Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Genomics ; 116(3): 110822, 2024 05.
Article in English | MEDLINE | ID: mdl-38471577

ABSTRACT

Sapindus mukorossi has a wide distribution range, high application value, and broad developmental potential. Previous studies have mostly focused on the medicinal and economic value of soapberry; however, few studies have been conducted on its seed germination. This study measured the physiological indicators and hormone content of soapberry seeds at different germination stages and preliminarily determined that abscisic acid (ABA) and indole-3-acetic acid (IAA) are the key hormones that affect the germination of soapberry seeds. Both Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG enrichment) analyses detected hormone transduction pathways, further confirming the key role of plant hormones in the germination process of soapberry seeds. Through transcriptome analysis, we speculated that CYP707A and IPA are key genes in the ABA and IAA synthesis pathways, respectively. This study revealed the close relationship between plant hormones and soapberry seed germination and provided new ideas for further exploration of the germination mechanism of soapberry seeds.


Subject(s)
Abscisic Acid , Germination , Indoleacetic Acids , Sapindus , Seeds , Transcriptome , Seeds/growth & development , Seeds/metabolism , Seeds/genetics , Abscisic Acid/metabolism , Indoleacetic Acids/metabolism , Sapindus/metabolism , Sapindus/genetics , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant
2.
BMC Plant Biol ; 24(1): 588, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902602

ABSTRACT

BACKGROUND: Soapberry (Sapindus mukorossi) is an economically important multifunctional tree species. Triterpenoid saponins have many functions in soapberry. However, the types of uridine diphosphate (UDP) glucosyltransferases (UGTs) involved in the synthesis of triterpenoid saponins in soapberry have not been clarified. RESULTS: In this study, 42 SmUGTs were identified in soapberry, which were unevenly distributed on 12 chromosomes and had sequence lengths of 450 bp to 1638 bp, with an average of 1388 bp. The number of amino acids in SmUGTs was 149 to 545, with an average of 462. Most SmUGTs were acidic and hydrophilic unstable proteins, and their secondary structures were mainly α-helices and random coils. All had conserved UDPGT and PSPG-box domains. Phylogenetic analysis divided them into four subclasses, which glycosylated different carbon atoms. Prediction of cis-acting elements suggested roles of SmUGTs in plant development and responses to environmental stresses. The expression patterns of SmUGTs differed according to the developmental stage of fruits, as determined by transcriptomics and RT-qPCR. Co-expression network analysis of SmUGTs and related genes/transcription factors in the triterpenoid saponin synthesis pathway was also performed. The results indicated potential roles for many transcription factors, such as SmERFs, SmGATAs and SmMYBs. A correlation analysis showed that 42 SmUGTs were crucial in saponin synthesis in soapberry. CONCLUSIONS: Our findings suggest optimal targets for manipulating glycosylation in soapberry triterpenoid saponin biosynthesis; they also provide a theoretical foundation for further evaluation of the functions of SmUGTs and analyses of their biosynthetic mechanisms.


Subject(s)
Glucosyltransferases , Phylogeny , Sapindus , Saponins , Triterpenes , Saponins/biosynthesis , Saponins/metabolism , Sapindus/genetics , Sapindus/metabolism , Triterpenes/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
3.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928455

ABSTRACT

Natural products have attracted great interest in the development of tissue engineering. Recent studies have demonstrated that unsaturated fatty acids found in natural plant seed oil may exhibit positive osteogenic effects; however, few in vivo studies have focused on the use of plant seed oil for bone regeneration. The aim of this study is to investigate the effects of seed oil found in Sapindus mukorossi (S. mukorossi) on the osteogenic differentiation of mesenchymal stem cells and bone growth in artificial bone defects in vivo. In this study, Wharton-jelly-derived mesenchymal stem cells (WJMSCs) were co-cultured with S. mukorossi seed oil. Cellular osteogenic capacity was assessed using Alizarin Red S staining. Real-time PCR was carried out to evaluate ALP and OCN gene expression. The potential of S. mukorossi seed oil to enhance bone growth was assessed using an animal model. Four 6 mm circular defects were prepared at the parietal bone of New Zealand white rabbits. The defects were filled with hydrogel and hydrogel-S. mukorossi seed oil, respectively. Quantitative analysis of micro-computed tomography (Micro-CT) and histological images was conducted to compare differences in osteogenesis between oil-treated and untreated samples. Although our results showed no significant differences in viability between WJMSCs treated with and without S. mukorossi seed oil, under osteogenic conditions, S. mukorossi seed oil facilitated an increase in mineralized nodule secretion and upregulated the expression of ALP and OCN genes in the cells (p < 0.05). In the animal study, both micro-CT and histological evaluations revealed that new bone formation in artificial bone defects treated with S. mukorossi seed oil were nearly doubled compared to control defects (p < 0.05) after 4 weeks of healing. Based on these findings, it is reasonable to suggest that S. mukorossi seed oil holds promise as a potential candidate for enhancing bone healing efficiency in bone tissue engineering.


Subject(s)
Bone Regeneration , Mesenchymal Stem Cells , Osteogenesis , Plant Oils , Sapindus , Seeds , Animals , Rabbits , Plant Oils/pharmacology , Seeds/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Bone Regeneration/drug effects , Sapindus/chemistry , Cell Differentiation/drug effects , X-Ray Microtomography , Tissue Engineering/methods , Humans , Cells, Cultured
4.
Anim Biotechnol ; 33(1): 193-199, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35105278

ABSTRACT

To explore the newer saponin resources, in vitro toxicity of saponin-enriched fraction (SEF) extracted from Silene vulgaris(SV) was evaluated for first time and compared with in vitro toxicity of SEF extracted from Sapindus mukorossi (SM) and Chlorophytum borivilianum (CV). All extracted SEF from diverse resources were characterized by immersing TLC plates in 0.5% RBC suspension method, by ethanol: sulfuric acid method and by estimating hRst values. Each extracted SEF clearly portrayed specific pattern with varied hRst range. White spots against a pinkish-red background and greenish-black spots in case of immersion method and spraying method respectively were observed. After initial characterization, in vitro 0.5% sheep RBC lytic activities and VERO cell cytotoxic activities (via SRB assay) of each extracted SEF were also evaluated. Furthermore, SEF of SV showed very less hemolytic activity compared to SM and CB. The HD50 values for SV, SM, and CB were 736.7 ± 2.824, 18.0 ± 1.894, and 170.70 ± 2.783 µg/mL, respectively. SEF of SV (IC50 ≥ 200 µg/mL) was less toxic for VERO cell line than SEF of SM (IC50 = 150.8 µg/mL) and CB (IC50 = 137.1 µg/mL). Hence, the SEF of SV was found to be less toxic and can be used as a new and safer source of saponins.


Subject(s)
Antineoplastic Agents , Sapindus , Saponins , Silene , Animals , Plant Extracts/toxicity , Saponins/toxicity , Sheep
5.
Plant Dis ; 106(4): 1105-1113, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34752121

ABSTRACT

Sapindus mukorossi Gaertn. (Sapindaceae), or soapberry, is an important biodiesel tree in southern China. In recent years, leaf spot disease on soapberry has been observed frequently in a soapberry germplasm repository in Jianning County, Sanming City, Fujian province, China. The symptoms initially appeared as irregular, small, yellow spots, and the centers of the lesions became dark brown with time. Three fungal isolates from lesions were collected. Koch's postulates were performed, and their pathogenicity was confirmed. Morphologically, α-conidia from diseased tissues were single-celled, hyaline, smooth, clavate or ellipsoidal, and biguttulate, measuring 6.2 to 7.2 × 2.3 to 2.7 µm. In addition, the three isolates in this study developed three types (α, ß, and γ) of conidia on potato dextrose agar, and their morphological characteristics matched those of Diaporthe. A phylogenetic analysis based on internal transcribed spacer, TEF, TUB, HIS, and CAL sequence data determined that the three isolates are a new species of Diaporthe. Based on both morphological and phylogenetic analyses, the causal fungus, Diaporthe sapindicola sp. nov., was described and illustrated.


Subject(s)
Saccharomycetales , Sapindus , Culture Media , Phylogeny , Spores, Fungal/genetics
6.
Cell Tissue Bank ; 23(1): 79-92, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33768473

ABSTRACT

Biological detergents like sodium deoxycholate, sodium dodecyl sulphate and Triton X-100 impairs the collagenous and non-collagenous proteins, glycosaminoglycans and growth factors. Further, certain chemical and enzymes are responsible for residual cytotoxicity in the decellularized extracellular matrix. The main focus of this study was to explore the decellularization property of soap nut pericarp extract (SPE) for development of decellularized tubular esophageal scaffold. For this 2.5, 5.0 and 10% concentrations of SPE were used for decellularization of caprine esophageal tissues. Histological analysis of hematoxylin and eosin and Masson's trichrome stained tissue samples confirmed decellularization with preservation of extracellular matrix microarchitecture. Scanning electron microscopic images of luminal surface of decellularized esophageal matrix showed randomly oriented collagen fibres with large interconnected pores and cells were absent. However, the external surface was more textured with fibrous structures and collagen fibres were well preserved. DAPI stained decellularized tissues revealed complete removal of nuclear components, verified by DNA content measurement and SDS-PAGE. The FTIR spectra of decellularized esophagus shows absorption peaks of amide A, B, I, II and III. Elastic modulus of the decellularized esophagus scaffolds increased (P > 0.05) as compared to native tissues. Histological and scanning electron microscopic evaluation of in vitro seeded scaffolds showed attachment and growth of primary chicken embryo fibroblasts over and within the decellularized scaffolds. It was concluded that 5% SPE is ideal for preparation of cytocompatible decellularized caprine esophageal scaffold with well-preserved extracellular matrix architecture and, may be used as an alternative to biological detergents and other chemicals.


Subject(s)
Sapindus , Tissue Engineering , Animals , Chick Embryo , Esophagus , Extracellular Matrix , Fruit , Goats , Plant Extracts , Tissue Engineering/methods , Tissue Scaffolds/chemistry
7.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955695

ABSTRACT

Periodontitis is a common oral disease mainly caused by bacterial infection and inflammation of the gingiva. In the prevention or treatment of periodontitis, anti-bacterial agents are used to inhibit pathogen growth, despite increasing levels of bacterial resistance. Sapindus mukorossi Gaertn (SM) seed oil has proven anti-bacterial and anti-inflammation properties. However, the possibility of using this plant to prevent or treat periodontitis has not been reported previously. The aim of this study was to evaluate the effects of SM oil on experimental periodontitis in rats by using micro-CT and microbiota analysis. The distance between cementoenamel junction (CEJ) and alveolar bone crest (ABC) on the sagittal micro-CT slide showed that total bone loss (TBL) was significantly lower in CEJ-ABC distances between SM oil and SM oil-free groups on Day 14. Histology data also showed less alveolar bone resorption, a result consistent result with micro-CT imaging. The microbiota analyzed at phylum and class levels were compared between the SM oil and SM oil-free groups on Day 7 and Day 14. At the phylum level, Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant bacterium. Firmicutes in box plot analysis was significantly less in the SM oil group than in the SM oil-free group on Day 7. At the class level, Bacteroidia, Gammaproteobacteria, Bacilli, Clostridia, and Erysipelotrichia were the dominant bacteria. The bacteria composition proportion of Bacilli, Clostridiay, and Erysipelotrichia could be seen in the SM oil group significantly less than in t SM oil-free group on Day 7. Overall, the present results show that topical application of SM oil can reduce bone resorption and change bacteria composition in the ligature-induced periodontitis model. According to these results, it is reasonable to suggest SM oil as a potential material for preventing oral disease.


Subject(s)
Alveolar Bone Loss , Microbiota , Periodontitis , Sapindus , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/etiology , Alveolar Bone Loss/pathology , Animals , Bacteria , Disease Models, Animal , Periodontitis/pathology , Plant Oils/pharmacology , Plant Oils/therapeutic use , Rats
8.
Prep Biochem Biotechnol ; 52(2): 135-143, 2022.
Article in English | MEDLINE | ID: mdl-34533428

ABSTRACT

The production of xylanase from Lechevalieria aerocolonigenes using reetha seed waste as substrate was studied using sequential optimization of fermentation parameters by response surface methodology. Five different lignocellulosic agricultural wastes as a substrate were studied to replace commercially available xylan, amongst which reetha seed waste was found to be the most suitable substrate for xylanase production. A sequential two-stage optimization strategy was used for the fermentation parameter optimization. The Plackett-Burman design was first employed for screening the 6 different physicochemical parameters affecting xylanase production (inoculum concentration, substrate concentration, temperature, pH, media volume, and agitation). The significant factors affecting the xylanase yield were further optimized by Box-Behnken Design in order to obtain the values contributing the highest enzyme yield. Three parameters, namely, temperature, inoculum concentration, and substrate concentration, can be interpreted as the most significant parameters based on the results of Plackett-Burman design. The optimum values by Box-Behnken Design (BBD) are 35 °C temperature, 3 g/L substrate concentration, and inoculum concentration of 4% (v/v) that resulted in maximum xylanase productivity of 5.75 IU/mL at 24 h of the incubation period. Sequential optimization strategy enhanced the xylanase yield by 4.8 fold to that of an unoptimized process.


Subject(s)
Actinobacteria/metabolism , Endo-1,4-beta Xylanases/biosynthesis , Sapindus/embryology , Seeds/metabolism , Culture Media , Fermentation , Hydrogen-Ion Concentration , Temperature
9.
Prep Biochem Biotechnol ; 52(1): 56-61, 2022.
Article in English | MEDLINE | ID: mdl-33881946

ABSTRACT

This work deals with the evaluation of nutritional and medicinal potential of a defatted kernel of Sapindus mukorossis seed. Defatted sapindus seed kernel is a rich source of proteins (33.4 ± 2.12%), which show balanced amino acid composition for the requirement of adults as per the World Health Organization. Protein isolate possesses 29 kDa molecular weight peptide, which shows trypsin inhibitor activity. It also showed around 31.2% reduction in amylase activity while aqueous Ethanol and ethanol extracts showed 55% and 72.83%, respectively. Aqueous ethanol and ethanol extracts were found to contain polyphenols and saponins. Polyphenol content in aqueous ethanol and ethanol extract was 4.50 ± 0.15 mg/g and 5.7 ± 0.34 mg/g ferulic acid equivalent, respectively, while 0.72 ± 0.68% and 1.2 ± 0.23% Oleonolic acid equivalent saponins, respectively. Both these extracts showed potent antioxidant activity, and the rate of DPPH scavenging activity was higher than the ferulic acid standard. The deffated seed also contains dietary fibers in which 3.8 ± 0.01% are soluble, and 2.2 ± 0.03% are insoluble fibers.


Subject(s)
Fats/isolation & purification , Polyphenols/analysis , Sapindus/chemistry , Saponins/analysis , Seeds/chemistry , Antioxidants/analysis , Nutritive Value , Plant Extracts/chemistry
10.
Int J Phytoremediation ; 23(5): 462-473, 2021.
Article in English | MEDLINE | ID: mdl-33000971

ABSTRACT

Elimination of basic blue 9 (BB-9), a cationic textile dye, by electrocoagulation coupled with biosorption exploiting pelletized natural dead leaves (PNDL) of Sapindus mukorossi, an economic alternative biosorbent, was investigated. The experimental runs were conducted in a laboratory-scale hybrid reactor loaded with Al electrodes, aeration spargers and PNDL packed twin suspended buckets. The pelletized adsorbents offer key advantages of good mechanical stability, lesser clogging risk, and easy disengagement as compared to powdered adsorbents. The parameters of current density, pH, PNDL dose, and initial dye concentration were studied for the decolorization and COD removal efficiency. The experimental results revealed that up to 99.9% decolorization and 90.01% COD removal efficiency achieved after 8 min at optimum condition of current density (j)=20.27 mA/cm2, pH = 9, PNDL dose = 6 g/L, and initial dye concentration = 50 mg/L. The BB-9 elimination followed the first-order kinetics with K1=0.318 min-1 and R2=0.997. The results revealed the potential of PNDL as a feasible biosorbent with the effective performance of the coupled process.


Subject(s)
Sapindus , Water Pollutants, Chemical , Adsorption , Biodegradation, Environmental , Coloring Agents , Electrocoagulation , Hydrogen-Ion Concentration , Kinetics , Methylene Blue , Plant Leaves/chemistry , Water Pollutants, Chemical/analysis
11.
Molecules ; 26(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801201

ABSTRACT

Interest in finding plant-based herbicides to supplement synthesized herbicides is increasing. Although the extract of Sapindus mukorossi Gaertn has been reported to have herbicidal activity, little is known about phytotoxic substances and their efficacy of weed control in the field. To identify phytotoxic substances, the bioassay-guided fractionation by column chromatography and high-speed counter-current chromatography (HSCCC) was carried out. The phytotoxic activity assay, performed by the agar medium method, showed that the 70% ethanol fraction exhibited strong root growth inhibition against Trifolium pratense with an 50% inhibitory concentration (IC50) value of 35.13 mg/L. An active compound was isolated from the 70% ethanol fraction and identified as hederagenin 3-o-ß-D-xylopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside (Compound A). Compound A had an IC50 value of 16.64 mg/L. Finally, a new formulation was prepared based on the 70% ethanol fraction, which exhibited good efficacy against broadleaf weeds in a carrot field. The fresh weight control efficacy was 78.7% by 45 days after treatment at the dose of 1500 g a. i./ha. Hence, the extract of S. mukorossi pulp could be a promising supplement to the synthesized herbicides. Furthermore, compound A from S. mukorossi may be responsible for its phytotoxic activity.


Subject(s)
Alkaloids/pharmacology , Plant Extracts/pharmacology , Sapindus/chemistry , Saponins/pharmacology , Toxins, Biological/pharmacology , Trifolium/growth & development , Weed Control , Trifolium/drug effects
12.
Molecules ; 26(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34946786

ABSTRACT

Saponins are an important group of secondary metabolites naturally occurring in plants with important properties like: antibacterial, antiviral and antifungal. Moreover, they are widely used in the cosmetic industry and household chemistry. The sapogenins are saponin hydrolyses products, frequently used to facilitate saponin detection. In the present study, an improved methodology for isolation and separation of five sapogenins extracted from nettle (Urtica dioica L.), white dead-nettle (Lamium album L.), common soapwort (Saponaria officinalis L.) and washnut (Sapindus mukorossi Gaertn.) was developed using ultra-high-performance liquid chromatography with an evaporative light-scattering detector (UHPLC-ELSD). Based on quantitative analysis, the highest content of hederagenin (999.1 ± 6.3 µg/g) and oleanolic acid (386.5 ± 27.7 µg/g) was found in washnut extracts. Good recoveries (71% ± 6 up to 99% ± 8) were achieved for four investigated targets, while just 22.2% ± 0.5 was obtained for the fifth one. Moreover, hederagenin and oleanolic acid of whose highest amount was detected in washnut (999.1 ± 6.3 µg/g and 386.5 ± 27.7 µg/g, respectively) were subject to another approach. Consequently, liquid chromatography coupled mass spectrometry (LC/MS) with multiple reaction monitoring mode (MRM) was used as an additional technique for fast and simultaneous identification of the mentioned targets.


Subject(s)
Sapindus/chemistry , Sapogenins/analysis , Sapogenins/isolation & purification , Saponaria/chemistry , Urtica dioica/chemistry
13.
Water Sci Technol ; 84(1): 55-65, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34280154

ABSTRACT

In this study, the removal of hexavalent chromium from aqueous solution were examined using activated charcoal derived from Sapindus trifoliate L fruit biomass in continuous fixed-bed column studies. The activated S. trifoliate L fruit charcoal was prepared by treating the fruit powder using concentrated nitric acid solution. Experiments were performed to investigate the effect of bed height and initial concentration on the breakthrough and saturation times. The breakthrough and saturation time increases with increase in bed height and initial concentration of chromium solutions. The maximum adsorption capacity of S. trifoliate L charcoal for hexavalent chromium was found to be 1.719 mg/g in the bed height 15 cm and initial concentration 10 mg/L, respectively. Column data required at various conditions were explained using Bohart-Adams and Thomas model. Two models were found to be suitable to describe the definite part of the dynamic behaviour of the column with regard to bed-height and initial concentration of hexavalent chromium. On comparison of Adjusted R2 and estimated standard error, the Thomas model was found to best-fitted model and can be used to predict the adsorption of the hexavalent chromium in fixed-bed column studies. Activated S. trifoliate L fruit charcoal was characterised by SEM-EDX and FTIR analysis.


Subject(s)
Sapindus , Water Pollutants, Chemical , Water Purification , Adsorption , Biomass , Charcoal , Chromium/analysis , Fruit/chemistry , Kinetics , Water Pollutants, Chemical/analysis
14.
Int J Mol Sci ; 20(10)2019 May 26.
Article in English | MEDLINE | ID: mdl-31130677

ABSTRACT

Sapindus mukorossi seed oil is commonly used as a source for biodiesel fuel. Its phytochemical composition is similar to the extracted oil from Sapindus trifoliatus seeds, which exhibit beneficial effects for skin wound healing. Since S. mukorossi seed shows no cyanogenic property, it could be a potential candidate for the treatment of skin wounds. Thus, we evaluated the effectiveness of S. mukorossi seed oil in the treatment of skin wounds. We characterized and quantified the fatty acids and unsaponifiable fractions (including ß-sitosterol and δ-tocopherol) contained in S. mukorossi seed-extracted oil by GC-MS and HPLC, respectively. Cell proliferation and migratory ability were evaluated by cell viability and scratch experiments using CCD-966SK cells treated with S. mukorossi oil. The anti-inflammatory effects of the oil were evaluated by measuring the nitric oxide (NO) production in lipopolysaccharide-treated RAW 264.7 cells. Antimicrobial activity tests were performed with Propionibacterium acnes, Staphylococcus aureus, and Candida albicans using a modified Japanese Industrial Standard procedure. Uniform artificial wounds were created on the dorsum of rats. The wounds were treated with a carboxymethyl cellulose (CMC)/hyaluronic acid (HA)/sodium alginate (SA) hydrogel for releasing the S. mukorossi seed oil. The wound sizes were measured photographically for 12 days and were compared to wounds covered with analogous membranes containing a saline solution. Our results showed that the S. mukorossi seed oil used in this study contains abundant monounsaturated fatty acids, ß-sitosterol, and δ-tocopherol. In the in vitro tests, S. mukorossi seed oil prompted cell proliferation and migration capability. Additionally, the oil had significant anti-inflammatory and anti-microbial activities. In the in vivo animal experiments, S. mukorossi seed oil-treated wounds revealed acceleration of sequential skin wound healing events after two days of healing. The size of oil-treated wound decreased to half the size of the untreated control after eight days of healing. The results suggest that S. mukorossi seed oil could be a potential source for promoting skin wound healing.


Subject(s)
Anti-Infective Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Plant Oils/therapeutic use , Sapindus/chemistry , Wound Healing/drug effects , Animals , Anti-Infective Agents/chemistry , Anti-Inflammatory Agents/chemistry , Cell Line , Humans , Male , Mice , Plant Oils/chemistry , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Seeds/chemistry , Skin/drug effects , Skin/injuries
15.
J Anim Physiol Anim Nutr (Berl) ; 103(6): 1800-1809, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31483533

ABSTRACT

This study was conducted to evaluate the effects of dietary soapnut (Sapindus mukorossi) shell powder (SSP), a cheap source of saponins, on growth performance, immunity, serum biochemistry and gut health of broiler chickens. The experimental design was 4×2, employing four saponin levels (0, 100, 150 and 200 mg/kg diet), each provided for two time durations (0-42 day and 21-42 day) resulting into eight dietary treatments. Results revealed no significant effect of dietary saponins on body weight gain, feed intake and feed conversion ratio of birds. The abdominal fat percentage, heterophil to lymphocyte ratio, serum cholesterol and triglyceride levels, faecal total plate count, coliform count and E. coli count decreased (p < .05) progressively with increasing saponin levels and lower values were observed at 150 mg and 200 mg saponin levels. Significant improvement of cell-mediated and humoral immune response was observed in birds fed 150 mg and 200 mg saponin compared to control. The serum glucose concentration was significantly (p < .05) higher in control group compared to other groups. No significant effects of dietary saponin were observed on carcass characteristics, faecal Lactobacillus count, intestinal histomorphometry and cost economics of broiler chicken production. Thus, dietary saponins at 150 mg/kg diet as SSP for three weeks (21-42 days) was optimum for better immunity and welfare of birds without adverse effects on the growth performance.


Subject(s)
Animal Feed/analysis , Chickens/blood , Diet/veterinary , Intestines/drug effects , Sapindus/chemistry , Saponins/pharmacology , Animal Nutritional Physiological Phenomena , Animals , Chickens/growth & development , Chickens/immunology , Saponins/administration & dosage , Saponins/chemistry
16.
Plant Dis ; 102(5): 991-1000, 2018 May.
Article in English | MEDLINE | ID: mdl-30673376

ABSTRACT

The antifungal activity of an aqueous extract (AE) and the solid fraction of a chloroform-methanol fruit pericarp extract (CME) of Sapindus mukorossi resolved in water was tested for the first time against Venturia inaequalis and Botrytis cinerea-two important fungal pathogens worldwide. In the greenhouse, a CME (1% vol/vol) spray significantly reduced V. inaequalis symptoms and sporulation (99%) on apple seedling leaves (P ≤ 0.05). In field trials, applications of AE (1% vol/vol) reduced the disease severity of B. cinerea on grape, on average, by 63%. Extracts were fractionated by high-performance liquid chromatography and the bioefficacy of the fractions was tested in vitro. Some components of the most fungicidal fraction were identified by liquid chromatography-high resolution mass spectrometry as saponins: sapindoside B (accounting for ≥98% of the total constituents), hederagenin-pentosylhexoside, and oleanolic acid-hexosyl-deoxyhexosyl-hexoside. This fraction inhibited the mycelial growth of V. inaequalis and B. cinerea by 45 and 43%, respectively.


Subject(s)
Ascomycota/drug effects , Botrytis/drug effects , Fruit/chemistry , Sapindus/chemistry , Saponins/pharmacology , Fungicides, Industrial/pharmacology , Malus/microbiology , Plant Leaves/microbiology , Vitis/microbiology
17.
Am Nat ; 190(4): 521-533, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28937811

ABSTRACT

Natural selection can produce local adaptation, but local adaptation can be masked by maladaptive plasticity. Maladaptive plasticity may arise as a result of gene flow producing novel gene combinations that have not been exposed to selection. In the 1980s, populations of the red-shouldered soapberry bug (Jadera haematoloma) were locally adapted to feed on the seeds of a native host plant and an introduced host plant; by 2014, local differentiation in beak length had been lost, likely as a consequence of increased gene flow. In this study, I assess the relative contributions of natural selection and plasticity to beak length on these two hosts. I confirm the earlier hypothesis that the host plant seedpod drives divergent natural selection on beak length. I then demonstrate that the proximate cause of the loss of observable differentiation in beak length is maladaptive plasticity, which masks persistent genetic differences between host-associated populations. Maladaptive plasticity is highest in areas where the two plants co-occur; in combination with historical measures of plasticity in hybrids, this indicates that maladaptive plasticity may be a consequence of ongoing gene flow. Although natural selection produced locally adapted genotypes in soapberry bugs, maladaptive plasticity is masking phenotypic differences between populations in nature.


Subject(s)
Adaptation, Physiological , Heteroptera , Phenotype , Selection, Genetic , Animals , Feeding Behavior , Masks , Sapindus , Seeds , Trombiculidae
18.
BMC Complement Altern Med ; 17(1): 526, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29221478

ABSTRACT

BACKGROUND: Saponins are the main constituents of genus Sapindus and have the therapeutic potential for inflammatory disorders. In this study the antioxidant, anti-inflammatory, analgesic and antipyretic potential of the stem bark of soap nut (Sapindus mukorossi) methanol extract and its derived fractions has been investigated. METHODS: Powder of stem bark of the S. mukorossi was extracted with methanol (SMM) and fractionated in order of n-hexane (SMH), chloroform (SMC), ethyl acetate (SME), n-butanol (SMB) and the remaining as aqueous fraction (SMA). Quantitative estimation for the total phenolic and total flavonoid content was carried out in all the extract/fractions. Further, various in vitro antioxidant assays were also performed. Anti-inflammatory (Carrageenan induced paw edema), analgesic (hot plate latency test) and antipyretic (rectal temperature) were determined in Sprague-Dawley rat. RESULTS: Quantitative estimation of total phenolic contents in extract/fractions varied between 252.3 ± 2.41 mg of GAE/g - 594.16 ± 4.3 mg of GAE/g while the total flavonoids estimated were from 11.02 ± 1.3 mg of RUE/g to 96.9 ± 3.2 mg of RUE/g. Standard antioxidant assays such as scavenging of DPPH, hydroxyl radical, nitric oxide, phosphomolybdenum assay, reducing power, inhibition of ß-carotene bleaching, iron chelation activity and inhibition of heat induced protein denaturation indicated the antioxidant potential of the extract/fractions. Carrageenan induced paw edema of rat was effectively inhibited by SMA at 300 mg/kg administration to rat (84.19 ± 1.48%) after 3 h and analgesia (latency time) in hot plate test (55.78 ± 1.22%) after 120 min. SMA at 300 mg/kg distinctly decreased the rectal temperature in brewer's yeast (Saccharomyces cerevisiae) induced pyrexia in rat. CONCLUSION: The resulted obtained in this study suggested the therapeutic importance of stem bark of S. mukorossi in inflammatory related disorders.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antipyretics/pharmacology , Plant Extracts/pharmacology , Sapindus , Analgesics/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Antipyretics/chemistry , Behavior, Animal/drug effects , Biphenyl Compounds/metabolism , Body Temperature/drug effects , Edema , Female , Flavonoids/chemistry , Flavonoids/pharmacology , Male , Picrates/metabolism , Plant Bark , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley
19.
Bull Environ Contam Toxicol ; 98(3): 366-372, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27412340

ABSTRACT

Phosphate and colloidal gas aphrons (CGAs) generated from saponin extracted from Sapindus mukorossi fruit, were evaluated for washing low levels of arsenic from an iron rich soil. Phosphate is one of the most commonly dispersed chemicals that increases arsenic mobility in soil due to their structural similarities, making it an important factor in arsenic removal process. Column washing experiments were performed with CGAs in down flow and up flow modes on soil of pH 5 and 6. Soapnut CGAs, when paired with phosphate removed up to 95 % arsenic while soapnut CGAs alone could only remove up to 70 % arsenic. The presence of phosphate improved efficiency of soapnut solution by up to 35 %. SEM image of washed soil revealed minor corrosion of soil surface while using phosphate with soapnut. Therefore, the addition of phosphates would have positive impact on soil washing using soapnut saponin.


Subject(s)
Arsenic/analysis , Environmental Restoration and Remediation/methods , Microbubbles , Phosphates/chemistry , Sapindus/chemistry , Soil/chemistry , Suspensions/chemistry , Saponins/chemistry , Soil Pollutants/analysis
20.
Genet Mol Res ; 15(4)2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27819730

ABSTRACT

Sapindus saponaria L. of Sapindaceae family is popularly known as soldier soap and is found in Central and South America. A study of such medicinal plants might reveal a more complex diversity of microorganisms as compared to non-medicinal plants, considering their metabolic potential and the chemical communication between their natural microbiota. Rhizosphere is a highly diverse microbial habitat with respect to both the diversity of species and the size of the community. Rhizosphere bacteriome associated with medicinal plant S. saponaria is still poorly known. The objective of this study was to assess the rhizosphere microbiome of the medicinal plant S. saponaria using pyrosequencing, a culture-independent approach that is increasingly being used to estimate the number of bacterial species present in different environments. In their rhizosphere microbiome, 26 phyla were identified from 5089 sequences of 16S rRNA gene, with a predominance of Actinobacteria (33.54%), Acidobacteria (22.62%), and Proteobacteria (24.72%). The rarefaction curve showed a linear increase, with 2660 operational taxonomic units at 3% distance sequence dissimilarity, indicating that the rhizosphere microbiome associated with S. saponaria was highly diverse with groups of bacteria important for soil management, which could be further exploited for agricultural and biotechnological purposes.


Subject(s)
Microbiota , Plants, Medicinal/microbiology , Rhizosphere , Sapindus/genetics , Sapindus/microbiology , Sequence Analysis, DNA/methods , Temperature , Bacteria/classification , Biodiversity , Phylogeny , Plants, Medicinal/genetics , RNA, Ribosomal, 16S/genetics , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL