to have an effect on physiological sleep. It is, therefore, important to investigate the role of A2A R in the induction of LOC using propofol. In the present study, the administration of the highly selective A2A R agonist (CGS21680) and antagonist (SCH58261) was utilized to investigate the function of A2A R under general anesthesia induced by propofol by means of animal behavior studies, resting-state magnetic resonance imaging and c-Fos immunofluorescence staining approaches. Our results show that CGS21680 significantly prolonged the duration of LOC induced by propofol, increased the c-Fos expression in nucleus accumbens (NAc) and suppressed the functional connectivity of NAc-dorsal raphe nucleus (DR) and NAc-cingulate cortex (CG). However, SCH58261 significantly shortened the duration of LOC induced by propofol, decreased the c-Fos expression in NAc, increased the c-Fos expression in DR, and elevated the functional connectivity of NAc-DR and NAc-CG. Collectively, our findings demonstrate the important roles played by A2A R in the LOC induced by propofol and suggest that the neural circuit between NAc-DR maybe controlled by A2A R in the mechanism of anesthesia induced by propofol.


Subject(s)
Anesthesia, General , Anesthetics, Intravenous/pharmacology , Propofol/pharmacology , Receptor, Adenosine A2A/drug effects , Unconsciousness/diagnostic imaging , Adenosine A2 Receptor Agonists/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Female , Gene Expression Regulation/drug effects , Genes, fos/drug effects , Gyrus Cinguli/drug effects , Magnetic Resonance Imaging , Nucleus Accumbens/drug effects , Raphe Nuclei/drug effects , Rats , Rats, Sprague-Dawley , Unconsciousness/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL