Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 585
Filter
1.
Trends Genet ; 40(5): 422-436, 2024 May.
Article in English | MEDLINE | ID: mdl-38458877

ABSTRACT

Bdelloid rotifers constitute a class of microscopic animals living in freshwater habitats worldwide. Several strange features of bdelloids have drawn attention: their ability to tolerate desiccation and other stresses, a lack of reported males across the clade despite centuries of study, and unusually high numbers of horizontally acquired, non-metazoan genes. Genome sequencing is transforming our understanding of their lifestyle and its consequences, while in turn providing wider insights about recombination and genome organisation in animals. Many questions remain, not least how to reconcile apparent genomic signatures of sex with the continued absence of reported males, why bdelloids have so many horizontally acquired genes, and how their remarkable ability to survive stress interacts with recombination and other genomic processes.


Subject(s)
Gene Transfer, Horizontal , Recombination, Genetic , Rotifera , Stress, Physiological , Animals , Rotifera/genetics , Rotifera/physiology , Gene Transfer, Horizontal/genetics , Stress, Physiological/genetics , Reproduction, Asexual/genetics , Genome/genetics , Genome, Helminth , Phylogeny , Male
2.
Nature ; 587(7834): 420-425, 2020 11.
Article in English | MEDLINE | ID: mdl-33177709

ABSTRACT

Genome introgressions drive evolution across the animal1, plant2 and fungal3 kingdoms. Introgressions initiate from archaic admixtures followed by repeated backcrossing to one parental species. However, how introgressions arise in reproductively isolated species, such as yeast4, has remained unclear. Here we identify a clonal descendant of the ancestral yeast hybrid that founded the extant Saccharomyces cerevisiae Alpechin lineage5, which carries abundant Saccharomyces paradoxus introgressions. We show that this clonal descendant, hereafter defined as a 'living ancestor', retained the ancestral genome structure of the first-generation hybrid with contiguous S. cerevisiae and S. paradoxus subgenomes. The ancestral first-generation hybrid underwent catastrophic genomic instability through more than a hundred mitotic recombination events, mainly manifesting as homozygous genome blocks generated by loss of heterozygosity. These homozygous sequence blocks rescue hybrid fertility by restoring meiotic recombination and are the direct origins of the introgressions present in the Alpechin lineage. We suggest a plausible route for introgression evolution through the reconstruction of extinct stages and propose that genome instability allows hybrids to overcome reproductive isolation and enables introgressions to emerge.


Subject(s)
Evolution, Molecular , Genetic Introgression/genetics , Genome, Fungal/genetics , Genomics , Phylogeny , Saccharomyces cerevisiae/genetics , Saccharomyces/genetics , Crosses, Genetic , Fertility/genetics , Genetic Fitness/genetics , Genomic Instability/genetics , Homologous Recombination/genetics , Loss of Heterozygosity/genetics , Meiosis/genetics , Mitosis/genetics , Reproduction, Asexual/genetics , Saccharomyces/classification , Saccharomyces/cytology , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/cytology
3.
PLoS Pathog ; 19(3): e1011256, 2023 03.
Article in English | MEDLINE | ID: mdl-36952577

ABSTRACT

Oomycetes are filamentous microorganisms easily mistaken as fungi but vastly differ in physiology, biochemistry, and genetics. This commonly-held misconception lead to a reduced effectiveness by using conventional fungicides to control oomycetes, thus it demands the identification of novel functional genes as target for precisely design oomycetes-specific microbicide. The present study initially analyzed the available transcriptome data of the model oomycete pathogen, Phytophthora sojae, and constructed an expression matrix of 10,953 genes across the stages of asexual development and host infection. Hierarchical clustering, specificity, and diversity analyses revealed a more pronounced transcriptional plasticity during the stages of asexual development than that in host infection, which drew our attention by particularly focusing on transcripts in asexual development stage to eventually clustered them into 6 phase-specific expression modules. Three of which respectively possessing a serine/threonine phosphatase (PP2C) expressed during the mycelial and sporangium stages, a histidine kinase (HK) expressed during the zoospore and cyst stages, and a bZIP transcription factor (bZIP32) exclusive to the cyst germination stage were selected for down-stream functional validation. In this way, we demonstrated that PP2C, HK, and bZIP32 play significant roles in P. sojae asexual development and virulence. Thus, these findings provide a foundation for further gene functional annotation in oomycetes and crop disease management.


Subject(s)
Phytophthora , Reproduction, Asexual , Transcriptome , Phytophthora/enzymology , Phytophthora/genetics , Phytophthora/growth & development , Phytophthora/pathogenicity , Reproduction, Asexual/genetics , Gene Expression Regulation, Fungal , Gene Expression Regulation, Developmental , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Fungal Structures/enzymology , Fungal Structures/genetics , Fungal Structures/growth & development , Histidine Kinase/genetics , Histidine Kinase/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Plant Diseases/microbiology
4.
Nature ; 565(7737): 91-95, 2019 01.
Article in English | MEDLINE | ID: mdl-30542157

ABSTRACT

The molecular pathways that trigger the initiation of embryogenesis after fertilization in flowering plants, and prevent its occurrence without fertilization, are not well understood1. Here we show in rice (Oryza sativa) that BABY BOOM1 (BBM1), a member of the AP2 family2 of transcription factors that is expressed in sperm cells, has a key role in this process. Ectopic expression of BBM1 in the egg cell is sufficient for parthenogenesis, which indicates that a single wild-type gene can bypass the fertilization checkpoint in the female gamete. Zygotic expression of BBM1 is initially specific to the male allele but is subsequently biparental, and this is consistent with its observed auto-activation. Triple knockout of the genes BBM1, BBM2 and BBM3 causes embryo arrest and abortion, which are fully rescued by male-transmitted BBM1. These findings suggest that the requirement for fertilization in embryogenesis is mediated by male-genome transmission of pluripotency factors. When genome editing to substitute mitosis for meiosis (MiMe)3,4 is combined with the expression of BBM1 in the egg cell, clonal progeny can be obtained that retain genome-wide parental heterozygosity. The synthetic asexual-propagation trait is heritable through multiple generations of clones. Hybrid crops provide increased yields that cannot be maintained by their progeny owing to genetic segregation. This work establishes the feasibility of asexual reproduction in crops, and could enable the maintenance of hybrids clonally through seed propagation5,6.


Subject(s)
Oryza/embryology , Reproduction, Asexual , Seeds/embryology , Diploidy , Fertilization , Gene Editing , Genes, Plant/genetics , Genome, Plant/genetics , Haploidy , Meiosis/genetics , Mutation , Oryza/genetics , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Reproduction, Asexual/genetics , Seeds/genetics , Zygote/metabolism
5.
Bioessays ; 45(6): e2200234, 2023 06.
Article in English | MEDLINE | ID: mdl-37026407

ABSTRACT

We use genomic information to tell us stories of evolutionary origins. But what does it mean when different genomes report wildly different accounts of lineage history? This genomic "discordance" can be a consequence of a fascinating suite of natural history and evolutionary phenomena, from the different inheritance mechanisms of nuclear versus cytoplasmic (mitochondrial and plastid) genomes to hybridization and introgression to horizontal transfer. Here, we explore how we can use these distinct genomic stories to provide new insights into the maintenance of sexual reproduction, one of the most important unanswered questions in biology. We focus on the strikingly distinct nuclear versus mitochondrial versions of the story surrounding the origin and maintenance of asexual lineages in Potamopyrgus antipodarum, a New Zealand freshwater snail. While key questions remain unresolved, these data inspire multiple testable hypotheses that can be powerfully applied across a broad range of taxa toward a deeper understanding of the causes and consequences of mitonuclear discordance, the maintenance of sex, and the origin of new asexual lineages.


Subject(s)
Reproduction, Asexual , Snails , Animals , Reproduction, Asexual/genetics , Snails/genetics , Genome/genetics , Reproduction , Fresh Water , Phylogeny
6.
BMC Genomics ; 25(1): 202, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383295

ABSTRACT

BACKGROUND: Transitions from sexual to asexual reproduction are common in eukaryotes, but the underlying mechanisms remain poorly known. The pea aphid-Acyrthosiphon pisum-exhibits reproductive polymorphism, with cyclical parthenogenetic and obligate parthenogenetic lineages, offering an opportunity to decipher the genetic basis of sex loss. Previous work on this species identified a single 840 kb region controlling reproductive polymorphism and carrying 32 genes. With the aim of identifying the gene(s) responsible for sex loss and the resulting consequences on the genetic programs controlling sexual or asexual embryogenesis, we compared the transcriptomic response to photoperiod shortening-the main sex-inducing cue-of a sexual and an obligate asexual lineage of the pea aphid, focusing on heads (where the photoperiodic cue is detected) and embryos (the final target of the cue). RESULTS: Our analyses revealed that four genes (one expressed in the head, and three in the embryos) of the region responded differently to photoperiod in the two lineages. We also found that the downstream genetic programs expressed during embryonic development of a future sexual female encompass ∼1600 genes, among which miRNAs, piRNAs and histone modification pathways are overrepresented. These genes mainly co-localize in two genomic regions enriched in transposable elements (TEs). CONCLUSIONS: Our results suggest that the causal polymorphism(s) in the 840 kb region somehow impair downstream epigenetic and post-transcriptional regulations in obligate asexual lineages, thereby sustaining asexual reproduction.


Subject(s)
Aphids , Female , Animals , Aphids/physiology , Pisum sativum , Parthenogenesis/genetics , Reproduction, Asexual/genetics , Gene Expression Profiling
7.
BMC Genomics ; 25(1): 548, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824502

ABSTRACT

Gibel carp (Carassius gibelio) is a cyprinid fish that originated in eastern Eurasia and is considered as invasive in European freshwater ecosystems. The populations of gibel carp in Europe are mostly composed of asexually reproducing triploid females (i.e., reproducing by gynogenesis) and sexually reproducing diploid females and males. Although some cases of coexisting sexual and asexual reproductive forms are known in vertebrates, the molecular mechanisms maintaining such coexistence are still in question. Both reproduction modes are supposed to exhibit evolutionary and ecological advantages and disadvantages. To better understand the coexistence of these two reproduction strategies, we performed transcriptome profile analysis of gonad tissues (ovaries) and studied the differentially expressed reproduction-associated genes in sexual and asexual females. We used high-throughput RNA sequencing to generate transcriptomic profiles of gonadal tissues of triploid asexual females and males, diploid sexual males and females of gibel carp, as well as diploid individuals from two closely-related species, C. auratus and Cyprinus carpio. Using SNP clustering, we showed the close similarity of C. gibelio and C. auratus with a basal position of C. carpio to both Carassius species. Using transcriptome profile analyses, we showed that many genes and pathways are involved in both gynogenetic and sexual reproduction in C. gibelio; however, we also found that 1500 genes, including 100 genes involved in cell cycle control, meiosis, oogenesis, embryogenesis, fertilization, steroid hormone signaling, and biosynthesis were differently expressed in the ovaries of asexual and sexual females. We suggest that the overall downregulation of reproduction-associated pathways in asexual females, and their maintenance in sexual ones, allows the populations of C. gibelio to combine the evolutionary and ecological advantages of the two reproductive strategies. However, we showed that many sexual-reproduction-related genes are maintained and expressed in asexual females, suggesting that gynogenetic gibel carp retains the genetic toolkits for meiosis and sexual reproduction. These findings shed new light on the evolution of this asexual and sexual complex.


Subject(s)
Carps , Reproduction, Asexual , Reproduction , Animals , Female , Reproduction, Asexual/genetics , Reproduction/genetics , Carps/genetics , Carps/physiology , Male , Transcriptome , Gene Expression Profiling , Ovary/metabolism , Polymorphism, Single Nucleotide
8.
BMC Genomics ; 25(1): 888, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304834

ABSTRACT

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) form mutualistic partnerships with approximately 80% of plant species. AMF, and their diversity, play a fundamental role in plant growth, driving plant diversity, and global carbon cycles. Knowing whether AMF are sexual or asexual has fundamental consequences for how they can be used in agricultural applications. Evidence for and against sexuality in the model AMF, Rhizophagus irregularis, has been proposed. The discovery of a putative mating-type locus (MAT locus) in R. irregularis, and the previously suggested recombination among nuclei of a dikaryon R. irregularis isolate, potentially suggested sexuality. Unless undergoing frequent sexual reproduction, evolution of MAT-locus diversity is expected to be very low. Additionally, in sexual species, MAT-locus evolution is decoupled from the evolution of arbitrary genome-wide loci. RESULTS: We studied MAT-locus diversity of R. irregularis. This was then compared to diversification in a phosphate transporter gene (PTG), that is not involved in sex, and to genome-wide divergence, defined by 47,378 single nucleotide polymorphisms. Strikingly, we found unexpectedly high MAT-locus diversity indicating that either it is not involved in sex, or that AMF are highly active in sex. However, a strongly congruent evolutionary history of the MAT-locus, PTG and genome-wide arbitrary loci allows us to reject both the hypothesis that the MAT-locus is involved in mating and that the R. irregularis lineage is sexual. CONCLUSION: Our finding shapes the approach to developing more effective AMF strains and is highly informative as it suggests that introduced strains applied in agriculture will not exchange DNA with native populations.


Subject(s)
Evolution, Molecular , Genes, Mating Type, Fungal , Genome, Fungal , Mycorrhizae , Mycorrhizae/genetics , Mycorrhizae/physiology , Genes, Mating Type, Fungal/genetics , Polymorphism, Single Nucleotide , Glomeromycota/genetics , Glomeromycota/physiology , Genetic Variation , Phylogeny , Reproduction, Asexual/genetics , Fungi
9.
Am Nat ; 203(1): 73-91, 2024 01.
Article in English | MEDLINE | ID: mdl-38207137

ABSTRACT

AbstractTransitions from sexual to asexual reproduction have occurred in numerous lineages, but it remains unclear why asexual populations rarely persist. In facultatively parthenogenetic animals, all-female populations can arise when males are absent or become extinct, and such populations could help to understand the genetic and phenotypic changes that occur in the initial stages of transitions to asexuality. We investigated a naturally occurring spatial mosaic of mixed-sex and all-female populations of the facultatively parthenogenetic Australian phasmid Megacrania batesii. Analysis of single-nucleotide polymorphisms indicated multiple independent transitions between reproductive modes. All-female populations had much lower heterozygosity and allelic diversity than mixed-sex populations, but we found few consistent differences in fitness-related traits between population types. All-female populations exhibited more frequent and severe deformities in their (flight-incapable) wings but did not show higher rates of appendage loss. All-female populations also harbored more ectoparasites in swamp (but not beach) habitats. Reproductive mode explained little variation in female body size, fecundity, or egg hatch rate. Our results suggest that transitions to parthenogenetic reproduction can lead to dramatic genetic changes with little immediate effect on performance. All-female M. batesii populations appear to consist of high-fitness genotypes that might be able to thrive for many generations in relatively constant and benign environments but could be vulnerable to environmental challenges, such as increased parasite abundance.


Subject(s)
Parthenogenesis , Reproduction , Animals , Male , Female , Australia , Reproduction/genetics , Parthenogenesis/genetics , Reproduction, Asexual/genetics , Fertility
10.
BMC Plant Biol ; 24(1): 405, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750420

ABSTRACT

BACKGROUND: In plants, epigenetic stress memory has so far been found to be largely transient. Here, we wanted to assess the heritability of heat stress-induced epigenetic and transcriptomic changes following woodland strawberry (Fragaria vesca) reproduction. Strawberry is an ideal model to study epigenetic inheritance because it presents two modes of reproduction: sexual (self-pollinated plants) and asexual (clonally propagated plants named daughter plants). Taking advantage of this model, we investigated whether heat stress-induced DNA methylation changes can be transmitted via asexual reproduction. RESULTS: Our genome-wide study provides evidence for stress memory acquisition and maintenance in F. vesca. We found that specific DNA methylation marks or epimutations are stably transmitted over at least three asexual generations. Some of the epimutations were associated with transcriptional changes after heat stress. CONCLUSION: Our findings show that the strawberry methylome and transcriptome respond with a high level of flexibility to heat stress. Notably, independent plants acquired the same epimutations and those were inherited by their asexual progenies. Overall, the asexual progenies can retain some information in the genome of past stresses encountered by their progenitors. This molecular memory, also documented at the transcriptional level, might be involved in functional plasticity and stress adaptation. Finally, these findings may contribute to novel breeding approaches for climate-ready plants.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Fragaria , Heat-Shock Response , Transcriptome , Fragaria/genetics , Fragaria/physiology , Heat-Shock Response/genetics , Epigenomics , Gene Expression Regulation, Plant , Reproduction, Asexual/genetics
11.
Fungal Genet Biol ; 173: 103908, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857848

ABSTRACT

Reductive assimilation pathway involves ferric reductase and ferrous iron transporter, which is integral for fungal iron acquisition. A family of ferric reductase-like proteins has been functionally characterized in the filamentous entomopathogenic fungus Beauveria bassiana. In this investigation, two ferrous iron transporter-like proteins (Ftr) were functionally annotated in B. bassiana. BbFtr1 and BbFtr2 displayed high similarity in structure and were associated with the plasma and nuclear membrane. Their losses had no negatively influence on fungal growth on various nutrients and development under the iron-replete condition. Single mutants of BbFTR1 and BbFTR2 displayed the iron-availability dependent developmental defects, and double mutant exhibited the significantly impaired developmental potential under the iron-limited conditions. In insect bioassay, the double mutant also showed the weaker virulence than either of two single disruption mutants. These results suggested that two ferrous iron transporter-like proteins function independently in fungal physiologies under the iron-deficient condition. Intriguingly, a bZIP transcription factor BbHapX was required for expression of BbFTR1 and BbFTR2 under iron-depleted conditions. This study enhances our understanding of the iron uptake system in the filamentous entomopathogenic fungi.


Subject(s)
Beauveria , Fungal Proteins , Iron , Beauveria/genetics , Beauveria/pathogenicity , Beauveria/growth & development , Iron/metabolism , Virulence/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Animals , Gene Expression Regulation, Fungal , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Reproduction, Asexual/genetics
12.
Theor Popul Biol ; 157: 129-137, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643838

ABSTRACT

We consider how a population of N haploid individuals responds to directional selection on standing variation, with no new variation from recombination or mutation. Individuals have trait values z1,…,zN, which are drawn from a distribution ψ; the fitness of individual i is proportional to [Formula: see text] . For illustration, we consider the Laplace and Gaussian distributions, which are parametrised only by the variance V0, and show that for large N, there is a scaling limit which depends on a single parameter NV0. When selection is weak relative to drift (NV0≪1), the variance decreases exponentially at rate 1/N, and the expected ultimate gain in log fitness (scaled by V0), is just NV0, which is the same as Robertson's (1960) prediction for a sexual population. In contrast, when selection is strong relative to drift (NV0≫1), the ultimate gain can be found by approximating the establishment of alleles by a branching process in which each allele competes independently with the population mean and the fittest allele to establish is certain to fix. Then, if the probability of survival to time t∼1/V0 of an allele with value z is P(z), with mean P¯, the winning allele is the fittest of NP¯ survivors drawn from a distribution ψP/P¯. The expected ultimate change is ∼2log(1.15NV0) for a Gaussian distribution, and ∼-12log0.36NV0-log-log0.36NV0 for a Laplace distribution. This approach also predicts the variability of the process, and its dynamics; we show that in the strong selection regime, the expected genetic variance decreases as ∼t-3 at large times. We discuss how these results may be related to selection on standing variation that is spread along a linear chromosome.


Subject(s)
Selection, Genetic , Reproduction, Asexual/genetics , Models, Genetic , Genetic Variation , Haploidy , Genetics, Population , Alleles , Genetic Drift
13.
Nature ; 554(7690): 56-61, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29364871

ABSTRACT

The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms.


Subject(s)
Evolution, Molecular , Genome/genetics , Planarians/cytology , Planarians/genetics , Animals , Cell Cycle Proteins/deficiency , Genomics , M Phase Cell Cycle Checkpoints/genetics , M Phase Cell Cycle Checkpoints/physiology , Mad2 Proteins/deficiency , Planarians/physiology , Regeneration/genetics , Reproduction, Asexual/genetics , Retroelements/genetics
14.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34903643

ABSTRACT

Although males are a ubiquitous feature of animals, they have been lost repeatedly in diverse lineages. The tendency for obligate asexuality to evolve is thought to be reduced in animals whose males play a critical role beyond the contribution of gametes, for example, via care of offspring or provision of nuptial gifts. To our knowledge, the evolution of obligate asexuality in such species is unknown. In some species that undergo frequent inbreeding, males are hypothesized to play a key role in maintaining genetic heterozygosity through the possession of neo-sex chromosomes, although empirical evidence for this is lacking. Because inbreeding is a key feature of the life cycle of termites, we investigated the potential role of males in promoting heterozygosity within populations through karyotyping and genome-wide single-nucleotide polymorphism analyses of the drywood termite Glyptotermes nakajimai We showed that males possess up to 15 out of 17 of their chromosomes as sex-linked (sex and neo-sex) chromosomes and that they maintain significantly higher levels of heterozygosity than do females. Furthermore, we showed that two obligately asexual lineages of this species-representing the only known all-female termite populations-arose independently via intraspecific hybridization between sexual lineages with differing diploid chromosome numbers. Importantly, these asexual females have markedly higher heterozygosity than their conspecific males and appear to have replaced the sexual lineages in some populations. Our results indicate that asexuality has enabled females to supplant a key role of males.


Subject(s)
Biological Evolution , Isoptera/genetics , Reproduction, Asexual/genetics , Sex Chromosomes , Animals , Chromosomes, Insect , Female , Genome-Wide Association Study , Male , Polymorphism, Single Nucleotide
15.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34535550

ABSTRACT

Sex strongly impacts genome evolution via recombination and segregation. In the absence of these processes, haplotypes within lineages of diploid organisms are predicted to accumulate mutations independently of each other and diverge over time. This so-called "Meselson effect" is regarded as a strong indicator of the long-term evolution under obligate asexuality. Here, we present genomic and transcriptomic data of three populations of the asexual oribatid mite species Oppiella nova and its sexual relative Oppiella subpectinata We document strikingly different patterns of haplotype divergence between the two species, strongly supporting Meselson effect-like evolution and long-term asexuality in O. nova: I) variation within individuals exceeds variation between populations in O. nova but vice versa in O. subpectinata; II) two O. nova sublineages feature a high proportion of lineage-specific heterozygous single-nucleotide polymorphisms (SNPs), indicating that haplotypes continued to diverge after lineage separation; III) the deepest split in gene trees generally separates the two haplotypes in O. nova, but populations in O. subpectinata; and IV) the topologies of the two haplotype trees match each other. Our findings provide positive evidence for the absence of canonical sex over evolutionary time in O. nova and suggest that asexual oribatid mites can escape the dead-end fate usually associated with asexual lineages.


Subject(s)
Mites/genetics , Reproduction, Asexual/genetics , Acari/genetics , Animals , Evolution, Molecular , Genetic Variation/genetics , Haplotypes/genetics , Phylogeny
16.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892450

ABSTRACT

Asexual development is the main propagation and transmission mode of Beauveria bassiana and the basis of its pathogenicity. The regulation mechanism of conidiation and the key gene resources for utilization are key links to improving the conidia yield and quality of Beauveria bassiana. Their clarification may promote the industrialization of fungal pesticides. Here, we compared the regulation of morphology, resistance to external stress, virulence, and nutrient utilization capacity between the upstream developmental regulatory gene fluG and the key genes brlA, abaA, and wetA in the central growth and development pathway. The results showed that the ΔbrlA and ΔabaA mutants completely lost the capacity to conidiate and that the ΔwetA mutant had seriously reduced conidiation capacity. Although the deletion of fluG did not reduce the conidiation ability as much as deletions of brlA, abaA, and wetA, it significantly reduced the fungal response to external stress, virulence, and nutrient utilization, while the deletion of the three other genes had little effect. Via transcriptome analysis and screening the yeast nuclear system library, we found that the differentially expressed genes in the ΔfluG mutants were concentrated in the signaling pathways of ABC transporters, propionate metabolism, tryptophan metabolism, DNA replication, mismatch repair, and fatty acid metabolism. FluG directly acted on 40 proteins that were involved in various signaling pathways such as metabolism, oxidative stress, and cell homeostasis. The analysis indicated that the regulatory function of fluG was mainly involved in DNA replication, cell homeostasis, fungal growth and metabolism, and the response to external stress. Our results revealed the biological function of fluG in asexual development and the responses to several environmental stresses as well as its influence on the asexual development regulatory network in B. bassiana.


Subject(s)
Beauveria , Fungal Proteins , Gene Expression Regulation, Fungal , Reproduction, Asexual , Spores, Fungal , Beauveria/genetics , Beauveria/growth & development , Beauveria/pathogenicity , Beauveria/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Reproduction, Asexual/genetics , Spores, Fungal/growth & development , Spores, Fungal/genetics , Virulence/genetics , Gene Expression Profiling , Stress, Physiological , Transcriptome
17.
World J Microbiol Biotechnol ; 40(6): 179, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668807

ABSTRACT

Core histones in the nucleosome are subject to a wide variety of posttranslational modifications (PTMs), such as methylation, phosphorylation, ubiquitylation, and acetylation, all of which are crucial in shaping the structure of the chromatin and the expression of the target genes. A putative histone methyltransferase LaeA/Lae1, which is conserved in numerous filamentous fungi, functions as a global regulator of fungal growth, virulence, secondary metabolite formation, and the production of extracellular glycoside hydrolases (GHs). LaeA's direct histone targets, however, were not yet recognized. Previous research has shown that LaeA interacts with core histone H2B. Using S-adenosyl-L-methionine (SAM) as a methyl group donor and recombinant human histone H2B as the substrate, it was found that Penicillium oxalicum LaeA can transfer the methyl groups to the C-terminal lysine (K) 108 and K116 residues in vitro. The H2BK108 and H2BK116 sites on recombinant histone correspond to P. oxalicum H2BK122 and H2BK130, respectively. H2BK122A and H2BK130A, two mutants with histone H2B K122 or K130 mutation to alanine (A), were constructed in P. oxalicum. The mutants H2BK122A and H2BK130A demonstrated altered asexual development and decreased extracellular GH production, consistent with the findings of the laeA gene deletion strain (ΔlaeA). The transcriptome data showed that when compared to wild-type (WT) of P. oxalicum, 38 of the 47 differentially expressed (fold change ≥ 2, FDR ≤ 0.05) genes that encode extracellular GHs showed the same expression pattern in the three mutants ΔlaeA, H2BK122A, and H2BK130A. The four secondary metabolic gene clusters that considerably decreased expression in ΔlaeA also significantly decreased in H2BK122A or H2BK130A. The chromatin of promotor regions of the key cellulolytic genes cel7A/cbh1 and cel7B/eg1 compacted in the ΔlaeA, H2BK122A, and H2BK130A mutants, according to the results of chromatin accessibility real-time PCR (CHART-PCR). The chromatin accessibility index dropped. The histone binding pocket of the LaeA-methyltransf_23 domain is compatible with particular histone H2B peptides, providing appropriate electrostatic and steric compatibility to stabilize these peptides, according to molecular docking. The findings of the study demonstrate that H2BK122 and H2BK130, which are histone targets of P. oxalicum LaeA in vitro, are crucial for fungal conidiation, the expression of gene clusters encoding secondary metabolites, and the production of extracellular GHs.


Subject(s)
Fungal Proteins , Gene Expression Regulation, Fungal , Glycoside Hydrolases , Histones , Lysine , Multigene Family , Penicillium , Secondary Metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Histones/genetics , Lysine/metabolism , Lysine/biosynthesis , Methylation , Penicillium/genetics , Penicillium/enzymology , Penicillium/metabolism , Penicillium/growth & development , Protein Processing, Post-Translational , Reproduction, Asexual/genetics , Secondary Metabolism/genetics
18.
Mol Ecol ; 32(7): 1760-1776, 2023 04.
Article in English | MEDLINE | ID: mdl-36571434

ABSTRACT

Foraging behaviours encompass strategies to locate resources and to exploit them. In many taxa, these behaviours are driven by a major gene called for, but the mechanisms of gene regulation vary between species. In the parasitoid wasp Venturia canescens, sexual and asexual populations coexist in sympatry but differ in life-history traits, physiology and behaviours, which could impact their foraging strategies. Here, we explored the molecular bases underpinning divergence in behaviours by testing two mutually nonexclusive hypotheses: first, the divergence in the for gene correlates with differences in foraging strategies, and second, the latter rely on a divergence in whole-genome expression. Using comparative genomics, we showed that the for gene was conserved across insects considering both sequence and gene model complexity. Polymorphism analysis did not support the occurrence of two allelic variants diverging across the two populations, yet the asexual population exhibited less polymorphism than the sexual population. Sexual and asexual transcriptomes split sharply, with 10.9% differentially expressed genes, but these were not enriched in behaviour-related genes. We showed that the for gene was more highly expressed in asexual female heads than in sexual heads and that those differences correlate with divergence in foraging behaviours in our experiment given that asexuals explored the environment more and exploited more host patches. Overall, these results suggested that fine tuning of for gene expression between populations may have led to distinct foraging behaviours. We hypothesized that reproductive polymorphism and coexistence in sympatry of sexual and asexual populations specialized to different ecological niches via divergent optima on phenotypic traits could imply adaptation through different expression patterns of the for gene and at many other loci throughout the genome.


Subject(s)
Wasps , Animals , Female , Wasps/genetics , Reproduction, Asexual/genetics , Reproduction/genetics , Polymorphism, Genetic/genetics , Phenotype
19.
Mol Ecol ; 32(13): 3672-3685, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37143321

ABSTRACT

Transition from sexual reproduction to parthenogenesis constitutes a major life-history change with deep evolutionary consequences for sex-related traits, which are expected to decay. The pea aphid Acyrthosiphon pisum shows intraspecific reproductive polymorphism, with cold-resistant cyclically parthenogenetic (CP) lineages that alternate sexual and asexual generations and cold-sensitive obligately parthenogenetic (OP) lineages that produce only asexual females but still males. Here, the genotyping of 219 pea aphid lineages collected in cold-winter and mild-winter regions revealed contrasting population structures. Samples from cold-winter regions consisted mostly of distinct multilocus genotypes (MLGs) usually represented by a single sample (101 different MLGs for 111 samples) and were all phenotyped as CP. In contrast, fewer MLGs were found in mild-winter regions (28 MLGs for 108 samples), all but one being OP. Since the males produced by OP lineages are unlikely to pass on their genes (sexual females being rare in mild-winter regions), we tested the hypothesis that their traits could degenerate due to lack of selection by comparing male production and male reproductive success between OP and CP lineages. Male production was indeed reduced in OP lineages, but a less clear pattern was observed for male reproductive success: females mated with OP males laid fewer eggs (fertilized or not) but OP and CP males fertilized the same proportion of eggs. These differences may stem from the type of selective forces: male production may be counter-selected whereas male performances may evolve under the slower process of relaxed selection. The overall effective reproductive capacity of OP males could result from recent sex loss in OP lineages or underestimated reproductive opportunities.


Subject(s)
Aphids , Biological Evolution , Animals , Female , Male , Aphids/genetics , Parthenogenesis/genetics , Pisum sativum , Reproduction/genetics , Reproduction, Asexual/genetics
20.
J Evol Biol ; 36(4): 698-708, 2023 04.
Article in English | MEDLINE | ID: mdl-36852738

ABSTRACT

It is generally considered that sexual organisms show faster evolutionary adaptation than asexual organisms because sexuals can accumulate adaptive mutations through recombination. Yet, empirical evidence often shows that the geographic range size of sexual species is narrower than that of closely related asexual species, which may seem as if asexuals can adapt to more varied environments. Two potential explanations for this apparent contradiction considered by the existing theory are reproduction assurance and migration load. Here, we consider both reproductive assurance and migration load within a single model to comparatively examine their effects on range expansions of sexuals and asexuals across an environmental gradient. The model shows that higher dispersal propensity decreases sexuals' disadvantage in reproductive assurance while increasing their disadvantage in migration load. Moreover, lower mutation rate constrains adaptation more strongly in asexuals than in sexuals. Thus, high dispersal propensity and high mutation rates promote that asexuals have wider range sizes than sexuals. Intriguingly, our model reveals that sexuals can have wider geographic range sizes than asexuals under low dispersal propensity and low mutation rates, a pattern consistent with a few exceptional empirical cases. Combining reproductive assurance and migration load provides a useful perspective to better understand the relationships between species' mating systems and their geographic ranges.


Subject(s)
Biological Evolution , Reproduction , Reproduction/genetics , Adaptation, Physiological , Mutation , Mutation Rate , Reproduction, Asexual/genetics
SELECTION OF CITATIONS
SEARCH DETAIL