Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
1.
Ann Neurol ; 88(6): 1237-1243, 2020 12.
Article in English | MEDLINE | ID: mdl-32833276

ABSTRACT

A 10-year-old girl presented with ileus, urinary retention, dry mouth, lack of tears, fixed dilated pupils, and diffuse anhidrosis 7 days after a febrile illness. We hypothesized that her syndrome was due to autoimmunity against muscarinic acetylcholine receptors, blocking their activation. Using an indirect enzyme-linked immunosorbent assay for all 5 muscarinic receptors (M1 -M5 ), we identified in the patient's serum antibodies that selectively bound to M3 receptors. In vitro functional studies confirmed that these autoantibodies selectively blocked M3 receptor activation. Thus, autoantibodies against M3 acetylcholine receptors cause acute postganglionic cholinergic dysautonomia. ANN NEUROL 2020;88:1237-1243.


Subject(s)
Autoantibodies/immunology , Primary Dysautonomias/immunology , Receptor, Muscarinic M3/immunology , Autoantibodies/blood , Child , Female , Humans , Receptor, Muscarinic M3/antagonists & inhibitors
2.
Bioorg Med Chem Lett ; 41: 127975, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33753262

ABSTRACT

The targeting of both the muscarinic and ß-adrenergic pathways is a well validated therapeutic approach for the treatment of chronic obstructive pulmonary disease (COPD). In this communication we report our effort to incorporate two pharmacologies into a single chemical entity, whose characteristic must be suitable for a once daily inhaled administration. Contextually, we aimed at a locally acting therapy with limited systemic absorption to minimize side effects. Our lung-tailored design of bifunctional compounds that combine the muscarinic and ß-adrenergic pharmacologies by the elaboration of the muscarinic inhibitor 7, successfully led to the potent, pharmacologically balanced muscarinic antagonist and ß2 agonist (MABA) 13.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Bronchodilator Agents/pharmacology , Drug Discovery , Muscarinic Antagonists/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Administration, Inhalation , Adrenergic beta-2 Receptor Agonists/administration & dosage , Bronchodilator Agents/administration & dosage , Dose-Response Relationship, Drug , Humans , Molecular Structure , Muscarinic Antagonists/administration & dosage , Pulmonary Disease, Chronic Obstructive/metabolism , Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M3/metabolism , Receptors, Adrenergic, beta-2/metabolism , Structure-Activity Relationship
3.
Bioorg Chem ; 110: 104805, 2021 05.
Article in English | MEDLINE | ID: mdl-33725508

ABSTRACT

We recently reported 2,4,5-trimethylpyridin-3-ol with C(6)-azacyclonol, whose code name is BJ-1207, showing a promising anticancer activity by inhibiting NOX-derived ROS in A549 human lung cancer cells. The present study was focused on structural modification of the azacyclonol moiety of BJ-1207 to find a compound with better anticancer activity. Ten new compounds (3A-3J) were prepared and evaluated their inhibitory actions against proliferation of eighteen cancer cell lines as a primary screening. Among the ten derivatives of BJ-1207, the effects of compounds 3A and 3J on DU145 and PC-3, androgen-refractory cancer cell lines (ARPC), were greater than the parent compound, and compound 3A showed better activity than 3J. Antitumor activity of compound 3A was also observed in DU145-xenografted chorioallantoic membrane (CAM) tumor model. In addition, the ligand-based target prediction and molecular docking study using DeepZema® server showed compound 3A was a ligand to M3 muscarinic acetylcholine receptor (M3R) which is overexpressed in ARPC. Carbachol, a muscarinic receptor agonist, concentration dependently increased proliferation of DU145 in the absence of serum, and it also activated NADPH oxidase (NOX). The carbachol-induced proliferation and NOX activity was significantly blocked by compounds 3A in a concentration-dependent manner. This finding might become a new milestone in the development of pyridinol-based anti-cancer agents against ARPC.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Piperidines/pharmacology , Prostatic Neoplasms/drug therapy , Pyridines/pharmacology , Receptor, Muscarinic M3/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Pyridines/chemical synthesis , Pyridines/chemistry , Receptor, Muscarinic M3/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
4.
Proc Natl Acad Sci U S A ; 115(47): 12046-12050, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30404914

ABSTRACT

Drugs that treat chronic obstructive pulmonary disease by antagonizing the M3 muscarinic acetylcholine receptor (M3R) have had a significant effect on health, but can suffer from their lack of selectivity against the M2R subtype, which modulates heart rate. Beginning with the crystal structures of M2R and M3R, we exploited a single amino acid difference in their orthosteric binding pockets using molecular docking and structure-based design. The resulting M3R antagonists had up to 100-fold selectivity over M2R in affinity and over 1,000-fold selectivity in vivo. The crystal structure of the M3R-selective antagonist in complex with M3R corresponded closely to the docking-predicted geometry, providing a template for further optimization.


Subject(s)
Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M3/genetics , Acetylcholine/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Drug Design , Humans , Molecular Docking Simulation/methods , Muscarinic Antagonists/chemistry , Muscarinic Antagonists/metabolism , Receptor, Muscarinic M2/antagonists & inhibitors , Receptor, Muscarinic M2/metabolism
5.
Org Biomol Chem ; 18(41): 8402-8413, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33112339

ABSTRACT

Discovery of an anticancer medicine using a single target protein has often been unsuccessful due to the complexity of pathogenic mechanisms as well as the presence of redundant signaling pathways. In this work, we attempted to find promising anticancer drug candidates by simultaneously targeting casein kinase 1 delta (CK1δ) and muscarinic acetylcholine receptor M3 (M3R). Through the structure-based virtual screening and de novo design with the modified potential function for protein-ligand binding, a series of benzo[4,5]imidazo[1,2-a][1,3,5]triazine-2-amine (BITA) derivatives were identified as CK1δ inhibitors and also as M3R antagonists. The biochemical potencies of these bifunctional molecules reached the nanomolar and low-micromolar levels with respect to CK1δ and M3R, respectively. A common interaction feature in the calculated CK1δ-inhibitor and M3R-antagonist complexes is that the BITA moiety is well-stabilized in the orthosteric site of M3R and the hinge region of CK1δ through the establishment of the three hydrogen bonds and the hydrophobic contacts in the vicinity. The computational and experimental results found in this work exemplify the efficiency of kinase and GPCR polypharmacology in developing anticancer medicines.


Subject(s)
Antineoplastic Agents/pharmacology , Casein Kinase Idelta/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Receptor, Muscarinic M3/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Casein Kinase Idelta/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Polypharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor, Muscarinic M3/metabolism , Structure-Activity Relationship
6.
Digestion ; 101(5): 536-551, 2020.
Article in English | MEDLINE | ID: mdl-31185476

ABSTRACT

BACKGROUND: Banhasasim-tang (BHSST) is a classic herbal formulation in traditional Chinese medicine widely used for gastrointestinal (GI) tract motility disorder. We investigated the effects of BHSST on the pacemaker potentials of cultured interstitial cells of Cajal (ICCs) in small intestine in vitro and its effects on GI motor functions in vivo. METHODS: We isolated ICCs from the small intestines and recorded pacemaker potentials in cultured ICCs with the whole-cell patch-clamp configuration in vitro. Intestinal transit rates (ITR%) were investigated in normal mice and GI motility dysfunction (GMD) mouse models in vivo. RESULTS: BHSST (20-50 mg/mL) depolarized pacemaker potentials and decreased their amplitudes in a concentration-dependent manner. Pretreatment with methoctramine (a muscarinic M2 receptor antagonist) did not inhibit BHSST-induced pacemaker potential depolarization. However, when we applied 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP; a muscarinic M3 receptor antagonist), BHSST-induced effects were blocked. Pretreatment with Y25130 (a 5-HT3 receptor antagonist) blocked BHSST-induced effects in ICCs. In addition, when we applied 4-DAMP and Y25130 together, BHSST-induced effects were completely blocked. Pretreatment with Ca2+-free solution or thapsigargin inhibited BHSST-induced effects. Moreover, BHSST blocked both the transient receptor potential melastatin (TRPM) 7 and voltage-sensitive calcium-activated chloride (anoctamin-1, ANO1) channels. In normal mice, ITR% values were significantly increased by BHSST in a dose-dependent manner. The ITR% of GMD mice was significantly reduced relative to those of normal mice, which were significantly reversed by BHSST in a dose-dependent manner. CONCLUSION: These results suggested that BHSST depolarizes the pacemaker potentials of ICCs in a dose-dependent manner through the M3 and 5-HT3 receptors via internal and external Ca2+-dependent and TRPM7- and ANO1-independent pathways in vitro. Moreover, BHSST increased ITR% in vivo in normal mice and GMD mouse models. Taken together, the results of this study showed that BHSST had the potential for development as a prokinetic agent in GI motility function.


Subject(s)
Dyspepsia/drug therapy , Gastrointestinal Transit/drug effects , Interstitial Cells of Cajal/drug effects , Intestine, Small/drug effects , Membrane Potentials/drug effects , Plant Extracts/pharmacology , Animals , Anoctamin-1/antagonists & inhibitors , Anoctamin-1/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Dyspepsia/etiology , Gastrointestinal Transit/physiology , HEK293 Cells , Humans , Interstitial Cells of Cajal/physiology , Intestine, Small/cytology , Intestine, Small/physiopathology , Male , Mice , Mice, Inbred ICR , Patch-Clamp Techniques , Plant Extracts/therapeutic use , Primary Cell Culture , Receptor, Muscarinic M3/agonists , Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M3/metabolism , Receptors, Serotonin, 5-HT3/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serotonin 5-HT3 Receptor Antagonists , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
7.
Int J Neurosci ; 130(2): 204-211, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31517560

ABSTRACT

Aim: Food intake regulated by a complex of physiologic mechanisms in the nervous system. Muscarinergic system has an important role in the central regulation of appetite in mammals, but there is no information for Muscarinic receptors in avian. The purpose of this study was to examine the effects of intracerebroventricular injection of carbachol (cholinergic agonist), Telenzepine (M1 receptor antagonist), AF-DX116 (M2 receptor antagonist), 4-DAMP (M3 receptor antagonist), and PD102807 (M4 receptor antagonist) on feeding behavior in 3-h food-deprived (FD3) neonatal broiler chicken.Materials and Methods: In experiment 1, chicken intracerebroventricular injected with carbachol (125, 250, and 500 nmol). In experiment 2, birds intracerebroventricular injected with telenzepine (125, 250, and 500 nmol). In experiments 3-5, birds intracerebroventricular injected with AF-DX 116 (125, 250, and 500 nmol), 4-DAMP (125, 250, and 500 nmol), and PD102807 (125, 250, and 500 nmol), respectively. In experiment 6, broilers intracerebroventricular injected with carbacol (500 nmol), co-injection of telenzepine (125 nmol)+carbacol (500 nmol), and 4-DAMP (125 nmol)+carbacol (500 nmol). In experiment 7, injection procedure was carbacol (500 nmol), co-injection of AF-DX116 (125 nmol)+carbacol (500 nmol), and PD102807 (125 nmol)+carbacol (500 nmol). Then, food intake measured until 120 min after injection.Results: According to the data, carbachol (250 and 500 nmol) significantly decreased food intake in comparison with control group (P < 0.05). Intracerebroventricular injection of telenzepine (250 and 500 nmol) and 4-DAMP (250 and 500 nmol) significantly increased food intake (P < 0.05). In addition, carbacol-induced hypophagia was significantly attenuated by co-injection of telenzepine + carbacol (P < 0.05). Also, co-injection of 4-DAMP + carbacol decreased the effect of carbacol on food intake (P < 0.05). However, AF-DX116 and PD102807 had no effect on hypophagia induced by carbacol (P > 0.05).Conclusion: These results suggest, hypophagic effect of muscarinergic system is mediated via M1 and M3 receptors in neonatal chicken.


Subject(s)
Behavior, Animal/drug effects , Carbachol/pharmacology , Eating/drug effects , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Receptor, Muscarinic M1/drug effects , Receptor, Muscarinic M3/drug effects , Animals , Animals, Newborn , Carbachol/administration & dosage , Chickens , Disease Models, Animal , Injections, Intraventricular , Muscarinic Agonists/administration & dosage , Muscarinic Antagonists/administration & dosage , Piperidines/pharmacology , Pirenzepine/analogs & derivatives , Pirenzepine/pharmacology , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/antagonists & inhibitors , Receptor, Muscarinic M3/agonists , Receptor, Muscarinic M3/antagonists & inhibitors
8.
J Neurosci ; 38(31): 6921-6932, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29959237

ABSTRACT

Muscarinic receptor antagonists act as potent inducers of oligodendrocyte differentiation and accelerate remyelination. However, the use of muscarinic antagonists in the clinic is limited by poor understanding of the operant receptor subtype, and questions regarding possible species differences between rodents and humans. Based on high selective expression in human oligodendrocyte progenitor cells (OPCs), we hypothesized that M3R is the functionally relevant receptor. Lentiviral M3R knockdown in human primary CD140a/PDGFαR+ OPCs resulted in enhanced differentiation in vitro and substantially reduced the calcium response following muscarinic agonist treatment. Importantly, following transplantation in hypomyelinating shiverer/rag2 mice, M3R knockdown improved remyelination by human OPCs. Furthermore, conditional M3R ablation in adult NG2-expressing OPCs increased oligodendrocyte differentiation and led to improved spontaneous remyelination in mice. Together, we demonstrate that M3R receptor mediates muscarinic signaling in human OPCs that act to delay differentiation and remyelination, suggesting that M3 receptors are viable targets for human demyelinating disease.SIGNIFICANCE STATEMENT The identification of drug targets aimed at improving remyelination in patients with demyelination disease is a key step in development of effective regenerative therapies to treat diseases, such as multiple sclerosis. Muscarinic receptor antagonists have been identified as effective potentiators of remyelination, but the receptor subtypes that mediate these receptors are unclear. In this study, we show that genetic M3R ablation in both mouse and human cells results in improved remyelination and is mediated by acceleration of oligodendrocyte commitment from oligodendrocyte progenitor cells. Therefore, M3R represents an attractive target for induced remyelination in human disease.


Subject(s)
Myelin Sheath/physiology , Neurogenesis/physiology , Oligodendrocyte Precursor Cells/physiology , Receptor, Muscarinic M3/physiology , Remyelination/physiology , Animals , Brain Tissue Transplantation , Calcium Signaling , Cells, Cultured , Fetal Tissue Transplantation , Gene Knockdown Techniques , Humans , Mice , Mice, Neurologic Mutants , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Prosencephalon/embryology , Prosencephalon/transplantation , RNA Interference , Receptor, Muscarinic M3/agonists , Receptor, Muscarinic M3/antagonists & inhibitors , Spinal Cord/chemistry , Spinal Cord/ultrastructure
9.
J Pharmacol Exp Ther ; 370(1): 127-136, 2019 07.
Article in English | MEDLINE | ID: mdl-31085697

ABSTRACT

AZD8871 is a novel muscarinic antagonist and ß 2-adrenoceptor agonist in development for chronic obstructive pulmonary disease. This study describes the pharmacological profile of AZD8871 in in vitro and in vivo assays. AZD8871 is potent at the human M3 receptor (pIC50 in binding assays: 9.5) and shows kinetic selectivity for the M3 (half-life: 4.97 hours) over the M2 receptor (half-life: 0.46 hour). It is selective for the ß 2-adrenoceptor over the ß 1 and ß 3 subtypes (3- and 6-fold, respectively) and shows dual antimuscarinic and ß 2-adrenoceptor functional activity in isolated guinea pig tissue (pIC50 in electrically stimulated trachea: 8.6; pEC50 in spontaneous tone isolated trachea: 8.8, respectively), which are sustained over time. AZD8871 exhibits a higher muscarinic component than batefenterol in human bronchi, with a shift in potency under propranolol blockade of 2- and 6-fold, respectively, together with a persisting relaxation (5.3% recovery at 8 hours). Nebulized AZD8871 prevents acetylcholine-induced bronchoconstriction in both guinea pig and dog with minimal effects on salivation and heart rate at doses with bronchoprotective activity. Moreover, AZD8871 shows long-lasting effects in dog, with a bronchoprotective half-life longer than 24 hours. In conclusion, these studies demonstrate that AZD8871 is a dual-acting molecule with a high muscarinic component and a long residence time at the M3 receptor; moreover, its preclinical profile in animal models suggests a once-daily dosing in humans and a favorable safety profile. Thus, AZD8871 has the potential to be a next generation of inhaled bronchodilators in respiratory diseases.


Subject(s)
Adrenergic beta-2 Receptor Agonists/adverse effects , Adrenergic beta-2 Receptor Agonists/pharmacology , Muscarinic Antagonists/adverse effects , Muscarinic Antagonists/pharmacology , Quinolines/adverse effects , Quinolines/pharmacology , Receptor, Muscarinic M3/antagonists & inhibitors , Receptors, Adrenergic, beta-2/metabolism , Safety , Triazoles/adverse effects , Triazoles/pharmacology , Administration, Inhalation , Adrenergic beta-2 Receptor Agonists/administration & dosage , Adrenergic beta-2 Receptor Agonists/pharmacokinetics , Animals , Bronchi/drug effects , Bronchi/physiology , Cardiovascular System/drug effects , Dogs , Guinea Pigs , Humans , Male , Muscarinic Antagonists/administration & dosage , Muscarinic Antagonists/pharmacokinetics , Quinolines/administration & dosage , Quinolines/pharmacokinetics , Receptor, Muscarinic M2/metabolism , Tissue Distribution , Trachea/drug effects , Trachea/physiology , Triazoles/administration & dosage , Triazoles/pharmacokinetics
10.
Neurochem Res ; 44(12): 2723-2732, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31606838

ABSTRACT

Recent studies indicate that anti-muscarinic receptor is a prospective strategy to treat depression. Although non-selective antagonist of muscarinic receptor scopolamine exhibits rapid and robust antidepressant-like effect, it still has various side effects including abuse risk. Penehyclidine hydrochloride (PHC) is a novel clinical anti-cholinergic drug derived from scopolamine in China, which selectively blocks M1 and M3 muscarinic receptor. Therefore, the objective of this study was to evaluate whether PHC would manifest antidepressant-like effects. Forced swim test (FST), tail suspension test (TST) and chronic unpredictable mild stress (CUMS) model of depression were explored to assess the antidepressant-like effect. Western blotting was further performed to detect the effects of PHC on the brain-derived neurotrophic factor (BDNF) signal cascade. Immunofluorescence was used to observe the activation of astrocyte. Moreover, different pharmacological inhibitors were applied to clarify the antidepressant-like mechanism. The results of the present experiments revealed that PHC decreased the immobility time of FST and TST in mice. In the CUMS model, PHC rapidly ameliorated anhedonia-like behavior (within 4 days), accompanying with the enhanced expression of BDNF and phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2) in the hippocampus. In addition, blockade of the BDNF release by verapamil and activation of its Trk B receptor by K252a, rather than inhibition of opioid system by naloxone or sigma receptor by BD1047, abolished the antidepressant-like effects of PHC in mice. The findings suggest that PHC, an anti-muscarinic drug in clinical use, elicits rapid onset antidepressant-like effect, shedding light on the development of new antidepressants.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/drug therapy , Quinuclidines/therapeutic use , Receptor, Muscarinic M1/antagonists & inhibitors , Receptor, Muscarinic M3/antagonists & inhibitors , Animals , Astrocytes/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Hindlimb Suspension/psychology , Hippocampus/metabolism , Hippocampus/pathology , Male , Mice, Inbred ICR , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neuroglia/drug effects , Stress, Psychological/drug therapy , Swimming/psychology
11.
Bioorg Med Chem ; 27(15): 3339-3346, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31204225

ABSTRACT

The treatment for patients with chronic obstructive pulmonary disease (COPD) usually involves a combination of anti-inflammatory and bronchodilatory drugs. We recently found that mepenzolate bromide (1) and its derivative, 3-(2-hydroxy-2, 2-diphenylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane bromide (5), have both anti-inflammatory and bronchodilatory activities. We chemically modified 5 with a view to obtain derivatives with both anti-inflammatory and longer-lasting bronchodilatory activities. Among the synthesized compounds, (R)-(-)-12 ((R)-3-(2-hydroxy-2,2-diphenylacetoxy)-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane bromide) showed the highest affinity in vitro for the human muscarinic M3 receptor (hM3R). Compared to 1 and 5, (R)-(-)-12 exhibited longer-lasting bronchodilatory activity and equivalent anti-inflammatory effect in mice. The long-term intratracheal administration of (R)-(-)-12 suppressed porcine pancreatic elastase-induced pulmonary emphysema in mice, whereas the same procedure with a long-acting muscarinic antagonist used clinically (tiotropium bromide) did not. These results suggest that (R)-(-)-12 might be therapeutically beneficial for use with COPD patients given the improved effects seen against both inflammatory pulmonary emphysema and airflow limitation in this animal model.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzilates/pharmacology , Bronchodilator Agents/pharmacology , Piperidines/pharmacology , Pulmonary Emphysema/drug therapy , Receptor, Muscarinic M3/antagonists & inhibitors , Administration, Inhalation , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Benzilates/administration & dosage , Benzilates/chemistry , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/chemistry , Dose-Response Relationship, Drug , Mice , Molecular Structure , Pancreatic Elastase/metabolism , Piperidines/administration & dosage , Piperidines/chemistry , Pulmonary Emphysema/metabolism , Receptor, Muscarinic M3/metabolism , Structure-Activity Relationship , Swine
12.
Nature ; 502(7471): 327-332, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24107995

ABSTRACT

Progressive phases of multiple sclerosis are associated with inhibited differentiation of the progenitor cell population that generates the mature oligodendrocytes required for remyelination and disease remission. To identify selective inducers of oligodendrocyte differentiation, we performed an image-based screen for myelin basic protein (MBP) expression using primary rat optic-nerve-derived progenitor cells. Here we show that among the most effective compounds identifed was benztropine, which significantly decreases clinical severity in the experimental autoimmune encephalomyelitis (EAE) model of relapsing-remitting multiple sclerosis when administered alone or in combination with approved immunosuppressive treatments for multiple sclerosis. Evidence from a cuprizone-induced model of demyelination, in vitro and in vivo T-cell assays and EAE adoptive transfer experiments indicated that the observed efficacy of this drug results directly from an enhancement of remyelination rather than immune suppression. Pharmacological studies indicate that benztropine functions by a mechanism that involves direct antagonism of M1 and/or M3 muscarinic receptors. These studies should facilitate the development of effective new therapies for the treatment of multiple sclerosis that complement established immunosuppressive approaches.


Subject(s)
Benztropine/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Models, Biological , Multiple Sclerosis/drug therapy , Myelin Sheath/drug effects , Oligodendroglia/drug effects , Regeneration/drug effects , Animals , Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use , Benztropine/pharmacology , Cell Differentiation/drug effects , Coculture Techniques , Cuprizone/pharmacology , Cuprizone/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Fingolimod Hydrochloride , Immune System/drug effects , Immune System/immunology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/pathology , Myelin Proteolipid Protein/pharmacology , Myelin Sheath/metabolism , Myelin Sheath/pathology , Oligodendroglia/cytology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Optic Nerve/cytology , Propylene Glycols/pharmacology , Propylene Glycols/therapeutic use , Rats , Receptor, Muscarinic M1/antagonists & inhibitors , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M3/metabolism , Recurrence , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Sphingosine/therapeutic use , Stem Cells/cytology , Stem Cells/drug effects
13.
Proc Natl Acad Sci U S A ; 113(38): E5675-84, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27601651

ABSTRACT

Design of ligands that provide receptor selectivity has emerged as a new paradigm for drug discovery of G protein-coupled receptors, and may, for certain families of receptors, only be achieved via identification of chemically diverse allosteric modulators. Here, the extracellular vestibule of the M2 muscarinic acetylcholine receptor (mAChR) is targeted for structure-based design of allosteric modulators. Accelerated molecular dynamics (aMD) simulations were performed to construct structural ensembles that account for the receptor flexibility. Compounds obtained from the National Cancer Institute (NCI) were docked to the receptor ensembles. Retrospective docking of known ligands showed that combining aMD simulations with Glide induced fit docking (IFD) provided much-improved enrichment factors, compared with the Glide virtual screening workflow. Glide IFD was thus applied in receptor ensemble docking, and 38 top-ranked NCI compounds were selected for experimental testing. In [(3)H]N-methylscopolamine radioligand dissociation assays, approximately half of the 38 lead compounds altered the radioligand dissociation rate, a hallmark of allosteric behavior. In further competition binding experiments, we identified 12 compounds with affinity of ≤30 µM. With final functional experiments on six selected compounds, we confirmed four of them as new negative allosteric modulators (NAMs) and one as positive allosteric modulator of agonist-mediated response at the M2 mAChR. Two of the NAMs showed subtype selectivity without significant effect at the M1 and M3 mAChRs. This study demonstrates an unprecedented successful structure-based approach to identify chemically diverse and selective GPCR allosteric modulators with outstanding potential for further structure-activity relationship studies.


Subject(s)
Lead/chemistry , Receptor, Muscarinic M2/agonists , Receptor, Muscarinic M2/antagonists & inhibitors , Structure-Activity Relationship , Allosteric Regulation , Allosteric Site , Animals , Binding, Competitive/drug effects , CHO Cells , Cricetulus , Humans , Kinetics , Lead/pharmacology , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Conformation/drug effects , Radioligand Assay , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/antagonists & inhibitors , Receptor, Muscarinic M1/chemistry , Receptor, Muscarinic M2/chemistry , Receptor, Muscarinic M3/agonists , Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M3/chemistry
14.
FASEB J ; 31(10): 4335-4346, 2017 10.
Article in English | MEDLINE | ID: mdl-28619712

ABSTRACT

Asthma often progresses into adulthood from early-life episodes of adverse environmental exposures. However, how the injury to developing lungs contributes to the pathophysiology of persistent asthma remains poorly understood. In this study, we identified an age-related mechanism along the cholinergic nerve-airway smooth muscle (ASM) axis that underlies prolonged airway hyperreactivity (AHR) in mice. We showed that ASM continued to mature until ∼3 wk after birth. Coinciding with postnatal ASM maturation, there was a critical time window for the development of ASM hypercontractility after cholinergic stimulation. We found that allergen exposure in neonatal mice, but not in adult mice, elevated the level and activity of cholinergic nerves (termed neuroplasticity). We demonstrated that cholinergic neuroplasticity is necessary for the induction of persistent AHR after neonatal exposure during rescue assays in mice deficient in neuroplasticity. In addition, early intervention with cholinergic receptor muscarinic (ChRM)-3 blocker reversed the progression of AHR in the neonatal exposure model, whereas ß2-adrenoceptor agonists had no such effect. Together, our findings demonstrate a functional relationship between cholinergic neuroplasticity and ASM contractile phenotypes that operates uniquely in early life to induce persistent AHR after allergen exposure. Targeting ChRM3 may have disease-modifying benefits in childhood asthma.-Patel, K. R., Bai, Y., Trieu, K. G., Barrios, J., Ai, X. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma.


Subject(s)
Asthma/prevention & control , Bronchial Hyperreactivity/metabolism , Muscle, Smooth/metabolism , Receptor, Muscarinic M3/metabolism , Acetylcholine/metabolism , Animals , Bronchial Hyperreactivity/diagnosis , Disease Models, Animal , Disease Progression , Mice, Knockout , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle, Smooth/drug effects , Receptor, Muscarinic M3/antagonists & inhibitors , Respiratory System/drug effects
15.
Pulm Pharmacol Ther ; 48: 144-150, 2018 02.
Article in English | MEDLINE | ID: mdl-29158153

ABSTRACT

LPS has been recently shown to induce muscarinic acetylcholine 3 receptor (M3 receptor) expression and penehyclidine hydrochloride (PHC) is an anticholinergic drug which could block the expression of M3 receptor. PHC has been demonstrated to perform protective effect on cell injury. This study is to investigate whether the effect of PHC on microvascular endothelial injury is related to its inhibition of M3 receptor or not. HPMVECs were treated with specific M3 receptor shRNA or PBS, and randomly divided into LPS group (A group), LPS+PHC group (B group), LPS + M3 shRNA group (C group) and LPS + PHC + M3 shRNA group (D group). Cells were collected at 60 min after LPS treatment to measure levels of LDH, endothelial permeability, TNF-α and IL-6 levels, NF-κB p65 activation, I-κB protein expression, p38MAPK, and ERK1/2 activations as well as M3 mRNA expression. PHC could decrease LDH levels, cell permeability, TNF-α and IL-6 levels, p38 MAPK, ERK1/2, NF-κB p65 activations and M3 mRNA expressions compared with LPS group. When M3 receptor was silence, the changes of these indices were much more obvious. These findings suggest that M3 receptor plays an important role in LPS-induced pulmonary microvascular endothelial injury, which is regulated through NF-κB p65 and MAPK activation. And knockout of M3 receptor could attenuate LPS-induced pulmonary microvascular endothelial injury. Regulative effects of PHC on pulmonary microvascular permeability and NF-κB p65 as well as MAPK activations are including but not limited to inhibition of M3 receptor.


Subject(s)
Cholinergic Antagonists/pharmacology , Endothelium, Vascular/drug effects , Quinuclidines/pharmacology , Receptor, Muscarinic M3/genetics , Acute Lung Injury/drug therapy , Acute Lung Injury/physiopathology , Capillary Permeability/drug effects , Cell Line , Endothelium, Vascular/pathology , Gene Knockdown Techniques , Humans , Lipopolysaccharides/toxicity , Mitogen-Activated Protein Kinases/metabolism , Receptor, Muscarinic M3/antagonists & inhibitors , Transcription Factor RelA/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
16.
Br J Clin Pharmacol ; 84(7): 1535-1543, 2018 07.
Article in English | MEDLINE | ID: mdl-29522648

ABSTRACT

AIMS: The aim of this study was to compare the effects of the selective M3 muscarinic acetylcholine receptor antagonist darifenacin, oral hyoscine hydrobromide and placebo on motion sickness induced by cross-coupled stimulation. METHODS: The effects of darifenacin 10 mg or 20 mg, hyoscine hydrobromide 0.6 mg and placebo were assessed in a randomized, double-blind, four-way cross over trial of 16 healthy subjects. Motion sickness, skin conductance (a measure of sweating) and psychomotor cognitive function tests were investigated. RESULTS: Hyoscine hydrobromide produced significantly increased tolerance to motion versus placebo (P < 0.05 to P < 0.01). The motion protection effect of darifenacin (10 or 20 mg) was approximately one third that of hyoscine hydrobromide but was not significant versus placebo. Darifenacin and hyoscine hydrobromide both significantly reduced skin conductance versus placebo. Darifenacin produced either no effect or an enhanced effect on cognitive function in contrast to hyoscine hydrobromide, where there was significant impairment of psychomotor performance. CONCLUSION: The results suggest that selective antagonism of the M3 receptor may not be important in the prevention of motion sickness. However, selective M3 antagonism does not impair cognitive function. These observations may be important given that long-term treatment with non-selective anti-muscarinic agents such as oxybutynin may lead to an increased incidence of dementia.


Subject(s)
Benzofurans/administration & dosage , Cognition/drug effects , Galvanic Skin Response/drug effects , Motion Sickness/drug therapy , Muscarinic Antagonists/administration & dosage , Pyrrolidines/administration & dosage , Scopolamine/administration & dosage , Adolescent , Adult , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Healthy Volunteers , Humans , Male , Placebos/administration & dosage , Receptor, Muscarinic M3/antagonists & inhibitors , Sweating/drug effects , Treatment Outcome , Young Adult
17.
Mol Pharmacol ; 92(5): 601-612, 2017 11.
Article in English | MEDLINE | ID: mdl-28893976

ABSTRACT

Pilocarpine is a prototypical drug used to treat glaucoma and dry mouth and is classified as either a full or partial muscarinic agonist. Here, we report several unexpected results pertaining to its interaction with muscarinic M3 receptor (M3R). We found that pilocarpine was 1000 times less potent in stimulating mouse-eye pupil constriction than muscarinic agonists oxotremorin-M (Oxo-M) or carbachol (CCh), although all three ligands have similar Kd values for M3R. In contrast to CCh or Oxo-M, pilocarpine does not induce Ca2+ mobilization via endogenous M3R in human embryonic kidney cell line 293T (HEK293T) or mouse insulinoma (MIN6) cells. Pilocarpine also fails to stimulate insulin secretion and, instead, antagonizes the insulinotropic effect of Oxo-M and CCh-induced Ca2+ upregulation; however, in HEK293T or Chinese hamster ovary-K1 cells overexpressing M3R, pilocarpine induces Ca2+ transients like those recorded with another cognate G protein-coupled muscarinic receptor, M1R. Stimulation of cells overexpressing M1R or M3R with CCh resulted in a similar reduction in phosphatidylinositol 4,5-bisphosphate (PIP2). In contrast to CCh, pilocarpine stimulated PIP2 hydrolysis only in cells overexpressing M1R but not M3R. Moreover, pilocarpine blocked CCh-stimulated PIP2 hydrolysis in M3R-overexpressing cells, thus, it acted as an antagonist. Pilocarpine activates extracellular regulated kinase 1/2 in MIN6 cells. The stimulatory effect on extracellular regulated kinase (ERK1/2) was blocked by the Src family kinase inhibitor PP2, indicating that the action of pilocarpine on endogenous M3R is biased toward ß-arrestin. Taken together, our findings show that pilocarpine can act as either an agonist or antagonist of M3R, depending on the cell type, expression level, and signaling pathway downstream of this receptor.


Subject(s)
Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Pilocarpine/pharmacology , Receptor, Muscarinic M3/agonists , Receptor, Muscarinic M3/antagonists & inhibitors , Animals , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Muscarinic Agonists/metabolism , Muscarinic Antagonists/metabolism , Pilocarpine/metabolism , Receptor, Muscarinic M3/metabolism
18.
Pulm Pharmacol Ther ; 46: 1-10, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28729041

ABSTRACT

LAS190792 is a novel muscarinic antagonist and ß2-adrenoceptor agonist in development for chronic respiratory diseases. This study investigated the pharmacological profile of LAS190792 in comparison to batefenterol, tiotropium, indacaterol and olodaterol. LAS190792 is potent at the human M3 receptor (pIC50: 8.8 in binding assays). It is selective for the ß2-adrenoceptor over the ß1-and ß3-adrenoceptor, and shows a functional potency in a similar range to batefenterol and LABA compounds (pEC50 in spontaneous tone isolated trachea: 9.6). The relaxant potency of LAS190792 in electrically stimulated tissue is similar to batefenterol, with an antimuscarinic activity in presence of propranolol slightly higher than batefenterol (pIC50 of 8.3 versus 7.9 in human tissue). LAS190792 exhibits a sustained duration of action in isolated tissue longer than that of batefenterol. Nebulized LAS190792 inhibits acetylcholine-induced bronchoconstriction in dog with minimal cardiac effects and sustained bronchodilation (t1/2: 13.3 h). In conclusion, these studies suggest that LAS190792 is a dual-acting muscarinic antagonist ß2-adrenoceptor agonist that has the potential to be a next generation bronchodilator with long-lasting effects and wide safety margin in humans.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Cyclohexanes/pharmacology , Muscarinic Antagonists/pharmacology , Quinolines/pharmacology , Thiophenes/pharmacology , Acetylcholine/pharmacology , Administration, Inhalation , Adrenergic beta-2 Receptor Agonists/administration & dosage , Animals , Bronchoconstriction/drug effects , Cyclohexanes/administration & dosage , Dogs , Guinea Pigs , Half-Life , Humans , Inhibitory Concentration 50 , Male , Muscarinic Antagonists/administration & dosage , Quinolines/administration & dosage , Receptor, Muscarinic M3/antagonists & inhibitors , Respiratory Tract Diseases/drug therapy , Respiratory Tract Diseases/physiopathology , Thiophenes/administration & dosage
19.
Bioorg Med Chem ; 25(20): 5341-5354, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28797771

ABSTRACT

Novel biphenyloxy-alkyl derivatives of piperidine and azepane were synthesized and evaluated for their binding properties at the human histamine H3 receptor. Two series of compounds were obtained with a meta- and a para-biphenyl moiety. The alkyl chain spacer contained five and six carbon atoms. The highest affinity among all compounds was shown by 1-(6-(3-phenylphenoxy)hexyl)azepane (13) with a Ki value of 18nM. Two para-biphenyl derivatives, 1-(5-(4-phenylphenoxy)pentyl)piperidine (14; Ki=25nM) and 1-(5-(4-phenylphenoxy)pentyl)azepane (16; Ki=34nM), classified as antagonists in a cAMP accumulation assay (IC50=4 and 9nM, respectively), were studied in detail. Compounds 14 and 16 blocked RAMH-induced dipsogenia in rats (ED50 of 2.72mg/kg and 1.75mg/kg respectively), and showed high selectivity (hH4R vs hH3R>600-fold) and low toxicity (hERG inhibition: IC50>1.70µM; hepatotoxicity IC50>12.5µM; non-mutagenic up to 10µM). Furthermore, the metabolic stability was evaluated in vitro on human liver microsomes (HLMs) and/or rat liver microsomes (RLMs). Metabolites produced were analyzed and tentatively identified by UPLC-MS techniques. The results demonstrated easy hydroxylation of the biphenyl ring.


Subject(s)
Azepines/pharmacology , Piperidines/pharmacology , Receptors, Histamine H3/metabolism , Animals , Azepines/chemical synthesis , Azepines/chemistry , Cell Proliferation , Disease Models, Animal , Dose-Response Relationship, Drug , Guinea Pigs , HEK293 Cells , Hep G2 Cells , Humans , Ligands , Male , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Rats , Rats, Wistar , Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M3/metabolism , Receptors, Histamine H1/metabolism , Structure-Activity Relationship
20.
J Pharmacol Sci ; 130(1): 24-32, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26825997

ABSTRACT

The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR) subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol) produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol) disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist) or 4-DAMP (M1 and M3 antagonist) plus hexamethonium (nicotinic AChR antagonist), but not methoctramine (M2 and M4 antagonist). These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation.


Subject(s)
Acetylcholine/pharmacology , Endothelium, Vascular , Mesenteric Arteries/drug effects , Receptor, Muscarinic M1/physiology , Receptor, Muscarinic M3/physiology , Vasodilation/drug effects , Acetylcholine/antagonists & inhibitors , Animals , Calcitonin Gene-Related Peptide/metabolism , Dose-Response Relationship, Drug , Hexamethonium/pharmacology , In Vitro Techniques , Male , Mesenteric Arteries/metabolism , Piperidines/pharmacology , Pirenzepine/pharmacology , Rats, Wistar , Receptor, Muscarinic M1/antagonists & inhibitors , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M3/antagonists & inhibitors , Receptor, Muscarinic M3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL