Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.425
Filter
1.
Annu Rev Immunol ; 37: 295-324, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30649989

ABSTRACT

Cytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.


Subject(s)
Cytokines/metabolism , Immunotherapy/trends , Animals , Cytokines/genetics , Humans , Immunity, Humoral , Immunomodulation , Protein Multimerization , STAT Transcription Factors/metabolism , Signal Transduction/immunology
2.
Annu Rev Immunol ; 35: 533-550, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28182501

ABSTRACT

Common gamma receptor-dependent cytokines and their JAK/STAT pathways play pivotal roles in T cell immunity. Abnormal activation of this system was pervasive in diverse T cell malignancies assessed by pSTAT3/pSTAT5 phosphorylation. Activating mutations were described in some but not all cases. JAK1 and STAT3 were required for proliferation and survival of these T cell lines whether or not JAKs or STATs were mutated. Activating JAK and STAT mutations were not sufficient to initiate leukemic cell proliferation but rather only augmented signals from upstream in the cytokine pathway. Activation required the full pathway, including cytokine receptors acting as scaffolds and docking sites for required downstream JAK/STAT proteins. JAK kinase inhibitors have depressed leukemic T cell line proliferation. The insight that JAK/STAT system activation is pervasive in T cell malignancies suggests novel therapeutic approaches that include antibodies to common gamma cytokines, inhibitors of cytokine-receptor interactions, and JAK kinase inhibitors that may revolutionize therapy for T cell malignancies.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Enzyme Inhibitors/therapeutic use , Immunotherapy/methods , Janus Kinases/metabolism , Lymphoma, T-Cell/immunology , STAT Transcription Factors/metabolism , Animals , Antineoplastic Agents/therapeutic use , Carcinogenesis , Cytokines/immunology , Cytokines/metabolism , Humans , Interleukin Receptor Common gamma Subunit/metabolism , Lymphoma, T-Cell/therapy , Receptors, Cytokine/antagonists & inhibitors , Signal Transduction
3.
Cell ; 187(15): 4010-4029.e16, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38917790

ABSTRACT

Mammalian blastocyst formation involves the specification of the trophectoderm followed by the differentiation of the inner cell mass into embryonic epiblast and extra-embryonic primitive endoderm (PrE). During this time, the embryo maintains a window of plasticity and can redirect its cellular fate when challenged experimentally. In this context, we found that the PrE alone was sufficient to regenerate a complete blastocyst and continue post-implantation development. We identify an inĀ vitro population similar to the early PrE inĀ vivo that exhibits the same embryonic and extra-embryonic potency and can form complete stem cell-based embryo models, termed blastoids. Commitment in the PrE is suppressed by JAK/STAT signaling, collaborating with OCT4 and the sustained expression of a subset of pluripotency-related transcription factors that safeguard an enhancer landscape permissive for multi-lineage differentiation. Our observations support the notion that transcription factor persistence underlies plasticity in regulative development and highlight the importance of the PrE in perturbed development.


Subject(s)
Blastocyst , Cell Differentiation , Endoderm , Animals , Endoderm/metabolism , Endoderm/cytology , Mice , Blastocyst/metabolism , Blastocyst/cytology , Cell Lineage , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Signal Transduction , Embryonic Development , Janus Kinases/metabolism , Gene Expression Regulation, Developmental , STAT Transcription Factors/metabolism , Transcription Factors/metabolism , Female , Embryo, Mammalian/metabolism , Embryo, Mammalian/cytology
4.
Cell ; 185(21): 3857-3876, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36240739

ABSTRACT

The discovery of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway arose from investigations of how cells respond to interferons (IFNs), revealing a paradigm in cell signaling conserved from slime molds to mammals. These discoveries revealed mechanisms underlying rapid gene expression mediated by a wide variety of extracellular polypeptides including cytokines, interleukins, and related factors. This knowledge has provided numerous insights into human disease, from immune deficiencies to cancer, and was rapidly translated to new drugs for autoimmune, allergic, and infectious diseases, including COVID-19. Despite these advances, major challenges and opportunities remain.


Subject(s)
COVID-19 , Janus Kinases , Animals , Cytokines/metabolism , Humans , Interferons/metabolism , Janus Kinases/metabolism , Mammals/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction
5.
Nat Immunol ; 25(5): 847-859, 2024 May.
Article in English | MEDLINE | ID: mdl-38658806

ABSTRACT

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Subject(s)
Homeostasis , Janus Kinases , Macrophages , Mice, Knockout , STAT Transcription Factors , Signal Transduction , Animals , Mice , Macrophages/immunology , Macrophages/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Mice, Inbred C57BL , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , TYK2 Kinase/metabolism , TYK2 Kinase/genetics , Gene Expression Regulation
6.
Annu Rev Immunol ; 32: 513-45, 2014.
Article in English | MEDLINE | ID: mdl-24555472

ABSTRACT

Interferon-stimulated gene (ISG) products take on a number of diverse roles. Collectively, they are highly effective at resisting and controlling pathogens. In this review, we begin by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production. Next, we describe ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the JAK-STAT pathway. Several ISGs that directly inhibit virus infection are described with an emphasis on those that impact early and late stages of the virus life cycle. Finally, we describe ongoing efforts to identify and characterize antiviral ISGs, and we provide a forward-looking perspective on the ISG landscape.


Subject(s)
Gene Expression Regulation , Immunity/physiology , Interferons/metabolism , Animals , Humans , Janus Kinases/metabolism , Receptors, Interferon/metabolism , STAT Transcription Factors/metabolism , Signal Transduction
7.
Cell ; 181(7): 1696-1696.e1, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32589961

ABSTRACT

The JAK-STAT pathway is an evolutionarily conserved signal transduction paradigm, providing mechanisms for rapid receptor-to-nucleus communication and transcription control. Discoveries in this field provided insights into primary immunodeficiencies, inherited autoimmune and autoinflammatory diseases, and hematologic and oncologic disorders, giving rise to a new class of drugs, JAK inhibitors (or Jakinibs).


Subject(s)
Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Animals , Cell Membrane/metabolism , Cell Nucleus/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Humans , Janus Kinases/genetics , Janus Kinases/physiology , STAT Transcription Factors/genetics , STAT Transcription Factors/physiology , Signal Transduction/physiology
8.
Cell ; 178(4): 901-918.e16, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398343

ABSTRACT

Physiology and metabolism are often sexually dimorphic, but the underlying mechanisms remain incompletely understood. Here, we use the intestine of Drosophila melanogaster to investigate how gut-derived signals contribute to sex differences in whole-body physiology. We find that carbohydrate handling is male-biased in a specific portion of the intestine. In contrast to known sexual dimorphisms in invertebrates, the sex differences in intestinal carbohydrate metabolism are extrinsically controlled by the adjacent male gonad, which activates JAK-STAT signaling in enterocytes within this intestinal portion. Sex reversal experiments establish roles for this male-biased intestinal metabolic state in controlling food intake and sperm production through gut-derived citrate. Our work uncovers a male gonad-gut axis coupling diet and sperm production, revealing that metabolic communication across organs is physiologically important. The instructive role of citrate in inter-organ communication might be significant in more biological contexts than previously recognized.


Subject(s)
Carbohydrate Metabolism/physiology , Drosophila melanogaster/metabolism , Eating/physiology , Intestinal Mucosa/metabolism , Sex Characteristics , Sperm Maturation/physiology , Animals , Citric Acid/metabolism , Drosophila Proteins/metabolism , Female , Gene Expression , Janus Kinases/metabolism , Male , RNA-Seq , STAT Transcription Factors/metabolism , Signal Transduction , Sugars/metabolism , Testis/metabolism
9.
Nat Immunol ; 22(5): 627-638, 2021 05.
Article in English | MEDLINE | ID: mdl-33859404

ABSTRACT

Cytokine signaling via signal transducer and activator of transcription (STAT) proteins is crucial for optimal antiviral responses of natural killer (NK) cells. However, the pleiotropic effects of both cytokine and STAT signaling preclude the ability to precisely attribute molecular changes to specific cytokine-STAT modules. Here, we employed a multi-omics approach to deconstruct and rebuild the complex interaction of multiple cytokine signaling pathways in NK cells. Proinflammatory cytokines and homeostatic cytokines formed a cooperative axis to commonly regulate global gene expression and to further repress expression induced by type I interferon signaling. These cytokines mediated distinct modes of epigenetic regulation via STAT proteins, and collective signaling best recapitulated global antiviral responses. The most dynamically responsive genes were conserved across humans and mice, which included a cytokine-STAT-induced cross-regulatory program. Thus, an intricate crosstalk exists between cytokine signaling pathways, which governs NK cell responses.


Subject(s)
Epigenesis, Genetic/immunology , Herpesviridae Infections/immunology , Interleukins/metabolism , Killer Cells, Natural/immunology , STAT Transcription Factors/metabolism , Animals , Cell Separation , Chromatin Immunoprecipitation Sequencing , Disease Models, Animal , Female , Flow Cytometry , Gene Regulatory Networks/immunology , Herpesviridae Infections/blood , Herpesviridae Infections/virology , Humans , Immunity, Innate/genetics , Killer Cells, Natural/metabolism , Male , Mice , Mice, Knockout , Muromegalovirus/immunology , Principal Component Analysis , RNA-Seq , STAT Transcription Factors/genetics , Signal Transduction/genetics , Signal Transduction/immunology
11.
Nat Immunol ; 20(12): 1574-1583, 2019 12.
Article in English | MEDLINE | ID: mdl-31745335

ABSTRACT

Multiple type I interferons and interferon-ƎĀ³ (IFN-ƎĀ³) are expressed under physiological conditions and are increased by stress and infections, and in autoinflammatory and autoimmune diseases. Interferons activate the Jak-STAT signaling pathway and induce overlapping patterns of expression, called 'interferon signatures', of canonical interferon-stimulated genes (ISGs) encoding molecules important for antiviral responses, antigen presentation, autoimmunity and inflammation. It has now become clear that interferons also induce an 'interferon epigenomic signature' by activating latent enhancers and 'bookmarking' chromatin, thus reprogramming cell responses to environmental cues. The interferon epigenomic signature affects ISGs and other gene sets, including canonical targets of the transcription factor NF-κB that encode inflammatory molecules, and is involved in the priming of immune cells, tolerance and the training of innate immune memory. Here we review the mechanisms through which interferon signatures and interferon epigenomic signatures are generated, as well as the expression and functional consequences of these signatures in homeostasis and autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis.


Subject(s)
Autoimmune Diseases/immunology , Epigenesis, Genetic/immunology , Inflammation/immunology , Interferon Type I/metabolism , Animals , Autoimmunity , Homeostasis , Humans , Immune Tolerance , Interferon Type I/genetics , Janus Kinases/metabolism , Lymphocyte Activation , NF-kappa B/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Transcriptome
12.
Immunity ; 55(10): 1761-1763, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36223725

ABSTRACT

Lineage plasticity is a critical mechanism of therapeutic resistance in cancer. In a recent issue of Science, Chan and colleagues demonstrate that early lineage plasticity in prostate cancer is driven by JAK-STAT inflammatory cytokine signaling.


Subject(s)
Cytokines , Prostatic Neoplasms , Cytokines/metabolism , Humans , Janus Kinases/metabolism , Male , STAT Transcription Factors/metabolism , Signal Transduction
13.
Immunity ; 54(2): 291-307.e7, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33450188

ABSTRACT

The role of innate immune cells in allergen immunotherapy that confers immune tolerance to the sensitizing allergen is unclear. Here, we report a role of interleukin-10-producing type 2 innate lymphoid cells (IL-10+ ILC2s) in modulating grass-pollen allergy. We demonstrate that KLRG1+ but not KLRG1- ILC2 produced IL-10 upon activation with IL-33 and retinoic acid. These cells attenuated Th responses and maintained epithelial cell integrity. IL-10+ KLRG1+ ILC2s were lower in patients with grass-pollen allergy when compared to healthy subjects. In a prospective, double-blind, placebo-controlled trial, we demonstrated that the competence of ILC2 to produce IL-10 was restored in patients who received grass-pollen sublingual immunotherapy. The underpinning mechanisms were associated with the modification of retinol metabolic pathway, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathways in the ILCs. Altogether, our findings underscore the contribution of IL-10+ ILC2s in the disease-modifying effect by allergen immunotherapy.


Subject(s)
Interleukin-10/metabolism , Lymphocytes/immunology , Rhinitis, Allergic, Seasonal/immunology , Sublingual Immunotherapy/methods , Adult , Allergens/immunology , Double-Blind Method , Female , Humans , Immune Tolerance , Immunity, Innate , Janus Kinases/metabolism , Lectins, C-Type/metabolism , Male , Middle Aged , Placebo Effect , Poaceae/immunology , Pollen/immunology , Receptors, Immunologic/metabolism , Rhinitis, Allergic, Seasonal/therapy , STAT Transcription Factors/metabolism , Signal Transduction , Th2 Cells/immunology , Treatment Outcome , Vitamin A/metabolism , Young Adult
14.
Nature ; 629(8012): 688-696, 2024 May.
Article in English | MEDLINE | ID: mdl-38658752

ABSTRACT

Although cancer initiation and progression are generally associated with the accumulation of somatic mutations1,2, substantial epigenomic alterations underlie many aspects of tumorigenesis and cancer susceptibility3-6, suggesting that genetic mechanisms might not be the only drivers of malignant transformation7. However, whether purely non-genetic mechanisms are sufficient to initiate tumorigenesis irrespective of mutations has been unknown. Here, we show that a transient perturbation of transcriptional silencing mediated by Polycomb group proteins is sufficient to induce an irreversible switch to a cancer cell fate in Drosophila. This is linked to the irreversible derepression of genes that can drive tumorigenesis, including members of the JAK-STAT signalling pathway and zfh1, the fly homologue of the ZEB1 oncogene, whose aberrant activation is required for Polycomb perturbation-induced tumorigenesis. These data show that a reversible depletion of Polycomb proteins can induce cancer in the absence of driver mutations, suggesting that tumours can emerge through epigenetic dysregulation leading to inheritance of altered cell fates.


Subject(s)
Cell Transformation, Neoplastic , Drosophila Proteins , Drosophila melanogaster , Epigenesis, Genetic , Neoplasms , Polycomb-Group Proteins , Animals , Female , Male , Cell Transformation, Neoplastic/genetics , Drosophila melanogaster/cytology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Janus Kinases/genetics , Janus Kinases/metabolism , Neoplasms/genetics , Neoplasms/pathology , Polycomb-Group Proteins/deficiency , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction/genetics , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism
15.
Nat Immunol ; 18(4): 374-384, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28323260

ABSTRACT

Kinases of the Jak ('Janus kinase') family and transcription factors (TFs) of the STAT ('signal transducer and activator of transcription') family constitute a rapid membrane-to-nucleus signaling module that affects every aspect of the mammalian immune system. Research on this paradigmatic pathway has experienced breakneck growth in the quarter century since its discovery and has yielded a stream of basic and clinical insights that have profoundly influenced modern understanding of human health and disease, exemplified by the bench-to-bedside success of Jak inhibitors ('jakinibs') and pathway-targeting drugs. Here we review recent advances in Jak-STAT biology, focusing on immune cell function, disease etiology and therapeutic intervention, as well as broader principles of gene regulation and signal-dependent TFs.


Subject(s)
Immune System/immunology , Immune System/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Animals , Gene Expression Regulation , Genome-Wide Association Study , Humans , Immune System/drug effects , Janus Kinases/genetics , Molecular Targeted Therapy , Multigene Family , Protein Binding , STAT Transcription Factors/genetics , Signal Transduction/drug effects , Translational Research, Biomedical
16.
Nature ; 607(7918): 360-365, 2022 07.
Article in English | MEDLINE | ID: mdl-35676488

ABSTRACT

Synthetic receptor signalling has the potential to endow adoptively transferred T cells with new functions that overcome major barriers in the treatment of solid tumours, including the need for conditioning chemotherapy1,2. Here we designed chimeric receptors that have an orthogonal IL-2 receptor extracellular domain (ECD) fused with the intracellular domain (ICD) of receptors for common ƎĀ³-chain (ƎĀ³c) cytokines IL-4, IL-7, IL-9 and IL-21 such that the orthogonal IL-2 cytokine elicits the corresponding ƎĀ³c cytokine signal. Of these, T cells that signal through the chimeric orthogonal IL-2RƟ-ECD-IL-9R-ICD (o9R) are distinguished by the concomitant activation of STAT1, STAT3 and STAT5 and assume characteristics of stem cell memory and effector T cells. Compared to o2R T cells,Ā o9R T cells have superior anti-tumour efficacy in two recalcitrant syngeneic mouse solid tumour models of melanoma and pancreatic cancer and are effective even in the absence of conditioning lymphodepletion. Therefore, by repurposing IL-9R signalling using a chimeric orthogonal cytokine receptor, T cells gain new functions, and this results in improved anti-tumour activity for hard-to-treat solid tumours.


Subject(s)
Cell- and Tissue-Based Therapy , Immunotherapy, Adoptive , Interleukin Receptor Common gamma Subunit , Neoplasms , Receptors, Interleukin-9 , Recombinant Fusion Proteins , T-Lymphocytes , Animals , Cell- and Tissue-Based Therapy/methods , Immunotherapy, Adoptive/methods , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/immunology , Interleukins/genetics , Interleukins/immunology , Melanoma/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Pancreatic Neoplasms/immunology , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , STAT Transcription Factors/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
17.
Immunol Rev ; 322(1): 311-328, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306168

ABSTRACT

Inborn errors of immunity (IEIs) encompass a diverse spectrum of genetic disorders that disrupt the intricate mechanisms of the immune system, leading to a variety of clinical manifestations. Traditionally associated with an increased susceptibility to recurrent infections, IEIs have unveiled a broader clinical landscape, encompassing immune dysregulation disorders characterized by autoimmunity, severe allergy, lymphoproliferation, and even malignancy. This review delves into the intricate interplay between IEIs and the JAK-STAT signaling pathway, a critical regulator of immune homeostasis. Mutations within this pathway can lead to a wide array of clinical presentations, even within the same gene. This heterogeneity poses a significant challenge, necessitating individually tailored therapeutic approaches to effectively manage the diverse manifestations of these disorders. Additionally, JAK-STAT pathway defects can lead to simultaneous susceptibility to both infection and immune dysregulation. JAK inhibitors, with their ability to suppress JAK-STAT signaling, have emerged as powerful tools in controlling immune dysregulation. However, questions remain regarding the optimal selection and dosing regimens for each specific condition. Hematopoietic stem cell transplantation (HSCT) holds promise as a curative therapy for many JAK-STAT pathway disorders, but this procedure carries significant risks. The use of JAK inhibitors as a bridge to HSCT has been proposed as a potential strategy to mitigate these risks.


Subject(s)
Immune System Diseases , Janus Kinase Inhibitors , Humans , Signal Transduction , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Janus Kinases/metabolism , STAT Transcription Factors/metabolism
18.
Development ; 151(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39007366

ABSTRACT

Many tissue-specific adult stem cell lineages maintain a balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase Set1 regulates early-stage male germ cells in Drosophila. Early-stage germline-specific knockdown of Set1 results in temporally progressive defects, arising as germ cell loss and developing into overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage non-cell-autonomously. Additionally, wild-type Set1, but not the catalytically inactive Set1, rescues the Set1 knockdown phenotypes, highlighting the functional importance of the methyltransferase activity of Set1. Further, RNA-sequencing experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene Stat92E and the BMP pathway gene Mad, which are upregulated upon Set1 knockdown. Genetic interaction assays support the functional relationships between Set1 and JAK-STAT or BMP pathways, as both Stat92E and Mad mutations suppress the Set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The phenotype of germ cell loss followed by over-proliferation when inhibiting a histone methyltransferase also raises concerns about using their inhibitors in cancer therapy.


Subject(s)
Cell Differentiation , Drosophila Proteins , Drosophila melanogaster , Germ Cells , Histone-Lysine N-Methyltransferase , Signal Transduction , Animals , Male , Cell Differentiation/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Signal Transduction/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Germ Cells/metabolism , Germ Cells/cytology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Stem Cells/metabolism , Stem Cells/cytology , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Janus Kinases/metabolism , Janus Kinases/genetics , Cell Proliferation/genetics , Cell Lineage/genetics , Gene Expression Regulation, Developmental
19.
Nat Rev Mol Cell Biol ; 16(1): 5-17, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25491103

ABSTRACT

Methylation of Lys and Arg residues on non-histone proteins has emerged as a prevalent post-translational modification and as an important regulator of cellular signal transduction mediated by the MAPK, WNT, BMP, Hippo and JAK-STAT signalling pathways. Crosstalk between methylation and other types of post-translational modifications, and between histone and non-histone protein methylation frequently occurs and affects cellular functions such as chromatin remodelling, gene transcription, protein synthesis, signal transduction and DNA repair. With recent advances in proteomic techniques, in particular mass spectrometry, the stage is now set to decode the methylproteome and define its functions in health and disease.


Subject(s)
Chromatin Assembly and Disassembly/physiology , DNA Repair/physiology , MAP Kinase Signaling System/physiology , Protein Biosynthesis/physiology , Transcription, Genetic/physiology , Wnt Signaling Pathway/physiology , Animals , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Hippo Signaling Pathway , Humans , Methylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism
20.
Cell ; 148(4): 765-79, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22305007

ABSTRACT

Although molecular components of the circadian clock are known, mechanisms that transmit signals from the clock and produce rhythmic behavior are poorly understood. We find that the microRNA miR-279 regulates the JAK/STAT pathway to drive rest:activity rhythms in Drosophila. Overexpression of microRNA miR-279 or miR-279 deletion attenuates rest:activity rhythms. Oscillations of the clock protein PERIOD are normal in pacemaker neurons lacking miR-279, suggesting that miR-279 acts downstream of the clock. We identify the JAK/STAT ligand, Upd, as a target of miR-279 and show that knockdown of Upd rescues the behavioral phenotype of miR-279 mutants. Manipulations of the JAK/STAT pathway also disrupt circadian rhythms. In addition, central clock neurons project in the vicinity of Upd-expressing neurons, providing a possible physical connection by which the central clock could regulate JAK/STAT signaling to control rest:activity rhythms.


Subject(s)
Circadian Rhythm , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , MicroRNAs/metabolism , Signal Transduction , Transcription Factors/metabolism , Animals , Behavior, Animal , Biological Clocks , Janus Kinases/metabolism , MicroRNAs/genetics , Neurons/metabolism , STAT Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL