Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.032
Filter
1.
Nat Immunol ; 19(9): 963-972, 2018 09.
Article in English | MEDLINE | ID: mdl-30082830

ABSTRACT

Clonal expansion and immunological memory are hallmark features of the mammalian adaptive immune response and essential for prolonged host control of pathogens. Recent work demonstrates that natural killer (NK) cells of the innate immune system also exhibit these adaptive traits during infection. Here we demonstrate that differentiating and 'memory' NK cells possess distinct chromatin accessibility states and that their epigenetic profiles reveal a 'poised' regulatory program at the memory stage. Furthermore, we elucidate how individual STAT transcription factors differentially control epigenetic and transcriptional states early during infection. Finally, concurrent chromatin profiling of the canonical CD8+ T cell response against the same infection demonstrated parallel and distinct epigenetic signatures defining NK cells and CD8+ T cells. Overall, our study reveals the dynamic nature of epigenetic modifications during the generation of innate and adaptive lymphocyte memory.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chromatin/metabolism , Herpesviridae Infections/immunology , Killer Cells, Natural/physiology , Muromegalovirus/physiology , STAT1 Transcription Factor/metabolism , STAT4 Transcription Factor/metabolism , Adaptive Immunity , Animals , Cells, Cultured , Chromatin/genetics , Clonal Selection, Antigen-Mediated , Epigenesis, Genetic , Gene Expression Profiling , Immunity, Innate , Immunologic Memory , Mice , Mice, Inbred C57BL , Mice, Knockout , STAT1 Transcription Factor/genetics , STAT4 Transcription Factor/genetics
2.
Nat Immunol ; 17(4): 422-32, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26950239

ABSTRACT

T cell responses are guided by cytokines that induce transcriptional regulators, which ultimately control differentiation of effector and memory T cells. However, it is unknown how the activities of these molecular regulators are coordinated and integrated during the differentiation process. Using genetic approaches and transcriptional profiling of antigen-specific CD8(+) T cells, we reveal a common program of effector differentiation that is regulated by IL-2 and IL-12 signaling and the combined activities of the transcriptional regulators Blimp-1 and T-bet. The loss of both T-bet and Blimp-1 leads to abrogated cytotoxic function and ectopic IL-17 production in CD8(+) T cells. Overall, our data reveal two major overlapping pathways of effector differentiation governed by the availability of Blimp-1 and T-bet and suggest a model for cytokine-induced transcriptional changes that combine, quantitatively and qualitatively, to promote robust effector CD8(+) T cell differentiation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Interleukin-12/immunology , Interleukin-2/immunology , T-Box Domain Proteins/immunology , Transcription Factors/immunology , Animals , Arenaviridae Infections/immunology , Chromatin Immunoprecipitation , Cytokines/immunology , Flow Cytometry , Gene Expression Profiling , Influenza A Virus, H1N1 Subtype , Interleukin-17/immunology , Lymphocytic choriomeningitis virus , Mice , Orthomyxoviridae Infections/immunology , Positive Regulatory Domain I-Binding Factor 1 , Real-Time Polymerase Chain Reaction , STAT4 Transcription Factor/immunology , STAT5 Transcription Factor/immunology , Sequence Analysis, RNA , Signal Transduction
3.
Nat Immunol ; 15(9): 856-65, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25064073

ABSTRACT

Understanding the developmental mechanisms of follicular helper T cells (TFH cells) in humans is relevant to the clinic. However, the factors that drive the differentiation of human CD4+ helper T cells into TFH cells remain largely undefined. Here we found that transforming growth factor-ß (TGF-ß) provided critical additional signals for the transcription factors STAT3 and STAT4 to promote initial TFH differentiation in humans. This mechanism did not appear to be shared by mouse helper T cells. Developing human TFH cells that expressed the transcriptional repressor Bcl-6 also expressed RORγt, a transcription factor typically expressed by the TH17 subset of helper T cells. Our study documents a mechanism by which TFH cells and TH17 cells emerge together in inflammatory environments in humans, as is often observed in many human autoimmune diseases.


Subject(s)
Cell Differentiation/immunology , Germinal Center/immunology , STAT3 Transcription Factor/immunology , STAT4 Transcription Factor/immunology , Signal Transduction/immunology , T-Lymphocytes, Helper-Inducer/immunology , Th17 Cells/immunology , Animals , DNA-Binding Proteins/immunology , Humans , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , Proto-Oncogene Proteins c-bcl-6 , Transforming Growth Factor beta
4.
Immunity ; 46(2): 220-232, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28228280

ABSTRACT

Fibroblasts are major contributors to and regulators of inflammation and dominant producers of interleukin-6 (IL-6) in inflammatory diseases like rheumatoid arthritis. Yet, compared to leukocytes, the regulation of inflammatory pathways in fibroblasts is largely unknown. Here, we report that analyses of genes coordinately upregulated with IL-6 pointed to STAT4 and leukemia inhibitory factor (LIF) as potentially linked. Gene silencing revealed that STAT4 was required for IL-6 transcription. STAT4 was recruited to the IL-6 promoter after fibroblast activation, and LIF receptor (LIFR) and STAT4 formed a molecular complex that, together with JAK1 and TYK2 kinases, controlled STAT4 activation. Importantly, a positive feedback loop involving autocrine LIF, LIFR, and STAT4 drove sustained IL-6 transcription. Besides IL-6, this autorine loop also drove the production of other key inflammatory factors including IL-8, granulocyte-colony stimulating factor (G-CSF), IL-33, IL-11, IL-1α, and IL-1ß. These findings define the transcriptional regulation of fibroblast-mediated inflammation as distinct from leukocytes.


Subject(s)
Autocrine Communication/immunology , Fibroblasts/immunology , Gene Expression Regulation/immunology , Leukemia Inhibitory Factor/immunology , Receptors, OSM-LIF/immunology , Arthritis, Rheumatoid/immunology , Cells, Cultured , Cytokines/biosynthesis , Gene Expression Profiling , Humans , Inflammation/immunology , Interleukin-6/immunology , STAT4 Transcription Factor/immunology , Synovial Membrane/immunology , Transcriptome
5.
Proc Natl Acad Sci U S A ; 120(40): e2306761120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37756335

ABSTRACT

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.


Subject(s)
Antineoplastic Agents , STAT5 Transcription Factor , Humans , Immunity, Innate , Cell Differentiation , Killer Cells, Natural , Inflammation , STAT4 Transcription Factor/genetics
6.
Nat Immunol ; 14(11): 1190-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24056746

ABSTRACT

Although intergenic long noncoding RNAs (lincRNAs) have been linked to gene regulation in various tissues, little is known about lincRNA transcriptomes in the T cell lineages. Here we identified 1,524 lincRNA clusters in 42 T cell samples, from early T cell progenitors to terminally differentiated helper T cell subsets. Our analysis revealed highly dynamic and cell-specific expression patterns for lincRNAs during T cell differentiation. These lincRNAs were located in genomic regions enriched for genes that encode proteins with immunoregulatory functions. Many were bound and regulated by the key transcription factors T-bet, GATA-3, STAT4 and STAT6. We found that the lincRNA LincR-Ccr2-5'AS, together with GATA-3, was an essential component of a regulatory circuit in gene expression specific to the TH2 subset of helper T cells and was important for the migration of TH2 cells.


Subject(s)
Gene Expression Regulation/immunology , Precursor Cells, T-Lymphoid/metabolism , RNA, Long Noncoding/genetics , Th1 Cells/metabolism , Th17 Cells/metabolism , Th2 Cells/metabolism , Animals , Cell Differentiation , Cell Movement , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , GATA3 Transcription Factor/metabolism , Genetic Loci , Mice , Mice, Inbred C57BL , Molecular Sequence Annotation , Precursor Cells, T-Lymphoid/cytology , Precursor Cells, T-Lymphoid/immunology , Protein Binding , RNA, Long Noncoding/immunology , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/immunology , STAT4 Transcription Factor/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/immunology , STAT6 Transcription Factor/metabolism , Signal Transduction , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , T-Box Domain Proteins/metabolism , Th1 Cells/cytology , Th1 Cells/immunology , Th17 Cells/cytology , Th17 Cells/immunology , Th2 Cells/cytology , Th2 Cells/immunology , Transcriptome/immunology
7.
Immunity ; 45(2): 428-41, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27496734

ABSTRACT

Innate lymphoid cells (ILCs) function to protect epithelial barriers against pathogens and maintain tissue homeostasis in both barrier and non-barrier tissues. Here, utilizing Eomes reporter mice, we identify a subset of adipose group 1 ILC (ILC1) and demonstrate a role for these cells in metabolic disease. Adipose ILC1s were dependent on the transcription factors Nfil3 and T-bet but phenotypically and functionally distinct from adipose mature natural killer (NK) and immature NK cells. Analysis of parabiotic mice revealed that adipose ILC1s maintained long-term tissue residency. Diet-induced obesity drove early production of interleukin (IL)-12 in adipose tissue depots and led to the selective proliferation and accumulation of adipose-resident ILC1s in a manner dependent on the IL-12 receptor and STAT4. ILC1-derived interferon-γ was necessary and sufficient to drive proinflammatory macrophage polarization to promote obesity-associated insulin resistance. Thus, adipose-resident ILC1s contribute to obesity-related pathology in response to dysregulated local proinflammatory cytokine production.


Subject(s)
Adipose Tissue/immunology , Insulin Resistance/immunology , Lymphocytes/immunology , Macrophages/immunology , Obesity/immunology , T-Box Domain Proteins/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Humans , Immunity, Innate , Inflammation Mediators/metabolism , Interferon-gamma/metabolism , Interleukin-12/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism , T-Box Domain Proteins/genetics
8.
J Immunol ; 210(11): 1667-1676, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37093664

ABSTRACT

Effector CD4 T cells are central to the development of autoimmune chronic inflammatory diseases, yet factors that mediate pathogenicity remain ill-defined. Single-nucleotide polymorphisms in the human STAT4 locus are associated with susceptibility to multiple autoimmune disorders, and Stat4 is linked to the pathogenic Th17 gene signature; however, Th17 cells differentiate independently of STAT4. Hence the interplay between STAT4 and CD4 T cell function, especially Th17 cells, during autoimmune disease is unclear. In this article, we demonstrate that CD4 T cell-intrinsic STAT4 expression is essential for the induction of autoimmune CNS inflammation in mice, in part by regulating the migration of CD4 T cells to the inflamed CNS. Moreover, unbiased transcriptional profiling revealed that STAT4 controls the expression of >200 genes in Th17 cells and is important for the upregulation of genes associated with IL-23-stimulated, pathogenic Th17 cells. Importantly, we show that Th17 cells specifically require STAT4 to evoke autoimmune inflammation, highlighting, to our knowledge, a novel function for STAT4 in Th17 pathogenicity.


Subject(s)
CD4-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Humans , Mice , Animals , Th17 Cells , Th1 Cells , Virulence , Inflammation , Cell Differentiation , STAT4 Transcription Factor/metabolism
9.
J Immunol ; 210(9): 1292-1304, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36961447

ABSTRACT

It is generally accepted that influenza A virus (IAV) infection promotes a Th1-like CD4 T cell response and that this effector program underlies its protective impact. Canonical Th1 polarization requires cytokine-mediated activation of the transcription factors STAT1 and STAT4 that synergize to maximize the induction of the "master regulator" Th1 transcription factor, T-bet. Here, we determine the individual requirements for these transcription factors in directing the Th1 imprint primed by influenza infection in mice by tracking virus-specific wild-type or T-bet-deficient CD4 T cells in which STAT1 or STAT4 is knocked out. We find that STAT1 is required to protect influenza-primed CD4 T cells from NK cell-mediated deletion and for their expression of hallmark Th1 attributes. STAT1 is also required to prevent type I IFN signals from inhibiting the induction of the Th17 master regulator, Rorγt, in Th17-prone T-bet-/- cells responding to IAV. In contrast, STAT4 expression does not appreciably impact the phenotypic or functional attributes of wild-type or T-bet-/- CD4 T cell responses. However, cytokine-mediated STAT4 activation in virus-specific CD4 T cells enhances their Th1 identity in a T-bet-dependent manner, indicating that influenza infection does not promote maximal Th1 induction. Finally, we show that the T-bet-dependent protective capacity of CD4 T cell effectors against IAV is optimized by engaging both STAT1 and STAT4 during Th1 priming, with important implications for vaccine strategies aiming to generate T cell immunity.


Subject(s)
CD4-Positive T-Lymphocytes , Influenza, Human , Mice , Animals , Humans , Antiviral Agents/metabolism , T-Box Domain Proteins/metabolism , Interferon-gamma/metabolism , Transcription Factors/metabolism , Th1 Cells , STAT4 Transcription Factor/metabolism , Cell Differentiation , STAT1 Transcription Factor/metabolism
10.
J Immunol ; 211(10): 1469-1474, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37830760

ABSTRACT

NK cells represent a cellular component of the mammalian innate immune system, and they mount rapid responses against viral infection, including the secretion of the potent antiviral effector cytokine IFN-γ. Following mouse CMV infection, Bhlhe40 was the most highly induced transcription factor in NK cells among the basic helix-loop-helix family. Bhlhe40 upregulation in NK cells depended upon IL-12 and IL-18 signals, with the promoter of Bhlhe40 enriched for STAT4 and the permissive histone H3K4me3, and with STAT4-deficient NK cells showing an impairment of Bhlhe40 induction and diminished H3K4me3. Transcriptomic and protein analysis of Bhlhe40-deficient NK cells revealed a defect in IFN-γ production during mouse CMV infection, resulting in diminished protective immunity following viral challenge. Finally, we provide evidence that Bhlhe40 directly promotes IFN-γ by binding throughout the Ifng loci in activated NK cells. Thus, our study reveals how STAT4-mediated control of Bhlhe40 drives protective IFN-γ secretion by NK cells during viral infection.


Subject(s)
Cytomegalovirus Infections , Killer Cells, Natural , Mice , Animals , Interferon-gamma , Cytokines/metabolism , Interleukin-12/metabolism , Cytomegalovirus Infections/metabolism , STAT4 Transcription Factor/metabolism , Mammals/metabolism , Homeodomain Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
11.
Am J Physiol Cell Physiol ; 326(5): C1494-C1504, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38406824

ABSTRACT

Primary Sjögren's syndrome (pSS) is characterized by its autoimmune nature. This study investigates the role of the IFNγ SNP rs2069705 in modulating the susceptibility to pSS. Differential expression of IFNγ and BAFF was analyzed using the GEO database's mRNA microarray GSE84844. Genotyping of the IFNγ SNP rs2069705 was conducted via the dbSNP website. The JASPAR tool was used for predicting transcription factor bindings. Techniques such as dual-luciferase reporter assays, Chromatin immunoprecipitation, and analysis of a pSS mouse model were applied to study gene and protein interactions. A notable increase in the mutation frequency of IFNγ SNP rs2069705 was observed in MNCs from the exocrine glands of pSS mouse models. Bioinformatics analysis revealed elevated levels of IFNγ and BAFF in pSS samples. The model exhibited an increase in both CD20+ B cells and cells expressing IFNγ and BAFF. Knocking down IFNγ resulted in lowered BAFF expression and less lymphocyte infiltration, with BAFF overexpression reversing this suppression. Activation of the Janus kinase (JAK)/STAT1 pathway was found to enhance transcription in the BAFF promoter region, highlighting IFNγ's involvement in pSS. In addition, rs2069705 was shown to boost IFNγ transcription by promoting interaction between its promoter and STAT4. SNP rs2069705 in the IFNγ gene emerges as a pivotal element in pSS susceptibility, primarily by augmenting IFNγ transcription, activating the JAK/STAT1 pathway, and leading to B-lymphocyte infiltration in the exocrine glands.NEW & NOTEWORTHY The research employed a combination of bioinformatics analysis, genotyping, and experimental models, providing a multifaceted approach to understanding the complex interactions in pSS. We have uncovered that the rs2069705 SNP significantly affects the transcription of IFNγ, leading to altered immune responses and B-lymphocyte activity in pSS.


Subject(s)
B-Lymphocytes , Interferon-gamma , Polymorphism, Single Nucleotide , Sjogren's Syndrome , Transcriptional Activation , Animals , Female , Humans , Mice , B-Cell Activating Factor/genetics , B-Cell Activating Factor/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Disease Models, Animal , Genetic Predisposition to Disease , Interferon-gamma/genetics , Interferon-gamma/metabolism , Janus Kinases/metabolism , Janus Kinases/genetics , Polymorphism, Single Nucleotide/genetics , Signal Transduction , Sjogren's Syndrome/genetics , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism
12.
J Biol Chem ; 299(5): 104703, 2023 05.
Article in English | MEDLINE | ID: mdl-37059181

ABSTRACT

The conversion of signal transducer and activator of transcription (STAT) proteins from latent to active transcription factors is central to cytokine signaling. Triggered by their signal-induced tyrosine phosphorylation, it is the assembly of a range of cytokine-specific STAT homo- and heterodimers that marks a key step in the transition of hitherto latent proteins to transcription activators. In contrast, the constitutive self-assembly of latent STATs and how it relates to the functioning of activated STATs is understood less well. To provide a more complete picture, we developed a co-localization-based assay and tested all 28 possible combinations of the seven unphosphorylated STAT (U-STAT) proteins in living cells. We identified five U-STAT homodimers-STAT1, STAT3, STAT4, STAT5A, and STAT5B-and two heterodimers-STAT1:STAT2 and STAT5A:STAT5B-and performed semi-quantitative assessments of the forces and characterizations of binding interfaces that support them. One STAT protein-STAT6-was found to be monomeric. This comprehensive analysis of latent STAT self-assembly lays bare considerable structural and functional diversity in the ways that link STAT dimerization before and after activation.


Subject(s)
Gene Expression Regulation , STAT Transcription Factors , Trans-Activators , Cytokines/metabolism , Phosphorylation , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , STAT2 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Trans-Activators/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Protein Multimerization
13.
Nat Immunol ; 13(3): 290-9, 2012 Feb 05.
Article in English | MEDLINE | ID: mdl-22306691

ABSTRACT

Interleukin 35 (IL-35) belongs to the IL-12 family of heterodimeric cytokines but has a distinct functional profile. IL-35 suppresses T cell proliferation and converts naive T cells into IL-35-producing induced regulatory T cells (iTr35 cells). Here we found that IL-35 signaled through a unique heterodimer of receptor chains IL-12Rß2 and gp130 or homodimers of each chain. Conventional T cells were sensitive to IL-35-mediated suppression in the absence of one receptor chain but not both receptor chains, whereas signaling through both chains was required for IL-35 expression and conversion into iTr35 cells. Signaling through the IL-35 receptor required the transcription factors STAT1 and STAT4, which formed a unique heterodimer that bound to distinct sites in the promoters of the genes encoding the IL-12 subunits p35 and Ebi3. This unconventional mode of signaling, distinct from that of other members of the IL-12 family, may broaden the spectrum and specificity of IL-35-mediated suppression.


Subject(s)
Receptors, Interleukin-1/immunology , Receptors, Interleukin/immunology , Signal Transduction , Animals , Cytokine Receptor gp130/immunology , Interleukins/immunology , Mice , Mice, Knockout , Models, Molecular , Protein Multimerization , Protein Structure, Quaternary , Receptors, Interleukin/chemistry , Receptors, Interleukin/deficiency , Receptors, Interleukin/metabolism , Receptors, Interleukin-1/chemistry , Receptors, Interleukin-1/deficiency , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-12/immunology , STAT1 Transcription Factor/immunology , STAT4 Transcription Factor/immunology
14.
Toxicol Appl Pharmacol ; 488: 116980, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823456

ABSTRACT

Multiple sclerosis (MS) is a class of autoimmune diseases mainly caused by the immune system attacking the myelin sheath of the axons in the nervous system. Although the pathogenesis of MS is complex, studies have shown that dendritic cells (DCs) play a vital role in the pathogenesis of MS. Quercetin (QU) has a unique advantage in clinical application, especially for treating autoimmune diseases. However, the mechanism of QU in the treatment of experimental autoimmune encephalomyelitis (EAE) remains unclear. In this study, we explore the potential role of QU in EAE. Finally, we find that QU has anti-inflammatory activities and neural protective effects in EAE. The experimental results suggest that the cellular basis for QU's function is to inhibit the activation of DCs while modulating the Th17 cell differentiation in the co-culture system. Further, QU may target STAT4 to inhibit its activation in DCs. This work will be of great significance for the future development and utilization of QU.


Subject(s)
Dendritic Cells , Encephalomyelitis, Autoimmune, Experimental , Mice, Inbred C57BL , Quercetin , STAT4 Transcription Factor , Th17 Cells , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Quercetin/pharmacology , STAT4 Transcription Factor/metabolism , Female , Mice , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/metabolism , Cell Differentiation/drug effects , Coculture Techniques , Anti-Inflammatory Agents/pharmacology
15.
Immunity ; 42(4): 613-26, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25862091

ABSTRACT

Epigenetic regulation of lineage-specific genes is important for the differentiation and function of T cells. Ten-eleven translocation (Tet) proteins catalyze 5-methylcytosine (5 mC) conversion to 5-hydroxymethylcytosine (5 hmC) to mediate DNA demethylation. However, the roles of Tet proteins in the immune response are unknown. Here, we characterized the genome-wide distribution of 5 hmC in CD4(+) T cells and found that 5 hmC marks putative regulatory elements in signature genes associated with effector cell differentiation. Moreover, Tet2 protein was recruited to 5 hmC-containing regions, dependent on lineage-specific transcription factors. Deletion of Tet2 in T cells decreased their cytokine expression, associated with reduced p300 recruitment. In vivo, Tet2 plays a critical role in the control of cytokine gene expression in autoimmune disease. Collectively, our findings suggest that Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells.


Subject(s)
Cytokines/biosynthesis , DNA-Binding Proteins/immunology , Epigenesis, Genetic/immunology , Proto-Oncogene Proteins/immunology , Th1 Cells/immunology , Th17 Cells/immunology , 5-Methylcytosine/analogs & derivatives , Animals , Cell Differentiation , Cytokines/immunology , Cytosine/analogs & derivatives , Cytosine/immunology , Cytosine/metabolism , DNA/immunology , DNA/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , Dioxygenases , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/immunology , Gene Expression Regulation , Genome , Humans , Mice , Mice, Transgenic , Proto-Oncogene Proteins/genetics , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/immunology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , Th1 Cells/cytology , Th1 Cells/enzymology , Th17 Cells/cytology , Th17 Cells/enzymology
16.
J Cutan Pathol ; 51(3): 232-238, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37932931

ABSTRACT

BACKGROUND: Diagnosis of early mycosis fungoides (eMF) is challenging and often delayed as many of its clinical and histopathologic features may mimic various benign inflammatory dermatoses (BIDs). The products of the thymocyte selection-associated high mobility group box (TOX), twist family BHLH transcription factor 1 (TWIST1), signal transducer and activator of transcription 4 (STAT4), and special AT-rich sequence-binding protein 1 (SATB1) genes function as transcription factors and are involved in the pathogenesis of MF. OBJECTIVES: We aim to determine the diagnostic value of TOX, TWIST1, STAT4, and SATB1 protein expressions in eMF. METHODS: This non-randomized, controlled, prospective analytic study was conducted by performing immunohistochemistry staining with TOX, TWIST1, STAT4, and SATB1 polyclonal antibodies in lesional skin biopsies of eMF and BID patients. Nuclear staining of lymphocytes was compared between eMF and BIDs, and the capacity of these antibodies to predict eMF was determined. RESULTS: Immunostainings with anti-TWIST1 showed an increase in protein expression (p = 0.003) and showed a decrease with anti-SATB1 antibodies in eMF compared to BIDs (p = 0.005) while anti-TOX and anti-STAT4 antibodies did not exhibit significant differences (p = 0.384; p = 0.150). Receiver operating characteristic analysis showed that immunohistochemical evaluations of TWIST1 and SATB1 protein expressions can differentiate eMF (area under the curve [AUC]: 0.728, 95% confidence interval [CI]: 0.605-0.851, p = 0.002; AUC: 0.686, 95% CI: 0.565-0.807, p = 0.013). CONCLUSIONS: TWIST1 and SATB1 are potential diagnostic markers for the histologic diagnosis of eMF.


Subject(s)
Matrix Attachment Region Binding Proteins , Mycosis Fungoides , Skin Neoplasms , Humans , Matrix Attachment Region Binding Proteins/metabolism , Mycosis Fungoides/pathology , Nuclear Proteins/metabolism , Prospective Studies , Skin Neoplasms/pathology , STAT4 Transcription Factor/metabolism , Twist-Related Protein 1/metabolism
17.
Int J Med Sci ; 21(6): 1176-1186, 2024.
Article in English | MEDLINE | ID: mdl-38774752

ABSTRACT

Background: To uncover the potential significance of JAK-STAT-SOCS1 axis in penile cancer, our study was the pioneer in exploring the altered expression processes of JAK-STAT-SOCS1 axis in tumorigenesis, malignant progression and lymphatic metastasis of penile cancer. Methods: In current study, the comprehensive analysis of JAK-STAT-SOCS1 axis in penile cancer was analyzed via multiple analysis approaches based on GSE196978 data, single-cell data (6 cancer samples) and bulk RNA data (7 cancer samples and 7 metastasis lymph nodes). Results: Our study observed an altered molecular expression of JAK-STAT-SOCS1 axis during three different stages of penile cancer, from tumorigenesis to malignant progression to lymphatic metastasis. STAT4 was an important dominant molecule in penile cancer, which mediated the immunosuppressive tumor microenvironment by driving the apoptosis of cytotoxic T cell and was also a valuable biomarker of immune checkpoint inhibitor treatment response. Conclusions: Our findings revealed that the complexity of JAK-STAT-SOCS1 axis and the predominant role of STAT4 in penile cancer, which can mediate tumorigenesis, malignant progression, and lymphatic metastasis. This insight provided valuable information for developing precise treatment strategies for patients with penile cancer.


Subject(s)
Disease Progression , Janus Kinases , Lymphatic Metastasis , Penile Neoplasms , STAT4 Transcription Factor , Suppressor of Cytokine Signaling 1 Protein , Humans , Male , Penile Neoplasms/pathology , Penile Neoplasms/genetics , Penile Neoplasms/metabolism , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Lymphatic Metastasis/pathology , Lymphatic Metastasis/genetics , Janus Kinases/metabolism , STAT4 Transcription Factor/metabolism , STAT4 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic , Carcinogenesis/genetics , Carcinogenesis/pathology , Signal Transduction , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
18.
Int J Immunogenet ; 51(4): 228-234, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38654468

ABSTRACT

Signal transducer and activator of transcription 4 (STAT4) plays a crucial role in the host immune response against Mycobacterium tuberculosis. This study investigates the association between STAT4 gene polymorphisms and pulmonary tuberculosis (TB) risk in the Moldavian population. A total of 272 TB patients and 251 community-matched controls underwent screening for functional single-nucleotide polymorphisms (SNPs) rs897200 and rs7574865 in the STAT4 gene. The minor T allele and the TT/CT genotype of rs897200 demonstrated a significant association with reduced pulmonary TB risk (allelic model: adjusted OR = .74, p = .025; log-additive model: adjusted OR = .72, p = .02; and dominant model: adjusted OR = .65, p = .023), indicating a protective effect. Similar associations, characterized by an even more pronounced reduction in risk, were observed among females and late-onset TB patients (>44 years). No significant associations were found for rs7574865. In addition, a combined genotype analysis incorporating 43 SNPs from our previous studies revealed potential associations, such as STAT4 rs897200 CT with IFNG rs2430561 AA (adjusted OR = .36, p = .0025) and STAT4 rs897200 CT with TNFA rs1800629 GA (adjusted OR = .33, p = .0012). This study emphasizes the significant association of STAT4 rs897200 with pulmonary TB risk in the Moldavian population, underscoring its role in the disease development.


Subject(s)
Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , STAT4 Transcription Factor , Tuberculosis, Pulmonary , Humans , STAT4 Transcription Factor/genetics , Tuberculosis, Pulmonary/genetics , Female , Male , Adult , Middle Aged , Genotype , Alleles , Moldova , Case-Control Studies , Genetic Association Studies , Gene Frequency , Mycobacterium tuberculosis
19.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542139

ABSTRACT

Our goal was to investigate the effects of epidermal growth factor (EGF) and interferons (IFNs) on signal transducer and activator of transcription STAT1 and STAT4 mRNA and active phosphorylated protein expression in Sjögren's syndrome cell culture models. iSGECs (immortalized salivary gland epithelial cells) and A253 cells were treated with EGF, IFN-alpha, -beta, -gamma, or mitogen-activated protein kinase p38 alpha (p38-MAPK) inhibitor for 0-24-48-72 h. STAT1 and STAT4 mRNA expression was quantified by qRT-PCR. Untreated and treated cells were compared using the delta-delta-CT method based on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) normalized relative fold changes. phospho-tyrosine-701-STAT1 and phospho-serine-721-STAT4 were detected by Western blot analysis. STAT4 mRNA expression decreased 48 h after EGF treatment in A253 cells, immortalized salivary gland epithelial cells iSGECs nSS2 (sicca patient origin), and iSGECs pSS1 (anti-SSA negative Sjögren's Syndrome patient origin). EGF and p38-MAPK inhibitor decreased A253 STAT4 mRNA levels. EGF combined with IFN-gamma increased phospho-STAT4 and phospho-STAT1 after 72 h in all cell lines, suggesting additive effects for phospho-STAT4 and a major effect from IFN-gamma for phospho-STAT1. pSS1 and nSS2 cells responded differently to type I and type II interferons, confirming unique functional characteristics between iSGEC cell lines. EGF/Interferon related pathways might be targeted to regulate STAT1 and STAT4 expression in salivary gland epithelial cells. Further investigation is required learn how to better target the Janus kinases/signal transducer and activator of transcription proteins (JAK/STAT) pathway-mediated inflammatory response in Sjögren's syndrome.


Subject(s)
Epidermal Growth Factor , Sjogren's Syndrome , Humans , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Sjogren's Syndrome/drug therapy , Sjogren's Syndrome/genetics , Interferon-alpha/pharmacology , Immunologic Factors , Cell Culture Techniques , RNA, Messenger/metabolism , Dietary Supplements , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Phosphorylation , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism
20.
EMBO J ; 38(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30770344

ABSTRACT

T helper 17 (Th17)-cell differentiation triggered by interleukin-6 (IL-6) via STAT3 activation promotes inflammation in inflammatory bowel disease (IBD) patients. However, leukemia inhibitory factor (LIF), an IL-6 family cytokine, restricts inflammation by blocking Th17-cell differentiation via an unknown mechanism. Here, we report that microbiota dysregulation promotes LIF secretion by intestinal epithelial cells (IECs) in a mouse colitis model. LIF greatly activates STAT4 phosphorylation on multiple SPXX elements within the C-terminal transcription regulation domain. STAT4 and STAT3 act reciprocally on both canonical cis-inducible elements (SIEs) and noncanonical "AGG" elements at different loci. In lamina propria lymphocytes (LPLs), STAT4 activation by LIF blocks STAT3-dependent Il17a/Il17f promoter activation, whereas in IECs, LIF bypasses the extraordinarily low level of STAT4 to induce YAP gene expression via STAT3 activation. In addition, we found that the administration of LIF is sufficient to restore microbiome homeostasis. Thus, LIF effectively inhibits Th17 accumulation and promotes repair of damaged intestinal epithelium in inflamed colon, serves as a potential therapy for IBD.


Subject(s)
Colitis/prevention & control , Gene Expression Regulation/drug effects , Inflammation/prevention & control , Intestinal Mucosa/drug effects , Leukemia Inhibitory Factor/pharmacology , STAT3 Transcription Factor/metabolism , STAT4 Transcription Factor/physiology , Animals , Cells, Cultured , Colitis/chemically induced , Colitis/immunology , Inflammation/chemically induced , Inflammation/immunology , Interleukin-17/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Phosphorylation , STAT3 Transcription Factor/genetics , Signal Transduction , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL