Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.354
Filter
Add more filters

Publication year range
1.
Cell ; 184(18): 4669-4679.e13, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34390643

ABSTRACT

Hearing involves two fundamental processes: mechano-electrical transduction and signal amplification. Despite decades of studies, the molecular bases for both remain elusive. Here, we show how prestin, the electromotive molecule of outer hair cells (OHCs) that senses both voltage and membrane tension, mediates signal amplification by coupling conformational changes to alterations in membrane surface area. Cryoelectron microscopy (cryo-EM) structures of human prestin bound with chloride or salicylate at a common "anion site" adopt contracted or expanded states, respectively. Prestin is ensconced within a perimeter of well-ordered lipids, through which it induces dramatic deformation in the membrane and couples protein conformational changes to the bulk membrane. Together with computational studies, we illustrate how the anion site is allosterically coupled to changes in the transmembrane domain cross-sectional area and the surrounding membrane. These studies provide insight into OHC electromotility by providing a structure-based mechanism of the membrane motor prestin.


Subject(s)
Electrophysiological Phenomena , Sulfate Transporters/metabolism , Anions , Binding Sites , Chlorides/metabolism , Cryoelectron Microscopy , HEK293 Cells , Humans , Lipid Bilayers/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Domains , Protein Multimerization , Protein Stability , Salicylic Acid/metabolism , Structural Homology, Protein , Sulfate Transporters/chemistry , Sulfate Transporters/ultrastructure
2.
Cell ; 182(5): 1093-1108.e18, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32810437

ABSTRACT

In plants, pathogen effector-triggered immunity (ETI) often leads to programmed cell death, which is restricted by NPR1, an activator of systemic acquired resistance. However, the biochemical activities of NPR1 enabling it to promote defense and restrict cell death remain unclear. Here we show that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through formation of salicylic acid-induced NPR1 condensates (SINCs). SINCs are enriched with stress response proteins, including nucleotide-binding leucine-rich repeat immune receptors, oxidative and DNA damage response proteins, and protein quality control machineries. Transition of NPR1 into condensates is required for formation of the NPR1-Cullin 3 E3 ligase complex to ubiquitinate SINC-localized substrates, such as EDS1 and specific WRKY transcription factors, and promote cell survival during ETI. Our analysis of SINCs suggests that NPR1 is centrally integrated into the cell death or survival decisions in plant immunity by modulating multiple stress-responsive processes in this quasi-organelle.


Subject(s)
Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Cell Survival/immunology , Plant Immunity/immunology , Arabidopsis/immunology , Arabidopsis/metabolism , Gene Expression Regulation, Plant/immunology , Salicylic Acid/immunology , Salicylic Acid/metabolism , Ubiquitination/immunology
3.
Cell ; 182(5): 1109-1124.e25, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32841601

ABSTRACT

Chloroplasts are crucial players in the activation of defensive hormonal responses during plant-pathogen interactions. Here, we show that a plant virus-encoded protein re-localizes from the plasma membrane to chloroplasts upon activation of plant defense, interfering with the chloroplast-dependent anti-viral salicylic acid (SA) biosynthesis. Strikingly, we have found that plant pathogens from different kingdoms seem to have convergently evolved to target chloroplasts and impair SA-dependent defenses following an association with membranes, which relies on the co-existence of two subcellular targeting signals, an N-myristoylation site and a chloroplast transit peptide. This pattern is also present in plant proteins, at least one of which conversely activates SA defenses from the chloroplast. Taken together, our results suggest that a pathway linking plasma membrane to chloroplasts and activating defense exists in plants and that such pathway has been co-opted by plant pathogens during host-pathogen co-evolution to promote virulence through suppression of SA responses.


Subject(s)
Cell Membrane/immunology , Chloroplasts/immunology , Plant Diseases/immunology , Plant Immunity/immunology , Signal Transduction/immunology , Arabidopsis Proteins/immunology , Host-Pathogen Interactions/immunology , Salicylic Acid/immunology , Virulence/immunology
4.
Cell ; 173(6): 1314-1315, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29856948

ABSTRACT

Salicylic acid (SA) is a potent inducer of defense gene expression in plants, but how SA activates transcription has been controversial. In this issue of Cell, Ding et al. show that the SA-binding proteins NPR3 and NPR4 function as transcriptional co-repressors, with this activity being blocked by SA.


Subject(s)
Arabidopsis Proteins , Salicylic Acid , Arabidopsis , Plant Immunity , Signal Transduction
5.
Cell ; 173(6): 1454-1467.e15, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29656896

ABSTRACT

Salicylic acid (SA) is a plant defense hormone required for immunity. Arabidopsis NPR1 and NPR3/NPR4 were previously shown to bind SA and all three proteins were proposed as SA receptors. NPR1 functions as a transcriptional co-activator, whereas NPR3/NPR4 were suggested to function as E3 ligases that promote NPR1 degradation. Here we report that NPR3/NPR4 function as transcriptional co-repressors and SA inhibits their activities to promote the expression of downstream immune regulators. npr4-4D, a gain-of-function npr4 allele that renders NPR4 unable to bind SA, constitutively represses SA-induced immune responses. In contrast, the equivalent mutation in NPR1 abolishes its ability to bind SA and promote SA-induced defense gene expression. Further analysis revealed that NPR3/NPR4 and NPR1 function independently to regulate SA-induced immune responses. Our study indicates that both NPR1 and NPR3/NPR4 are bona fide SA receptors, but play opposite roles in transcriptional regulation of SA-induced defense gene expression.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Plant Immunity , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Plant , Genotype , Mutation , Plant Diseases , Plant Growth Regulators/physiology , Salicylic Acid , Seeds/physiology , Signal Transduction , Transcription Factors/physiology , Ubiquitin-Protein Ligases/physiology
6.
Mol Cell ; 84(1): 131-141, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38103555

ABSTRACT

Nonexpressor of pathogenesis-related genes 1 (NPR1) was discovered in Arabidopsis as an activator of salicylic acid (SA)-mediated immune responses nearly 30 years ago. How NPR1 confers resistance against a variety of pathogens and stresses has been extensively studied; however, only in recent years have the underlying molecular mechanisms been uncovered, particularly NPR1's role in SA-mediated transcriptional reprogramming, stress protein homeostasis, and cell survival. Structural analyses ultimately defined NPR1 and its paralogs as SA receptors. The SA-bound NPR1 dimer induces transcription by bridging two TGA transcription factor dimers, forming an enhanceosome. Moreover, NPR1 orchestrates its multiple functions through the formation of distinct nuclear and cytoplasmic biomolecular condensates. Furthermore, NPR1 plays a central role in plant health by regulating the crosstalk between SA and other defense and growth hormones. In this review, we focus on these recent advances and discuss how NPR1 can be utilized to engineer resistance against biotic and abiotic stresses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Salicylic Acid/chemistry , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Transcription Factors/metabolism , Stress, Physiological , Gene Expression Regulation, Plant
7.
Nature ; 622(7981): 139-148, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704724

ABSTRACT

Aphids transmit viruses and are destructive crop pests1. Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants2-5. However, the mechanism underlying AD is unclear. Here we reveal that methyl-salicylate (MeSA), salicylic acid-binding protein-2 (SABP2), the transcription factor NAC2 and salicylic acid-carboxylmethyltransferase-1 (SAMT1) form a signalling circuit to mediate AD against aphids and viruses. Airborne MeSA is perceived and converted into salicylic acid by SABP2 in neighbouring plants. Salicylic acid then causes a signal transduction cascade to activate the NAC2-SAMT1 module for MeSA biosynthesis to induce plant anti-aphid immunity and reduce virus transmission. To counteract this, some aphid-transmitted viruses encode helicase-containing proteins to suppress AD by interacting with NAC2 to subcellularly relocalize and destabilize NAC2. As a consequence, plants become less repellent to aphids, and more suitable for aphid survival, infestation and viral transmission. Our findings uncover the mechanistic basis of AD and an aphid-virus co-evolutionary mutualism, demonstrating AD as a potential bioinspired strategy to control aphids and viruses.


Subject(s)
Air , Aphids , Plant Diseases , Plants , Salicylic Acid , Signal Transduction , Aphids/physiology , Aphids/virology , Host Microbial Interactions , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Diseases/virology , Plant Proteins/metabolism , Plants/metabolism , Plants/parasitology , Plants/virology , Salicylic Acid/metabolism , Symbiosis , Nicotiana/immunology , Nicotiana/metabolism , Nicotiana/parasitology , Nicotiana/virology , Viral Proteins/metabolism , Animals
8.
Nature ; 605(7910): 561-566, 2022 05.
Article in English | MEDLINE | ID: mdl-35545668

ABSTRACT

NPR1 is a master regulator of the defence transcriptome induced by the plant immune signal salicylic acid1-4. Despite the important role of NPR1 in plant immunity5-7, understanding of its regulatory mechanisms has been hindered by a lack of structural information. Here we report cryo-electron microscopy and crystal structures of Arabidopsis NPR1 and its complex with the transcription factor TGA3. Cryo-electron microscopy analysis reveals that NPR1 is a bird-shaped homodimer comprising a central Broad-complex, Tramtrack and Bric-à-brac (BTB) domain, a BTB and carboxyterminal Kelch helix bundle, four ankyrin repeats and a disordered salicylic-acid-binding domain. Crystal structure analysis reveals a unique zinc-finger motif in BTB for interacting with ankyrin repeats and mediating NPR1 oligomerization. We found that, after stimulation, salicylic-acid-induced folding and docking of the salicylic-acid-binding domain onto ankyrin repeats is required for the transcriptional cofactor activity of NPR1, providing a structural explanation for a direct role of salicylic acid in regulating NPR1-dependent gene expression. Moreover, our structure of the TGA32-NPR12-TGA32 complex, DNA-binding assay and genetic data show that dimeric NPR1 activates transcription by bridging two fatty-acid-bound TGA3 dimers to form an enhanceosome. The stepwise assembly of the NPR1-TGA complex suggests possible hetero-oligomeric complex formation with other transcription factors, revealing how NPR1 reprograms the defence transcriptome.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Cryoelectron Microscopy , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Immunity , Plant Proteins/metabolism , Salicylic Acid/metabolism , Transcription Factors/metabolism
9.
Nature ; 607(7918): 339-344, 2022 07.
Article in English | MEDLINE | ID: mdl-35768511

ABSTRACT

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone1-3, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism4-7. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B8,9 (phyB) and EARLY FLOWERING 310 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates11 (GDACs) was reduced at the higher growth temperature. The altered GDAC formation in vivo is linked to impaired recruitment of GBPL3 and SA-associated Mediator subunits to the promoters of CBP60g and SARD1, which encode master immune transcription factors. Unlike many other SA signalling components, including the SA receptor and biosynthetic genes, optimized CBP60g expression was sufficient to broadly restore SA production, basal immunity and effector-triggered immunity at the elevated growth temperature without significant growth trade-offs. CBP60g family transcription factors are widely conserved in plants12. These results have implications for safeguarding the plant immune system as well as understanding the concept of the plant-pathogen-environment disease triangle and the emergence of new disease epidemics in a warming climate.


Subject(s)
Acclimatization , Arabidopsis Proteins , Arabidopsis , Environment , Global Warming , Plant Immunity , Temperature , Arabidopsis/growth & development , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calmodulin-Binding Proteins/genetics , Gene Expression Regulation, Plant , Global Warming/statistics & numerical data , Host-Pathogen Interactions , Phytochrome B , Plant Diseases/genetics , Plant Immunity/genetics , Salicylic Acid/metabolism , Transcription Factors
10.
Trends Biochem Sci ; 48(8): 699-712, 2023 08.
Article in English | MEDLINE | ID: mdl-37258325

ABSTRACT

Salicylic acid (SA) is a central plant hormone mediating immunity, growth, and development. Recently, studies have highlighted the sensitivity of the SA pathway to changing climatic factors and the plant microbiome. Here we summarize organizing principles and themes in the regulation of SA biosynthesis, signaling, and metabolism by changing abiotic/biotic environments, focusing on molecular nodes governing SA pathway vulnerability or resilience. We especially highlight advances in the thermosensitive mechanisms underpinning SA-mediated immunity, including differential regulation of key transcription factors (e.g., CAMTAs, CBP60g, SARD1, bHLH059), selective protein-protein interactions of the SA receptor NPR1, and dynamic phase separation of the recently identified GBPL3 biomolecular condensates. Together, these nodes form a biochemical paradigm for how the external environment impinges on the SA pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Salicylic Acid/metabolism , Transcription Factors/metabolism , Hormones/metabolism
11.
EMBO J ; 42(13): e112998, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37211868

ABSTRACT

Brassinosteroids (BRs) are important plant hormones involved in many aspects of development. Here, we show that BRASSINOSTEROID SIGNALING KINASEs (BSKs), key components of the BR pathway, are precisely controlled via de-S-acylation mediated by the defense hormone salicylic acid (SA). Most Arabidopsis BSK members are substrates of S-acylation, a reversible protein lipidation that is essential for their membrane localization and physiological function. We establish that SA interferes with the plasma membrane localization and function of BSKs by decreasing their S-acylation levels, identifying ABAPT11 (ALPHA/BETA HYDROLASE DOMAIN-CONTAINING PROTEIN 17-LIKE ACYL PROTEIN THIOESTERASE 11) as an enzyme whose expression is quickly induced by SA. ABAPT11 de-S-acylates most BSK family members, thus integrating BR and SA signaling for the control of plant development. In summary, we show that BSK-mediated BR signaling is regulated by SA-induced protein de-S-acylation, which improves our understanding of the function of protein modifications in plant hormone cross talk.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brassinosteroids/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Salicylic Acid/metabolism , Arabidopsis/metabolism , Plant Growth Regulators/metabolism , Acylation , Gene Expression Regulation, Plant
12.
EMBO J ; 42(21): e113499, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37728254

ABSTRACT

The occurrence of plant disease is determined by interactions among host, pathogen, and environment. Air humidity shapes various aspects of plant physiology and high humidity has long been known to promote numerous phyllosphere diseases. However, the molecular basis of how high humidity interferes with plant immunity to favor disease has remained elusive. Here we show that high humidity is associated with an "immuno-compromised" status in Arabidopsis plants. Furthermore, accumulation and signaling of salicylic acid (SA), an important defense hormone, are significantly inhibited under high humidity. NPR1, an SA receptor and central transcriptional co-activator of SA-responsive genes, is less ubiquitinated and displays a lower promoter binding affinity under high humidity. The cellular ubiquitination machinery, particularly the Cullin 3-based E3 ubiquitin ligase mediating NPR1 protein ubiquitination, is downregulated under high humidity. Importantly, under low humidity the Cullin 3a/b mutant plants phenocopy the low SA gene expression and disease susceptibility that is normally observed under high humidity. Our study uncovers a mechanism by which high humidity dampens a major plant defense pathway and provides new insights into the long-observed air humidity influence on diseases.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Salicylic Acid/metabolism , Humidity , Cullin Proteins/genetics , Cullin Proteins/metabolism , Arabidopsis/metabolism , Plants/metabolism , Transcription Factors/metabolism , Plant Diseases/genetics , Gene Expression Regulation, Plant
13.
Plant Cell ; 36(5): 1451-1464, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38163634

ABSTRACT

As the most widely used herbal medicine in human history and a major defence hormone in plants against a broad spectrum of pathogens and abiotic stresses, salicylic acid (SA) has attracted major research interest. With applications of modern technologies over the past 30 years, studies of the effects of SA on plant growth, development, and defence have revealed many new research frontiers and continue to deliver surprises. In this review, we provide an update on recent advances in our understanding of SA metabolism, perception, and signal transduction mechanisms in plant immunity. An overarching theme emerges that SA executes its many functions through intricate regulation at multiple steps: SA biosynthesis is regulated both locally and systemically, while its perception occurs through multiple cellular targets, including metabolic enzymes, redox regulators, transcription cofactors, and, most recently, an RNA-binding protein. Moreover, SA orchestrates a complex series of post-translational modifications of downstream signaling components and promotes the formation of biomolecular condensates that function as cellular signalling hubs. SA also impacts wider cellular functions through crosstalk with other plant hormones. Looking into the future, we propose new areas for exploration of SA functions, which will undoubtedly uncover more surprises for many years to come.


Subject(s)
Plant Immunity , Salicylic Acid , Signal Transduction , Salicylic Acid/metabolism , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Plants/immunology , Plants/metabolism , Plants/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
14.
Plant Cell ; 36(7): 2607-2628, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38537937

ABSTRACT

Cold injury is a major environmental stress affecting the growth and yield of crops. Brassinosteroids (BRs) and salicylic acid (SA) play important roles in plant cold tolerance. However, whether or how BR signaling interacts with the SA signaling pathway in response to cold stress is still unknown. Here, we identified an SA methyltransferase, TaSAMT1 that converts SA to methyl SA (MeSA) and confers freezing tolerance in wheat (Triticum aestivum). TaSAMT1 overexpression greatly enhanced wheat freezing tolerance, with plants accumulating more MeSA and less SA, whereas Tasamt1 knockout lines were sensitive to freezing stress and accumulated less MeSA and more SA. Spraying plants with MeSA conferred freezing tolerance to Tasamt1 mutants, but SA did not. We revealed that BRASSINAZOLE-RESISTANT 1 (TaBZR1) directly binds to the TaSAMT1 promoter and induces its transcription. Moreover, TaBZR1 interacts with the histone acetyltransferase TaHAG1, which potentiates TaSAMT1 expression via increased histone acetylation and modulates the SA pathway during freezing stress. Additionally, overexpression of TaBZR1 or TaHAG1 altered TaSAMT1 expression and improved freezing tolerance. Our results demonstrate a key regulatory node that connects the BR and SA pathways in the plant cold stress response. The regulatory factors or genes identified could be effective targets for the genetic improvement of freezing tolerance in crops.


Subject(s)
Brassinosteroids , Freezing , Gene Expression Regulation, Plant , Methyltransferases , Plant Proteins , Salicylic Acid , Signal Transduction , Triticum , Triticum/genetics , Triticum/physiology , Triticum/metabolism , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics
15.
Plant Cell ; 36(3): 746-763, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38041863

ABSTRACT

N 6-methyladenosine (m6A) is a common epitranscriptional mRNA modification in eukaryotes. Thirteen putative m6A readers, mostly annotated as EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT) proteins, have been identified in Arabidopsis (Arabidopsis thaliana), but few have been characterized. Here, we show that the Arabidopsis m6A reader ECT1 modulates salicylic acid (SA)-mediated plant stress responses. ECT1 undergoes liquid-liquid phase separation in vitro, and its N-terminal prion-like domain is critical for forming in vivo cytosolic biomolecular condensates in response to SA or bacterial pathogens. Fluorescence-activated particle sorting coupled with quantitative PCR analyses unveiled that ECT1 sequesters SA-induced m6A modification-prone mRNAs through its conserved aromatic cage to facilitate their decay in cytosolic condensates, thereby dampening SA-mediated stress responses. Consistent with this finding, ECT1 overexpression promotes bacterial multiplication in plants. Collectively, our findings unequivocally link ECT1-associated cytosolic condensates to SA-dependent plant stress responses, advancing the current understanding of m6A readers and the SA signaling network.


Subject(s)
Adenine/analogs & derivatives , Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Salicylic Acid/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant
16.
Plant Cell ; 36(7): 2587-2606, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38536743

ABSTRACT

Cold stress affects plant immune responses, and this process may involve the salicylic acid (SA) signaling pathway. However, the underlying mechanism by which low-temperature signals coordinate with SA signaling to regulate plant immunity remains unclear. Here, we found that low temperatures enhanced the disease resistance of Arabidopsis thaliana against Pseudomonas syringae pv. tomato DC3000. This process required INDUCER OF CBF EXPRESSION 1 (ICE1), the core transcription factor in cold-signal cascades. ICE1 physically interacted with NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1), the master regulator of the SA signaling pathway. Enrichment of ICE1 on the PATHOGENESIS-RELATED GENE 1 (PR1) promoter and its ability to transcriptionally activate PR1 were enhanced by NPR1. Further analyses revealed that cold stress signals cooperate with SA signals to facilitate plant immunity against pathogen attack in an ICE1-dependent manner. Cold treatment promoted interactions of NPR1 and TGACG-BINDING FACTOR 3 (TGA3) with ICE1 and increased the ability of the ICE1-TGA3 complex to transcriptionally activate PR1. Together, our results characterize a critical role of ICE1 as an indispensable regulatory node linking low-temperature-activated and SA-regulated immunity. Understanding this crucial role of ICE1 in coordinating multiple signals associated with immunity broadens our understanding of plant-pathogen interactions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Plant Diseases , Plant Immunity , Pseudomonas syringae , Salicylic Acid , Signal Transduction , Salicylic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis/metabolism , Plant Immunity/genetics , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Cold Temperature , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic/genetics
17.
Cell ; 149(7): 1525-35, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22726439

ABSTRACT

Plastid-derived signals are known to coordinate expression of nuclear genes encoding plastid-localized proteins in a process termed retrograde signaling. To date, the identity of retrograde-signaling molecules has remained elusive. Here, we show that methylerythritol cyclodiphosphate (MEcPP), a precursor of isoprenoids produced by the plastidial methylerythritol phosphate (MEP) pathway, elicits the expression of selected stress-responsive nuclear-encoded plastidial proteins. Genetic and pharmacological manipulations of the individual MEP pathway metabolite levels demonstrate the high specificity of MEcPP as an inducer of these targeted stress-responsive genes. We further demonstrate that abiotic stresses elevate MEcPP levels, eliciting the expression of the aforementioned genes. We propose that the MEP pathway, in addition to producing isoprenoids, functions as a stress sensor and a coordinator of expression of targeted stress-responsive nuclear genes via modulation of the levels of MEcPP, a specific and critical retrograde-signaling metabolite.


Subject(s)
Arabidopsis/cytology , Arabidopsis/physiology , Cell Nucleus/metabolism , Erythritol/analogs & derivatives , Signal Transduction , Stress, Physiological , Aldehyde-Lyases/genetics , Arabidopsis/genetics , Cytochrome P-450 Enzyme System/genetics , Enzymes/genetics , Erythritol/metabolism , Metabolic Networks and Pathways , Mutation , Phenotype , Plant Diseases/immunology , Plant Diseases/microbiology , Plastids/metabolism , Salicylic Acid/metabolism
18.
Trends Biochem Sci ; 47(10): 819-821, 2022 10.
Article in English | MEDLINE | ID: mdl-35792034

ABSTRACT

The plant hormone salicylic acid (SA) receptor NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) plays a critical role for plant defense against biotrophic and hemi-biotrophic pathogens. In a milestone paper, Kumar, Zavaliev, Wu et al. unraveled the structural basis for the assembly of an enhanceosome by NPR1 in activating the expression of plant defense genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Birds/metabolism , Plants/metabolism , Salicylic Acid/metabolism
19.
EMBO J ; 41(19): e110682, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35950443

ABSTRACT

The plant defense hormone, salicylic acid (SA), plays essential roles in immunity and systemic acquired resistance. Salicylic acid induced by the pathogen is perceived by the receptor nonexpressor of pathogenesis-related genes 1 (NPR1), which is recruited by TGA transcription factors to induce the expression of pathogenesis-related (PR) genes. However, the mechanism by which post-translational modifications affect TGA's transcriptional activity by salicylic acid signaling/pathogen infection is not well-established. Here, we report that the loss-of-function mutant of brassinosteroid insensitive2 (BIN2) and its homologs, bin2-3 bil1 bil2, causes impaired pathogen resistance and insensitivity to SA-induced PR gene expression, whereas the gain-of-function mutant, bin2-1, exhibited enhanced SA signaling and immunity against the pathogen. Our results demonstrate that salicylic acid activates BIN2 kinase, which in turn phosphorylates TGA3 at Ser33 to enhance TGA3 DNA binding ability and NPR1-TGA3 complex formation, leading to the activation of PR gene expression. These findings implicate BIN2 as a new component of salicylic acid signaling, functioning as a key node in balancing brassinosteroid-mediated plant growth and SA-induced immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors , Brassinosteroids/metabolism , DNA/metabolism , Disease Resistance/genetics , Gene Expression , Gene Expression Regulation, Plant , Hormones/metabolism , Phosphorylation , Plant Growth Regulators/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism
20.
PLoS Pathog ; 20(3): e1012086, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38484013

ABSTRACT

Papain-like cysteine proteases (PLCPs) play pivotal roles in plant defense against pathogen invasions. While pathogens can secrete effectors to target and inhibit PLCP activities, the roles of PLCPs in plant-virus interactions and the mechanisms through which viruses neutralize PLCP activities remain largely uncharted. Here, we demonstrate that the expression and activity of a maize PLCP CCP1 (Corn Cysteine Protease), is upregulated following sugarcane mosaic virus (SCMV) infection. Transient silencing of CCP1 led to a reduction in PLCP activities, thereby promoting SCMV infection in maize. Furthermore, the knockdown of CCP1 resulted in diminished salicylic acid (SA) levels and suppressed expression of SA-responsive pathogenesis-related genes. This suggests that CCP1 plays a role in modulating the SA signaling pathway. Interestingly, NIa-Pro, the primary protease of SCMV, was found to interact with CCP1, subsequently inhibiting its protease activity. A specific motif within NIa-Pro termed the inhibitor motif was identified as essential for its interaction with CCP1 and the suppression of its activity. We have also discovered that the key amino acids responsible for the interaction between NIa-Pro and CCP1 are crucial for the virulence of SCMV. In conclusion, our findings offer compelling evidence that SCMV undermines maize defense mechanisms through the interaction of NIa-Pro with CCP1. Together, these findings shed a new light on the mechanism(s) controlling the arms races between virus and plant.


Subject(s)
Cysteine Proteases , Mosaic Viruses , Potyvirus , Zea mays/genetics , Cysteine Proteases/genetics , Salicylic Acid/metabolism , Mosaic Viruses/metabolism , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL