Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
BMC Plant Biol ; 24(1): 596, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38914948

ABSTRACT

BACKGROUND: Cliffs are recognized as one of the most challenging environments for plants, characterized by harsh conditions such as drought, infertile soil, and steep terrain. However, they surprisingly host ancient and diverse plant communities and play a crucial role in protecting biodiversity. The Taihang Mountains, which act as a natural boundary in eastern China, support a rich variety of plant species, including many unique to cliff habitats. However, it is little known how cliff plants adapt to harsh habitats and the demographic history in this region. RESULTS: To better understand the demographic history and adaptation of cliff plants in this area, we analyzed the chromosome-level genome of a representative cliff plant, T. rupestris var. ciliata, which has a genome size of 769.5 Mb, with a scaffold N50 of 104.92 Mb. The rapid expansion of transposable elements may have contributed to the increasing genome and its ability to adapt to unique and challenging cliff habitats. Comparative analysis of the genome evolution between Taihangia and non-cliff plants in Rosaceae revealed a significant expansion of gene families associated with oxidative phosphorylation, which is likely a response to the abiotic stresses faced by cliff plants. This expansion may explain the long-term adaptation of Taihangia to harsh cliff environments. The effective population size of the two varieties has continuously decreased due to climatic fluctuations during the Quaternary period. Furthermore, significant differences in gene expression between the two varieties may explain the varied leaf phenotypes and adaptations to harsh conditions in different natural distributions. CONCLUSION: Our study highlights the extraordinary adaptation of T. rupestris var. ciliata, shedding light on the evolution of cliff plants worldwide.


Subject(s)
Adaptation, Physiological , Chromosomes, Plant , Genome, Plant , China , Chromosomes, Plant/genetics , Adaptation, Physiological/genetics , Rosaceae/genetics , Rosaceae/physiology , Ecosystem , Evolution, Molecular
2.
Ann Bot ; 134(1): 163-178, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38549558

ABSTRACT

BACKGROUND AND AIMS: Rubus ser. Glandulosi provides a unique model of geographical parthenogenesis on a homoploid (2n = 4x) level. We aim to characterize evolutionary and phylogeographical patterns in this taxon and shed light on the geographical differentiation of apomicts and sexuals. Ultimately, we aim to evaluate the importance of phylogeography in the formation of geographical parthenogenesis. METHODS: Rubus ser. Glandulosi was sampled across its Eurasian range together with other co-occurring Rubus taxa (587 individuals in total). Double-digest restriction site-associated DNA sequencing (ddRADseq) and modelling of suitable climate were used for evolutionary inferences. KEY RESULTS: Six ancestral species were identified that contributed to the contemporary gene pool of R. ser. Glandulosi. Sexuals were introgressed from Rubus dolichocarpus and Rubus moschus in West Asia and from Rubus ulmifolius agg., Rubus canescens and Rubus incanescens in Europe, whereas apomicts were characterized by alleles of Rubus subsect. Rubus. Gene flow between sexuals and apomicts was also detected, as was occasional hybridization with other taxa. CONCLUSIONS: We hypothesize that sexuals survived the last glacial period in several large southern refugia, whereas apomicts were mostly restricted to southern France, whence they quickly recolonized Central and Western Europe. The secondary contact of sexuals and apomicts was probably the principal factor that established geographical parthenogenesis in R. ser. Glandulosi. Sexual populations are not impoverished in genetic diversity along their borderline with apomicts, and maladaptive population genetic processes probably did not shape the geographical patterns.


Subject(s)
Phylogeography , Rosaceae , Europe , Rosaceae/genetics , Rosaceae/physiology , Gene Flow , Biological Evolution , Apomixis/genetics , Asia , Parthenogenesis/genetics , Genetic Variation , Phylogeny
3.
Plant J ; 96(2): 358-371, 2018 10.
Article in English | MEDLINE | ID: mdl-30047177

ABSTRACT

Double flowers with supernumerary petals have been selected by humans for their attractive appearance and commercial value in several ornamental plants, including Prunus persica (peach), a recognized model for Rosaceae genetics and genomics. Despite the relevance of this trait, knowledge of the underlying genes is limited. Of two distinct loci controlling the double-flower phenotype in peach, we focused on the dominant Di2 locus. High-resolution linkage mapping in five segregating progenies delimited Di2 to an interval spanning 150 858 bp and 22 genes, including Prupe.6G242400 encoding an euAP2 transcription factor. Analyzing genomic resequencing data from single- and double-flower accessions, we identified a deletion spanning the binding site for miR172 in Prupe.6G242400 as a candidate variant for the double-flower trait, and we showed transcript expression for both wild-type and deleted alleles. Consistent with the proposed role in controlling petal number, Prupe.6G242400 is expressed in buds at critical times for floral development. The indelDi2 molecular marker designed on this sequence variant co-segregated with the phenotype in 621 progenies, accounting for the dominant inheritance of the Di2 locus. Further corroborating the results in peach, we identified a distinct but similar mutation in the ortholog of Prupe.6G242400 in double-flower roses. Phylogenetic analysis showed that these two genes belong to a TARGET OF EAT (TOE)-type clade not represented in Arabidopsis, indicating a divergence of gene functions between AP2-type and TOE-type factors in Arabidopsis and other species. The identification of orthologous candidate genes for the double-flower phenotype in two important Rosaceae species provides valuable information to understand the genetic control of this trait in other major ornamental plants.


Subject(s)
Gene Expression Regulation, Plant , MicroRNAs/genetics , Rosaceae/genetics , Chromosome Mapping , Flowers/genetics , Flowers/physiology , Genomics , Genotype , Phenotype , Phylogeny , Prunus persica/genetics , Prunus persica/physiology , Rosa/genetics , Rosa/physiology , Rosaceae/physiology , Sequence Deletion
4.
Planta ; 250(6): 1911-1925, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31523779

ABSTRACT

MAIN CONCLUSION: PbrKAT1, which is inhibited by external Na+ in Xenopus laevis oocytes, is characterized as encoding a typical inward rectifying channel that is mainly expressed in guard cells. Potassium (K+) is the most abundant cation in plant cells necessary for plant growth and development. The uptake and transport of K+ are mainly completed through transporters and channels, and the Shaker family genes are the most studied K+ channels in plants. However, there is far less information about this family in Rosaceae species. We performed a genome-wide analysis and identified Shaker K+ channel gene family members in Rosaceae. We cloned and characterized a Shaker K+ channel KAT1 from pear (Pyrus × bretschneideri). In total, 36 Shaker K+ channel genes were identified from Rosaceae species and were classified into five subgroups based on structural characteristics and a phylogenetic analysis. Whole-genome and dispersed duplications were the primary forces underlying Shaker K+ channel gene family expansion in Rosaceae, and purifying selection played a key role in the evolution of Shaker K+ channel genes. ß-Glucuronidase and qRT-PCR assays revealed that PbrKAT1 was mainly expressed in leaves, especially in guard cells. PbrKAT1 displayed a typical inward-rectifying current when expressed in Xenopus laevis oocytes. The activity of PbrKAT1 was inhibited by external sodium ions, possibly playing an important role in the regulation of salt tolerance in pear. These results provide valuable information on evolution, expression and functions of the Shaker K+ channel gene family in plants.


Subject(s)
Plant Proteins/metabolism , Pyrus/metabolism , Rosaceae/metabolism , Shaker Superfamily of Potassium Channels/metabolism , Animals , Animals, Genetically Modified , Arabidopsis/genetics , Arabidopsis/metabolism , Chromosomes, Plant/genetics , Cloning, Molecular , Evolution, Molecular , Oocytes/metabolism , Patch-Clamp Techniques , Phylogeny , Plant Proteins/physiology , Polymerase Chain Reaction , Pyrus/physiology , Rosaceae/genetics , Rosaceae/physiology , Shaker Superfamily of Potassium Channels/physiology , Synteny/genetics , Xenopus laevis
5.
Mol Ecol ; 28(2): 318-335, 2019 01.
Article in English | MEDLINE | ID: mdl-30418699

ABSTRACT

Pollination is an ecosystem function of global importance. Yet, who visits the flower of specific plants, how the composition of these visitors varies in space and time and how such variation translates into pollination services are hard to establish. The use of DNA barcodes allows us to address ecological patterns involving thousands of taxa that are difficult to identify. To clarify the regional variation in the visitor community of a widespread flower resource, we compared the composition of the arthropod community visiting species in the genus Dryas (mountain avens, family Rosaceae), throughout Arctic and high-alpine areas. At each of 15 sites, we sampled Dryas visitors with 100 sticky flower mimics and identified specimens to Barcode Index Numbers (BINs) using a partial sequence of the mitochondrial COI gene. As a measure of ecosystem functioning, we quantified variation in the seed set of Dryas. To test for an association between phylogenetic and functional diversity, we characterized the structure of local visitor communities with both taxonomic and phylogenetic descriptors. In total, we detected 1,360 different BINs, dominated by Diptera and Hymenoptera. The richness of visitors at each site appeared to be driven by local temperature and precipitation. Phylogeographic structure seemed reflective of geological history and mirrored trans-Arctic patterns detected in plants. Seed set success varied widely among sites, with little variation attributable to pollinator species richness. This pattern suggests idiosyncratic associations, with function dominated by few and potentially different taxa at each site. Taken together, our findings illustrate the role of post-glacial history in the assembly of flower-visitor communities in the Arctic and offer insights for understanding how diversity translates into ecosystem functioning.


Subject(s)
Arthropods/physiology , Ecosystem , Pollination/physiology , Rosaceae/poisoning , Animals , Arctic Regions , Arthropods/genetics , DNA Barcoding, Taxonomic , Flowers/genetics , Flowers/growth & development , Models, Biological , Phylogeny , Reproduction , Rosaceae/growth & development , Rosaceae/physiology , Seeds/genetics , Seeds/growth & development
6.
Dokl Biochem Biophys ; 486(1): 229-233, 2019 May.
Article in English | MEDLINE | ID: mdl-31367828

ABSTRACT

The composition of fatty acids of total lipids of the outer and parenchymal parts of the pericarp in Cydonia oblonga Mill. and Mespilus germanica L. (Maloideae, Rosaceae), growing in the Northern Caucasian mountains at altitudes of 300, 500, 700, and 1200 m above sea level in various natural zones from experimental sites, was studied for the first time. It is established that the altitude of plant growth is largely correlated with the changes in the FA composition of the outer, but not the parenchymal, part of the pericarp. The nature of this variability suggests that the adaptation of plants to the conditions of significant temperature differences in the mountains is associated with the regulation of cell membrane fluidity, based on the interaction of opposite processes of synthesis of polyunsaturated and very-long-chain fatty acids.


Subject(s)
Adaptation, Physiological , Altitude , Fatty Acids/metabolism , Rosaceae/metabolism , Rosaceae/physiology
7.
Am J Bot ; 105(6): 986-995, 2018 06.
Article in English | MEDLINE | ID: mdl-29957884

ABSTRACT

PREMISE OF THE STUDY: Climate-driven changes in phenology are substantially affecting ecological relationships and ecosystem processes. The role of variation among species has received particular attention; for example, variation among species' phenological responses to climate can disrupt trophic interactions and can influence plant performance. Variation within species in phenological responses to climate, however, has received much less attention, despite its potential role in ecological interactions and local adaptation to climate change. METHODS: We constructed three common gardens across an elevation gradient on Cadillac Mountain in Acadia National Park, Maine, to test population-level responses in leaf-out phenology in a reciprocal transplant experiment. The experiment included three native species: low bush blueberry (Vaccinium angustifolium), sheep's laurel (Kalmia angustifolia), and three-toothed cinquefoil (Sibbaldiopsis tridentata). KEY RESULTS: Evidence for local adaptation of phenological response to temperature varied among the species, but was weak for all three. Rather, variation in phenological response to temperature appeared to be driven by local microclimate at each garden site and year-to-year variation in temperature. CONCLUSIONS: Population-level adaptations in leaf-out phenology appear to be relatively unimportant for these species in Acadia National Park, perhaps a reflection of strong genetic mixing across elevations, or weak differences in selection on phenological response to spring temperatures at different elevations. These results concur with other observational data in Acadia and highlight the utility of experimental approaches to understand the importance of annual and local site variation in affecting phenology both among and within plant species.


Subject(s)
Blueberry Plants/physiology , Climate , Life History Traits , Plant Leaves/growth & development , Rosaceae/physiology , Adaptation, Biological , Altitude , Maine
8.
Int J Biometeorol ; 62(7): 1229-1239, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29556764

ABSTRACT

By merging reconstructed phenological series from published articles and observations of China Phenology Observation Network (CPON), the first blooming date of Amygdalus davidiana (FBA) in Beijing between 1741 and 2000 is reconstructed. The Butterworth method is used to remove the multi-year variations for generating the phenological series of annual variations in the first blooming date of A. davidiana. The extreme delay years in the phenological series are identified using the percentage threshold method. The characteristics of the extreme delays and the correspondence of these events with natural forcings are analysed. The main results are as follows. In annual phenological series, the extreme delays appeared in single year as main feature, only A.D.1800-1801, 1816-1817 and 1983-1984 were the events of two consecutively extreme years. Approximately 85% of the extreme delays occurred during 1-2 years after the large volcanic eruptions (VEI ≥ 4) in the eastern rim or the western rim of the Pacific Ocean, as the same proportion of the extreme delays followed El Niño events. About 73% years of the extreme delays fall in the valleys of sunspot cycles or the Dalton minimum period in the year or the previous year. According to the certainty factor (CF), the large eruptions have the greatest influence to the extreme delays; sunspot activity is the second, and ENSO is the last one. The extreme phenological delayed year is most likely to occur after a large eruption, which particularly occurs during El Niño year and its previous several years were in the descending portion or valley of sunspot phase.


Subject(s)
El Nino-Southern Oscillation , Rosaceae/physiology , Solar Activity , Beijing , China , Flowers
9.
BMC Genomics ; 18(1): 649, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28830345

ABSTRACT

BACKGROUND: Cerasus sachalinensis is widely used in cool regions as a sweet cherry rootstock and is known for its sensitivity to soil waterlogging and waterlogging stress. However, the limited availability of Cerasus genomic resources has considerably restricted the exploration of its waterlogging response mechanism. To understand its reaction to short-term waterlogging, we analyzed the physiology and transcriptomes of C. sachalinensis roots in response to different waterlogging durations. RESULTS: In this study, 12,487 differentially expressed genes (DEGs) were identified from Cerasus sachalinensis roots under different waterlogging durations. Carbon metabolism and energy maintenance formed the first coping mechanism stage of C. sachalinensis in response to low oxygen conditions. Root energy processes, including root respiration and activities of the fermentation enzymes alcohol dehydrogenase, pyruvate decarboxylase, and lactate dehydrogenase, showed unique changes after 0 h, 3 h, 6 h, and 24 h of waterlogging exposure. Ribonucleic acid sequencing was used to analyze transcriptome changes in C. sachalinensis roots treated with 3 h, 6 h, and 24 h of waterlogging stress. After de novo assembly, 597,474 unigenes were recognized, of which 355,350 (59.47%) were annotated. To identify the most important pathways represented by DEGs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to compare these genes. The first stage of root reaction to waterlogging stress was activation of carbohydrate metabolism to produce more glucose and maintain energy levels. At 3 h, the glycolytic and fermentation pathways were activated to maintain adenosine triphosphate production. At 24 h, pathways involved in the translation of proteins were activated to further assist the plant in tolerating waterlogging stress. These findings will facilitate a further understanding of the potential mechanisms of plant responses to waterlogging at physiological and transcriptome levels. CONCLUSIONS: Carbon metabolism and energy maintenance formed the first coping mechanism C. sachalinensis in response to low oxygen conditions, and they may be responsible for its short-term waterlogging response. Our study not only provides the assessment of genomic resources of Cerasus but also paves the way for probing the metabolic and molecular mechanisms underlying the short-term waterlogging response in C. sachalinensis.


Subject(s)
Fermentation/drug effects , Gene Expression Profiling , Groundwater , Rosaceae/genetics , Rosaceae/metabolism , Agriculture , Fermentation/genetics , Glycolysis/drug effects , Glycolysis/genetics , Molecular Sequence Annotation , Rosaceae/drug effects , Rosaceae/physiology , Stress, Physiological/drug effects , Stress, Physiological/genetics , Time Factors
10.
BMC Plant Biol ; 17(1): 54, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28241786

ABSTRACT

BACKGROUND: Taihangia rupestris, an andromonoecious plant species, bears both male and hermaphroditic flowers within the same individual. However, the establishment and development of male and hermaphroditic flowers in andromonoecious Taihangia remain poorly understood, due to the limited genetic and sequence information. To investigate the potential molecular mechanism in the regulation of Taihangia flower formation, we used de novo RNA sequencing to compare the transcriptome profiles of male and hermaphroditic flowers at early and late developmental stages. RESULTS: Four cDNA libraries, including male floral bud, hermaphroditic floral bud, male flower, and hermaphroditic flower, were constructed and sequenced by using the Illumina RNA-Seq method. Totally, 84,596,426 qualified Illumina reads were obtained and then assembled into 59,064 unigenes, of which 24,753 unigenes were annotated in the NCBI non-redundant protein database. In addition, 12,214, 7,153, and 8,115 unigenes were assigned into 53 Gene Ontology (GO) functional groups, 25 Clusters of Orthologous Group (COG) categories, and 126 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. By pairwise comparison of unigene abundance between the samples, we identified 1,668 differential expressed genes (DEGs), including 176 transcription factors (TFs) between the male and hermaphroditic flowers. At the early developmental stage, we found 263 up-regulated genes and 436 down-regulated genes expressed in hermaphroditic floral buds, while 844 up-regulated genes and 314 down-regulated genes were detected in hermaphroditic flowers at the late developmental stage. GO and KEGG enrichment analyses showed that a large number of DEGs were associated with a wide range of functions, including cell cycle, epigenetic processes, flower development, and biosynthesis of unsaturated fatty acid pathway. Finally, real-time quantitative PCR was conducted to validate the DEGs identified in the present study. CONCLUSION: In this study, transcriptome data of this rare andromonoecious Taihangia were reported for the first time. Comparative transcriptome analysis revealed the significant differences in gene expression profiles between male and hermaphroditic flowers at early and late developmental stages. The transcriptome data of Taihangia would be helpful to improve the understanding of the underlying molecular mechanisms in regulation of flower formation and unisexual flower establishment in andromonoecious plants.


Subject(s)
Flowers/genetics , Rosaceae/genetics , Cell Cycle , Fatty Acids, Unsaturated/biosynthesis , Gene Expression , Gene Expression Profiling , Genes, Plant , Molecular Sequence Annotation , Plant Proteins/metabolism , RNA, Plant , Real-Time Polymerase Chain Reaction , Rosaceae/physiology , Sequence Analysis, RNA , Transcription Factors/metabolism
11.
Ann Bot ; 119(3): 447-456, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28028019

ABSTRACT

BACKGROUND AND AIMS: Corner's rule states that thicker twigs bear larger leaves. The exact nature of this relationship and why it should occur has been the subject of numerous studies. It is obvious that thicker twigs should support greater total leaf area ([Formula: see text]) for hydraulical and mechanical reasons. But it is not obvious why mean leaf size ([Formula: see text]) should scale positively with [Formula: see text] We asked what this scaling relationship is within species and how variable it is across species. We then developed a model to explain why these relationships exist. METHODS: To minimize potential sources of variability, we compared twig properties from six co-occurring and functionally similar species: Acer grandidentatum, Amelanchier alnifolia, Betula occidentalis, Cornus sericea, Populus fremontii and Symphoricarpos oreophilus We modelled the economics of leaf display, weighing the benefit from light absorption against the cost of leaf tissue, to predict the optimal [Formula: see text] combinations under different canopy openings. KEY RESULTS: We observed a common [Formula: see text] by [Formula: see text] exponent of 0.6, meaning that [Formula: see text]and leaf number on twigs increased in a specific coordination. Common scaling exponents were not supported for relationships between any other measured twig properties. The model consistently predicted positive [Formula: see text] by [Formula: see text] scaling when twigs optimally filled canopy openings. The observed 0·6 exponent was predicted when self-shading decreased with larger canopy opening. CONCLUSIONS: Our results suggest Corner's rule may be better understood when recast as positive [Formula: see text] by [Formula: see text] scaling. Our model provides a tentative explanation of observed [Formula: see text] by [Formula: see text] scaling and suggests different scaling may exist in different environments.


Subject(s)
Plant Leaves/anatomy & histology , Plant Stems/anatomy & histology , Acer/anatomy & histology , Acer/physiology , Betula/anatomy & histology , Betula/physiology , Biomechanical Phenomena , Cornus/anatomy & histology , Cornus/physiology , Models, Biological , Plant Leaves/physiology , Plant Stems/physiology , Populus/anatomy & histology , Populus/physiology , Rosaceae/anatomy & histology , Rosaceae/physiology , Symphoricarpos/anatomy & histology , Symphoricarpos/physiology
12.
J Mol Evol ; 82(2-3): 128-45, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26714486

ABSTRACT

The family Rosaceae includes a range of important fruit trees, most of which have the S-RNase-based self-incompatibility (SI). Several models have been developed to explain how pollen (SLF) and pistil (S-RNase) components of the S-locus interact. It was discovered in 2010 that additional SLF proteins are involved in pollen specificity, and a Collaborative Non-Self Recognition model has been proposed for SI in Solanaceae; however, the validity of such model remains to be elucidated for other species. The results of this study support the divergent evolution of the S-locus genes from two Rosaceae subfamilies, Prunoideae/Amygdaloideae and Maloideae, The difference identified in the selective pressures between the two lineages provides evidence for positive selection at specific sites in both the S-RNase and the SLF proteins. The evolutionary findings of this study support the role of multiple SLF proteins leading to a Collaborative Non-Self Recognition model for SI in the Maloideae. Furthermore, the identification of the sites responsible for SI specificity determination and the mapping of these sites onto the modelled tertiary structure of ancestor proteins provide useful information for rational functional redesign and protein engineering for the future engineering of new functional alleles providing increased diversity in the SI system in the Maloideae.


Subject(s)
Rosaceae/genetics , Self-Incompatibility in Flowering Plants/genetics , Alleles , Biological Evolution , Evolution, Molecular , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Phylogeny , Plant Proteins/genetics , Pollen , Ribonucleases , Rosaceae/physiology , Self-Incompatibility in Flowering Plants/physiology
13.
Rev Biol Trop ; 64(4): 1683-97, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29465945

ABSTRACT

The ecosystems fragmentation is one of the anthropic phenomena with highest impact at global level and the edge effect causes that only the fragments interior conserve their original biotic and abiotic characteristics. Lichens are organisms especially susceptible to environmental variability, what could be useful for bio-indication of edge effect. In this work, we evaluated the edge effect in two fragments of Polylepis quadrijuga in the Páramo de la Rusia (Boyacá-Colombia) to determine if there is an edge effect on distribution of lichens associated to P. quadrijuga and their chlorophyll content. We used three transects of 70 m across the matrix-edge-interior gradient in each fragment. We chose nine phorophytes per transect to measure the environmental variables: photosynthetically active radiation, relative humidity and air temperature, and the biological variables: richness and cover per species. Besides, we employed the species that were present in all the three zones of the gradient to quantify the content of chlorophylls a and b, and determine if there are changes in the ratio of chlorophylls a/b that could suggest physiological plasticity as a response to the edge effect. Our results showed that fragment 2 had a higher edge exposition because of its high relation perimeter/area, allowing to an environmental homogenization and lose of biodiversity in relation with fragment 1. Overall, we found 55 differentially distributed species in relation with the fragments and the matrix-edge-interior gradient. The interior of fragment 1 was the most conserved zone, harboring a composition different in more than 40 % to the composition of any other zone. We classified the lichens according with their habits: gelatinous, fruticose, crusty or foliose, but we did not find any relationship between the habit distribution and the edge effect. Six species of wide distribution showed changes in the chlorophyll content along the matrix-edge-interior gradient, what is an evidence of physiological plasticity to edge effect. It was also possible to distinguish between species with preference to warmer environment and species with preference to more humid and sufficiently irradiated places. We concluded that some species of lichens could have an important potential as bio-indicators of fragmentation in the páramo.


Subject(s)
Chlorophyll/analysis , Lichens/chemistry , Rosaceae/chemistry , Analysis of Variance , Biodiversity , Chlorophyll/physiology , Colombia , Humidity , Lichens/physiology , Multivariate Analysis , Photosynthesis/physiology , Rosaceae/physiology , Solar Energy , Species Specificity , Temperature
14.
Ecology ; 96(3): 775-87, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26236873

ABSTRACT

Although many studies have examined the phenological mismatches between interacting organisms, few have addressed the potential for mismatches between phenology and seasonal weather conditions. In the Arctic, rapid phenological changes in many taxa are occurring in association with earlier snowmelt. The timing of snowmelt is jointly affected by the size of the late winter snowpack and the temperature during the spring thaw. Increased winter snowpack results in delayed snowmelt, whereas higher air temperatures and faster snowmelt advance the timing of snowmelt. Where interannual variation in snowpack is substantial, changes in the timing of snowmelt can be largely uncoupled from changes in air temperature. Using detailed, long-term data on the flowering phenology of four arctic plant species from Zackenberg, Greenland, we investigate whether there is a phenological component to the temperature conditions experienced prior to and during flowering. In particular, we assess the role of timing of flowering in determining pre-flowering exposure to freezing temperatures and to the temperatures-experienced prior to flowering. We then examine the implications of flowering phenology for flower abundance. Earlier snowmelt resulted in greater exposure to freezing conditions, suggesting an increased potential for a mismatch between the timing of flowering and seasonal weather conditions and an increased potential for negative consequences, such as freezing 'damage. We also found a parabolic relationship between the timing of flowering and the temperature experienced during flowering after taking interannual temperature effects into account. If timing of flowering advances to a cooler period of the growing season, this may moderate the effects of a general warming trend across years. Flower abundance was quadratically associated with the timing of flowering, such that both early and late flowering led to lower flower abundance than did intermediate flowering. Our results indicate that shifting the timing of flowering affects the temperature experienced during flower development and flowering beyond that imposed by interannual variations in climate. We also found that phenological timing may affect flower abundance, and hence, fitness. These findings suggest that plant population responses to future climate change will be shaped not only by extrinsic climate forcing, but also by species' phenological responses.


Subject(s)
Climate Change , Flowers/growth & development , Magnoliopsida/physiology , Arctic Regions , Environment , Ericaceae/growth & development , Ericaceae/physiology , Greenland , Magnoliopsida/growth & development , Papaver/growth & development , Papaver/physiology , Reproduction , Rosaceae/growth & development , Rosaceae/physiology , Salix/growth & development , Salix/physiology , Seasons , Temperature
15.
Am J Bot ; 102(12): 2041-57, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26643889

ABSTRACT

PREMISE OF THE STUDY: Delimitation of Amelanchier species is difficult because of polyploidy and gametophytic apomixis. A first step in unraveling this species problem is understanding the diversity of the diploids that contributed genomes to polyploid apomicts. This research helps clarify challenging species-delimitation problems attending polyploid, apomictic complexity. METHODS: We sampled 431 diploid accessions from 13 species, of which 10 are North American and three are Old World. Quantitative morphological analyses tested the null hypothesis of no discrete groups. Using three to nine diploid accessions per species, we constructed phylogenies with DNA sequences from ETS, ITS, the second intron of LEAFY, and chloroplast regions rpoB-trnC, rpl16, trnD-trnT, and ycf6-psbM. KEY RESULTS: Most Amelanchier diploid taxa are morphologically and ecogeographically distinct and genetically exclusive lineages. They rarely hybridize with one another. Nuclear and chloroplast DNA sequences almost completely resolve the Amelanchier phylogeny. The backbone is the mostly western North American clade A, eastern North American clade B, and Old World clade O. DNA sequences and morphology support clades A and O as sister taxa. Despite extensive paralogy, our LEAFY data are phylogenetically informative and identify a clade (T) of three arborescent taxa within clade B. CONCLUSIONS: Amelanchier diploids differ strikingly from polyploid apomicts, in that hybridization among them is rare, and they form taxa that would qualify as species by most species concepts. Knowledge of diploid morphology, phylogeny, and ecogeography provides a foundation for understanding the evolutionary history of polyploid apomicts, their patterns of diversification, and their species status.


Subject(s)
Apomixis , Biological Evolution , Diploidy , Genetic Variation , Rosaceae/physiology , Chloroplast Proteins/genetics , DNA, Intergenic/genetics , Introns , Phylogeny , Plant Proteins/genetics , Rosaceae/genetics
16.
Am J Bot ; 102(10): 1666-75, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26451036

ABSTRACT

PREMISE OF THE STUDY: The evolutionary drivers and proximal regulators of mast-seeding are well understood for species of mesic environments, but how these regulators interact with high spatial and interannual variability in growing-season precipitation for a masting species in a desert environment has never been examined. METHOD: We followed flowering and seed production in 16 populations of the North American desert shrub blackbrush (Coleogyne ramosissima) from contrasting environments across its range over an 11-year period to determine patterns of interannual reproductive output variation. KEY RESULT: Patterns of reproductive output in blackbrush did not track current growing season precipitation, but instead were regulated by prior-year weather cues. The strength of the response to the masting cue depended on habitat quality, with higher mean reproductive output, shorter intervals between years of high seed production, and lower CVp at more favorable sites. Wind pollination efficiency was demonstrated to be an important evolutionary driver of masting in blackbrush, and satiation of heteromyid seed predator-dispersers was supported as an evolutionary driver based on earlier studies. CONCLUSIONS: Both the evolutionary drivers and proximal regulators of masting in blackbrush are similar to those demonstrated for masting species of mesic environments. Relatively low synchrony across populations in response to regional masting cues occurs at least partly because prior-year environmental cues can trigger masting efforts in years with resource limitation due to suboptimal precipitation, especially in more xeric low-elevation habitats.


Subject(s)
Ecosystem , Rosaceae/physiology , Seeds/growth & development , Biological Evolution , Flowers/growth & development , Nevada , Rosaceae/growth & development , Seasons , Utah
17.
Oecologia ; 178(2): 403-14, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25627409

ABSTRACT

Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.


Subject(s)
Artemisia/physiology , Ecosystem , Photosynthesis/physiology , Rosaceae/physiology , Snow , Water/metabolism , North America , Seasons , Soil
18.
Ecol Appl ; 24(2): 413-27, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24689151

ABSTRACT

Interacting threats to ecosystem function, including climate change, wildfire, and invasive species necessitate native plant restoration in desert ecosystems. However, native plant restoration efforts often remain unguided by ecological genetic information. Given that many ecosystems are in flux from climate change, restoration plans need to account for both contemporary and future climates when choosing seed sources. In this study we analyze vegetative responses, including mortality, growth, and carbon isotope ratios in two blackbrush (Coleogyne ramosissima) common gardens that included 26 populations from a range-wide collection. This shrub occupies ecotones between the warm and cold deserts of Mojave and Colorado Plateau ecoregions in western North America. The variation observed in the vegetative responses of blackbrush populations was principally explained by grouping populations by ecoregions and by regression with site-specific climate variables. Aridity weighted by winter minimum temperatures best explained vegetative responses; Colorado Plateau sites were usually colder and drier than Mojave sites. The relationship between climate and vegetative response was mapped within the boundaries of the species-climate space projected for the contemporary climate and for the decade surrounding 2060. The mapped ecological genetic pattern showed that genetic variation could be classified into cool-adapted and warm-adapted ecotypes, with populations often separated by steep dines. These transitions are predicted to occur in both the Mojave Desert and Colorado Plateau ecoregions. While under contemporary conditions the warm-adapted ecotype occupies the majority of climate space, climate projections predict that the cool-adapted ecotype could prevail as the dominant ecotype as the climate space of blackbrush expands into higher elevations and latitudes. This study provides the framework for delineating climate change-responsive seed transfer guidelines, which are needed to inform restoration and management planning. We propose four transfer zones in blackbrush that correspond to areas currently dominated by cool-adapted and warm-adapted ecotypes in each of the two ecoregions.


Subject(s)
Adaptation, Physiological , Rosaceae/classification , Rosaceae/physiology , Climate , Ecosystem , Temperature , Water
19.
J Anim Ecol ; 83(1): 223-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24033136

ABSTRACT

We explored multiple linkages among grey wolves (Canis lupus), elk (Cervus elaphus), berry-producing shrubs and grizzly bears (Ursus arctos) in Yellowstone National Park. We hypothesized competition between elk and grizzly bears whereby, in the absence of wolves, increases in elk numbers would increase browsing on berry-producing shrubs and decrease fruit availability to grizzly bears. After wolves were reintroduced and with a reduced elk population, we hypothesized there would be an increase in the establishment of berry-producing shrubs, such as serviceberry (Amelanchier alnifolia), which is a major berry-producing plant. We also hypothesized that the percentage fruit in the grizzly bear diet would be greater after than before wolf reintroduction. We compared the frequency of fruit in grizzly bear scats to elk densities prior to wolf reintroduction during a time of increasing elk densities (1968-1987). For a period after wolf reintroduction, we calculated the percentage fruit in grizzly bear scat by month based on scats collected in 2007-2009 (n = 778 scats) and compared these results to scat data collected before wolf reintroduction. Additionally, we developed an age structure for serviceberry showing the origination year of stems in a northern range study area. We found that over a 19-year period, the percentage frequency of fruit in the grizzly diet (6231 scats) was inversely correlated (P < 0·001) with elk population size. The average percentage fruit in grizzly bear scats was higher after wolf reintroduction in July (0·3% vs. 5·9%) and August (7·8% vs. 14·6%) than before. All measured serviceberry stems accessible to ungulates originated since wolf reintroduction, while protected serviceberry growing in a nearby ungulate exclosure originated both before and after wolf reintroduction. Moreover, in recent years, browsing of serviceberry outside of the exclosure decreased while their heights increased. Overall, these results are consistent with a trophic cascade involving increased predation by wolves and other large carnivores on elk, a reduced and redistributed elk population, decreased herbivory and increased production of plant-based foods that may aid threatened grizzly bears.


Subject(s)
Ecosystem , Ursidae/physiology , Wolves/physiology , Animals , Deer/physiology , Fruit , Herbivory , Population Dynamics , Predatory Behavior , Rosaceae/physiology , Time Factors
20.
Am J Bot ; 101(8): 1375-87, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25156985

ABSTRACT

UNLABELLED: • PREMISE OF THE STUDY: Amelanchier polyploid apomicts differ from sexual diploids in their more complex diversification, greater species problems, and geographic distribution. To understand these differences, we investigated the occurrence of polyploidy and frequency of apomixis. This research helps clarify species delimitation in an evolutionarily complex genus.• METHODS: We used flow cytometry to estimate genome size of 1355 plants. We estimated the frequency of apomixis from flow-cytometrically determined ploidy levels of embryo and endosperm and from a progeny study using RAPD markers. We explored relationships of triploids to other ploidy levels and of ploidy levels to latitude plus elevation.• KEY RESULTS: Diploids (32% of sample) and tetraploids (62%) were widespread. Triploids (6%) mostly occurred in small numbers with diploids from two or more species or with diploids and tetraploids. Seeds from diploids were 2% apomictic, the first report of apomixis in Amelanchier diploids. Seeds from triploids were 75% apomictic. We documented potential triploid bridge and triploid block from unbalanced endosperm and low pollen viability. Seeds from tetraploids were 97% apomictic, and tetraploids often formed microspecies. We did not find strong evidence for geographical parthenogenesis in North American Amelanchier. Most currently recognized species contained multiple ploidy levels that were morphologically semicryptic.• CONCLUSIONS: Documentation of numerous transitions from diploidy to polyploidy helps clarify diversification, geographic distribution, and the species problem in Amelanchier. Despite the infrequent occurrence of triploids, their retention of 25% sexuality and capacity for triploid bridge may be important steps between sexual diploids and predominantly apomictic tetraploids.


Subject(s)
Apomixis , Biodiversity , Genetic Speciation , Plant Dispersal , Ploidies , Rosaceae/physiology , Chromosomes, Plant , Ecosystem , Endosperm , Genome, Plant , North America , Pollen , Polyploidy , Reproduction/genetics , Rosaceae/genetics , Seeds , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL