Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
1.
Cell Physiol Biochem ; 58(4): 393-403, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39166656

ABSTRACT

BACKGROUND/AIMS: Due to rapid metabolic and growth rates during the first two years of life, the nutritional needs of young children are high. Given the small portion sizes consumed by children between the ages of 6 and 24 months, it is necessary to improve diets to meet the nutritional needs of this age group. Therefore, the analysis of lysine content is an important parameter in the evaluation of enriched foods. METHODS: The utilization of an enzymatic sensor employing lysine-α-oxidase (LOx) as a biorecognition element represents an alternative to the existing methods. This sensor was optimized for quantifying the lysine content in flour mixtures: Quinoa-Lablab purpureus rye - Lablab purpureus, and pole beans - Lablab purpureus, with a maximum ratio of 85g/100g. RESULTS: The addition of lablab purpureus significantly increased the lysine concentration in the enriched samples. When 30 percent was substituted in quinoa, it reached a 143 percent increase. And when 15 percent was substituted in the rye flour, the final concentration of this amino acid increased by 64 percent. In order to quantify the lysine concentration, it was necessary to optimize various parameters during the use of the sensor, e.g. a potentiometric signal was detected upon the depletion of oxygen present during the oxidation of lysine in the samples, and the sensor response was recorded at 2 s. This was possible due to the modification of the pH and the thickness of the membrane. The oxidation of lysine is catalyzed by LOx using molecular oxygen as the electron acceptor. The corresponding acidic compounds and hydrogen peroxide were formed in the reaction medium. CONCLUSION: It was possible to increase and verify the concentration of lysine in all the flours tested through the use of the biosensor, which turned out to be a valid method for controlling the nutritional quality of flours.


Subject(s)
Biosensing Techniques , Flour , Lysine , Flour/analysis , Biosensing Techniques/methods , Lysine/analysis , Lysine/metabolism , Lysine/chemistry , Food, Fortified/analysis , Secale/chemistry , Secale/metabolism , Chenopodium quinoa/chemistry , Chenopodium quinoa/metabolism , Amino Acid Oxidoreductases/metabolism
2.
Molecules ; 29(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39064975

ABSTRACT

The objective of this study was to evaluate the effect of pretreatment and different technological conditions on the course of ABE fermentation of rye straw (RS) and the composition of volatile compounds in the distillates obtained. The highest concentration of ABE and butanol was obtained from the fermentation of pretreated rye straw by alkaline hydrolysis followed by detoxification and enzymatic hydrolysis. After 72 h of fermentation, the maximum butanol concentration, productivity, and yield from RS were 16.11 g/L, 0.224 g/L/h, and 0.402 g/g, respectively. Three different methods to produce butanol were tested: the two-step process (SHF), the simultaneous process (SSF), and simultaneous saccharification with ABE fermentation (consolidation SHF/SSF). The SHF/SSF process observed that ABE concentration (21.28 g/L) was higher than in the SSF (20.03 g/L) and lower compared with the SHF (22.21 g/L). The effect of the detoxification process and various ABE fermentation technologies on the composition of volatile compounds formed during fermentation and distillation were analyzed.


Subject(s)
Butanols , Fermentation , Secale , Volatile Organic Compounds , Secale/chemistry , Secale/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Butanols/metabolism , Hydrolysis , Distillation
3.
Mol Biol Rep ; 50(10): 8373-8383, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37615923

ABSTRACT

BACKGROUND: Alkylresorcinols (ARs) are compounds belonging to the class of phenolic lipids. A rich source of ARs are cereal grains such as rye, wheat, triticale or barley. ARs found in plants are characterized by a variety of biological properties such as antimicrobial, antifungal and cytotoxic activity. Moreover, they are proven to have a positive influence on human health. Here, we aimed to find and characterize the gene with ARs synthase activity in the species Secale cereale. METHODS AND RESULTS: Using BAC library screening, two BAC clones containing the gene candidate were isolated and sequenced. Bioinformatic analyses of the resulting contigs were used to examine the structure and other features of the gene, including promoter, intron, 3'UTR and 5'UTR. Mapping using the FISH procedure located the gene on the 4R chromosome. Comparative analysis showed that the gene is highly similar to sequences coding for type III polyketide synthase. The level of gene expression in various parts of the plant was investigated, and the biochemical function of the gene was confirmed by heterologous expression in yeast. CONCLUSIONS: The conducted analyses contributed to a better understanding of the processes related to ARs synthesis. Although the research concerned the rye model, the knowledge gained may help in understanding the genetic basis of ARs biosynthesis in other species of the Poaceae family as well.


Subject(s)
Edible Grain , Secale , Humans , Secale/genetics , Secale/chemistry , Secale/metabolism , Gene Library , Base Sequence , Introns , Edible Grain/genetics
4.
Planta ; 255(5): 108, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35449484

ABSTRACT

MAIN CONCLUSION: In cells of growing rye roots, xyloglucans and homogalacturonans demonstrate developmental stage specificity, while different xylans have tissue specificity. Mannans, arabinans and galactans are also detected within the protoplast. Mannans form films on sections of fresh material. The primary cell walls of plants represent supramolecular exocellular structures that are mainly composed of polysaccharides. Cell wall properties and architecture differ between species and across tissues within a species. We revised the distribution of cell wall polysaccharides and their dynamics during elongation growth and histogenesis in rye roots using nonfixed material and the spectrum of antibodies. Rye is a member of the Poaceae family and thus has so-called type II primary cell walls, which are supposed to be low in pectins and xyloglucans and instead have arabinoxylans and mixed-linkage glucans. However, rye cell walls at the earliest stages of cell development were enriched with the epitopes of xyloglucans and homogalacturonans. Mixed-linkage glucan, which is often considered an elongation growth-specific polysaccharide in plants with type II cell walls, did not display such dynamics in rye roots. The cessation of elongation growth and even the emergence of root hairs were not accompanied by the disappearance of mixed-linkage glucans from cell walls. The diversity of xylan motifs recognized by different antibodies was minimal in the meristem zone of rye roots, but this diversity increased and showed tissue specificity during root growth. Antibodies specific for xyloglucans, galactans, arabinans and mannans bound the cell content. When rye root cells were cut, the epitopes of xyloglucans, galactans and arabinans remained within the cell content, while mannans developed net-like or film-like structures on the surface of sections.


Subject(s)
Mannans , Secale , Cell Wall/metabolism , Epitopes/metabolism , Galactans/analysis , Glucans/metabolism , Mannans/metabolism , Pectins/metabolism , Polysaccharides/metabolism , Secale/metabolism , Xylans/metabolism
5.
Plant J ; 102(6): 1294-1312, 2020 06.
Article in English | MEDLINE | ID: mdl-31981252

ABSTRACT

Alkylresorcinols are bioactive compounds produced in diverse plant species, with chemical structures combining an aliphatic hydrocarbon chain and an aromatic ring with characteristic hydroxyl substituents. Here, we aimed to isolate and characterize the enzyme that forms the alkylresorcinols accumulating in the cuticular wax on the surface of all above-ground organs of rye. Based on sequence homology with other type-III polyketide synthases, a candidate alkylresorcinol synthase was cloned. Yeast heterologous expression showed that the enzyme, ScARS, is highly specific for the formation of the aromatic resorcinol ring structure, through aldol condensation analogous to stilbene synthases. The enzyme accepts long-chain and very-long-chain acyl-CoA starter substrates, preferring saturated over unsaturated chains. It typically carries out three rounds of condensation with malonyl-CoA prior to cyclization, with only very minor activity for a fourth round of malonyl-CoA condensation and cyclization to 5-(2'-oxo)-alkylresorcinols or 5-(2'-hydroxy)-alkylresorcinols. Like other enzymes involved in cuticle formation, ScARS is localized to the endoplasmic reticulum. ScARS expression patterns were found correlated with alkylresorcinol accumulation during leaf development and across different rye organs. Overall, our results thus suggest that ScARS synthesizes the cuticular alkylresorcinols found on diverse rye organ surfaces.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Phenols/metabolism , Plant Epidermis/metabolism , Secale/enzymology , Waxes/metabolism , Genes, Plant/genetics , Phylogeny , Plant Leaves/metabolism , Polymerase Chain Reaction , Resorcinols , Secale/genetics , Secale/metabolism , Sequence Alignment
6.
Plant Biotechnol J ; 19(12): 2646-2661, 2021 12.
Article in English | MEDLINE | ID: mdl-34449959

ABSTRACT

The development of crop varieties that are resistant to lodging is a top priority for breeding programmes. Herein, we characterize the rye mutant ´Stabilstroh' ('stable straw') possessing an exceptional combination of high lodging resistance, tall posture and high biomass production. Nuclear magnetic resonance imaging displayed the 3-dimensional assembly of vascular bundles in stem. A higher number of vascular bundles and a higher degree of their incline were the features of lodging-resistant versus lodging-prone lines. Histology and electron microscopy revealed that stems are fortified by a higher proportion of sclerenchyma and thickened cell walls, as well as some epidermal invaginations. Biochemical analysis using Fourier-transform infrared spectroscopy and inductively coupled plasma-optical emission spectrometry further identified elevated levels of lignin, xylan, zinc and silicon as features associated with high lodging resistance. Combined effects of above features caused superior culm stability. A simplistic mathematical model showed how mechanical forces distribute within the stem under stress. Main traits of the lodging-resistant parental line were heritable and could be traced back to the genetic structure of the mutant. Evaluation of lodging-resistant wheat 'Babax' ('Baviacora') versus contrasting, lodging-prone, genotype ´Pastor´ agreed with above findings on rye. Our findings on mechanical stability and extraordinary culm properties may be important for breeders for the improvement of lodging resistance of tall posture cereal crops.


Subject(s)
Secale , Triticum , Edible Grain/metabolism , Lignin/metabolism , Plant Breeding/methods , Secale/genetics , Secale/metabolism , Triticum/metabolism
7.
Plant Cell Environ ; 44(12): 3492-3501, 2021 12.
Article in English | MEDLINE | ID: mdl-34331317

ABSTRACT

Translocation of metabolites between different plant species provides important hints in understanding the fate of bioactive root exudates. In the present study, targeted and untargeted mass spectrometry-based metabolomics was applied to elucidate the transfer of bioactive compounds between rye and several crops and weed species. Our results demonstrated that benzoxazinoids (BXs) synthesized by rye were taken up by roots of neighbouring plant species and translocated into their shoots. Furthermore, we showed that roots of rye plants took up compounds originating from neighbouring plants. Among the compounds taken up by rye roots, wogonin was detected in the rye shoot, which indicated a root-to-shoot translocation of this compound. Elucidating the transfer of bioactive compounds between plants is essential for understanding plant-plant interactions, developing natural pesticides and understanding their modes of action.


Subject(s)
Crops, Agricultural/metabolism , Mass Spectrometry , Metabolomics/methods , Phytochemicals/metabolism , Plant Weeds/metabolism , Secale/metabolism , Biological Transport
8.
Food Microbiol ; 94: 103629, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33279061

ABSTRACT

De novo sourdough cultures were here assessed for their potential as sources of yeast strains for low-alcohol beer brewing. NGS analysis revealed an abundance of ascomycete yeasts, with some influence of grain type on fungal community composition. Ten different ascomycete yeast species were isolated from different sourdough types (including wheat, rye, and barley) and seven of these were screened for a number of brewing-relevant phenotypes. All seven were maltose-negative and produced less than 1% (v/v) alcohol from a 12 °Plato wort in initial fermentation trials. Strains were further screened for their bioflavouring potential (production of volatile aromas and phenolic notes, reduction of wort aldehydes), stress tolerance (temperature extremes, osmotic stress and ethanol tolerance) and flocculence. Based on these criteria, two species (Kazachstania servazzii and Pichia fermentans) were selected for 10 L-scale fermentation trials and sensory analysis of beers. The latter species was considered particularly suitable for production of low-alcohol wheat beers due to its production of the spice/clove aroma 4-vinylguaiacol, while the former showed potential for lager-style beers due to its clean flavour profile and tolerance to low temperature conditions.


Subject(s)
Alcohols/analysis , Beer/microbiology , Bread/microbiology , Maltose/metabolism , Pichia/metabolism , Saccharomycetales/metabolism , Alcohols/metabolism , Beer/analysis , Fermentation , Flavoring Agents/analysis , Flavoring Agents/metabolism , Hordeum/metabolism , Hordeum/microbiology , Odorants , Secale/metabolism , Secale/microbiology , Triticum/metabolism , Triticum/microbiology
9.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925031

ABSTRACT

According to current opinion, the first step of benzoxazinoids (BXs) synthesis, that is, the conversion of indole-3-glycerol phosphate to indole, occurs exclusively in the photosynthesising parts of plants. However, the results of our previous work and some other studies suggest that this process may also occur in the roots. In this study, we provide evidence that the first step of BXs synthesis does indeed occur in the roots of rye seedlings. We detected ScBx1 transcripts, BX1 enzyme, and six BXs (2-hydroxy-1,4-benzoxazin-3-one, 2,4-dihydroxy-1,4-benzoxazin-3-one, (2R)-2-O-ß-d-glucopyranosyl-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one glucoside, 2,4-dihydroxy- 7-methoxy-1,4-benzoxazin-3-one, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside, and 6-methoxy-2-benzoxazolinone) in the roots developed from seeds deprived of the coleoptile at 2 days after sowing (i.e., roots without contact with aerial parts). In roots regenerated in vitro, both ScBx1 transcripts and BX1 enzyme were detected at a low but still measurable levels. Thus, BXs are able to be synthesised in both the roots and above-ground parts of rye plants.


Subject(s)
Benzoxazines/metabolism , Secale/metabolism , Amino Acid Sequence , Benzoxazines/chemistry , Biosynthetic Pathways/genetics , Computational Biology , Gene Expression , Genes, Plant , Immunohistochemistry , Indole-3-Glycerol-Phosphate Synthase/genetics , Indole-3-Glycerol-Phosphate Synthase/metabolism , Microscopy, Immunoelectron , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Plastids/genetics , Plastids/metabolism , Plastids/ultrastructure , Secale/genetics , Seedlings/metabolism , Sequence Homology, Amino Acid
10.
Int J Mol Sci ; 21(20)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053706

ABSTRACT

The standard approach to genetic mapping was supplemented by machine learning (ML) to establish the location of the rye gene associated with epicuticular wax formation (glaucous phenotype). Over 180 plants of the biparental F2 population were genotyped with the DArTseq (sequencing-based diversity array technology). A maximum likelihood (MLH) algorithm (JoinMap 5.0) and three ML algorithms: logistic regression (LR), random forest and extreme gradient boosted trees (XGBoost), were used to select markers closely linked to the gene encoding wax layer. The allele conditioning the nonglaucous appearance of plants, derived from the cultivar Karlikovaja Zelenostebelnaja, was mapped at the chromosome 2R, which is the first report on this localization. The DNA sequence of DArT-Silico 3585843, closely linked to wax segregation detected by using ML methods, was indicated as one of the candidates controlling the studied trait. The putative gene encodes the ABCG11 transporter.


Subject(s)
Genes, Plant , Machine Learning , Secale/genetics , Waxes , Biomarkers , Chromosome Mapping , Genetic Markers , Genetics, Population , Genotype , Phenotype , Quantitative Trait Loci , Secale/metabolism
11.
Int J Mol Sci ; 21(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33049995

ABSTRACT

Detoxification of fusariotoxin is a type V Fusarium head blight (FHB) resistance and is considered a component of type II resistance, which is related to the spread of infection within spikes. Understanding this type of resistance is vital for FHB resistance, but to date, nothing is known about candidate genes that confer this resistance in rye due to scarce genomic resources. In this study, we generated a transcriptomic resource. The molecular response was mined through a comprehensive transcriptomic analysis of two rye hybrids differing in the build-up of fusariotoxin contents in grain upon pathogen infection. Gene mining identified candidate genes and pathways contributing to the detoxification of fusariotoxins in rye. Moreover, we found cis regulatory elements in the promoters of identified genes and linked them to transcription factors. In the fusariotoxin analysis, we found that grain from the Nordic seed rye hybrid "Helltop" accumulated 4 times higher concentrations of deoxynivalenol (DON), 9 times higher nivalenol (NIV), and 28 times higher of zearalenone (ZEN) than that of the hybrid "DH372" after artificial inoculation under field conditions. In the transcriptome analysis, we identified 6675 and 5151 differentially expressed genes (DEGs) in DH372 and Helltop, respectively, compared to non-inoculated control plants. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEGs were associated with glycolysis and the mechanistic target of rapamycin (mTOR) signaling pathway in Helltop, whereas carbon fixation in photosynthesis organisms were represented in DH372. The gene ontology (GO) enrichment and gene set enrichment analysis (GSEA) of DEGs lead to identification of the metabolic and biosynthetic processes of peptides and amides in DH372, whereas photosynthesis, negative regulation of catalytic activity, and protein-chromophore linkage were the significant pathways in Helltop. In the process of gene mining, we found four genes that were known to be involved in FHB resistance in wheat and that were differentially expressed after infection only in DH372 but not in Helltop. Based on our results, we assume that DH372 employed a specific response to pathogen infection that led to detoxification of fusariotoxin and prevented their accumulation in grain. Our results indicate that DH372 might resist the accumulation of fusariotoxin through activation of the glycolysis and drug metabolism via cytochrome P450. The identified genes in DH372 might be regulated by the WRKY family transcription factors as associated cis regulatory elements found in the in silico analysis. The results of this study will help rye breeders to develop strategies against type V FHB.


Subject(s)
Edible Grain/genetics , Fusariosis/metabolism , Fusarium/metabolism , Plant Diseases/genetics , Plant Proteins/genetics , Secale/genetics , T-2 Toxin/metabolism , Transcription Factors/genetics , Transcriptome , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Disease Resistance/genetics , Edible Grain/metabolism , Edible Grain/microbiology , Fusariosis/microbiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Glycolysis/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Secale/metabolism , Secale/microbiology
12.
Plant Cell Environ ; 42(2): 701-716, 2019 02.
Article in English | MEDLINE | ID: mdl-30291635

ABSTRACT

Meaningful improvements in winter cereal cold hardiness requires a complete model of freezing behaviour in the critical crown organ. Magnetic resonance microimaging diffusion-weighted experiments provided evidence that cold acclimation decreased water content and mobility in the vascular transition zone (VTZ) and the intermediate zone in rye (Secale cereale L. Hazlet) compared with wheat (Triticum aestivum L. Norstar). Differential thermal analysis, ice nucleation, and localization studies identified three distinct exothermic events. A high-temperature exotherm (-3°C to -5°C) corresponded with ice formation and high ice-nucleating activity in the leaf sheath encapsulating the crown. A midtemperature exotherm (-6°C and -8°C) corresponded with cavity ice formation in the VTZ but an absence of ice in the shoot apical meristem (SAM). A low-temperature exotherm corresponded with SAM injury and the killing temperature in wheat (-21°C) and rye (-27°C). The SAM had lower ice-nucleating activity and freezing survival compared with the VTZ when frozen in vitro. The intermediate zone was hypothesized to act as a barrier to ice growth into the SAM. Higher cold hardiness of rye compared with wheat was associated with higher VTZ and intermediate zone desiccation resulting in the formation of ice barriers surrounding the SAM.


Subject(s)
Freezing , Secale/metabolism , Triticum/metabolism , Acclimatization , Freezing/adverse effects , Ice , Magnetic Resonance Imaging , Secale/ultrastructure , Triticum/ultrastructure
13.
Plant Cell Rep ; 38(10): 1291-1298, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31352584

ABSTRACT

KEY MESSAGE: RNA-Seq was employed to compare the transcriptome differences between the triticale lines and to identify the key gene responsible for the blue aleurone trait. The accumulation of anthocyanins in the aleurone of triticale results in the formation of the blue-grained trait, but the identity of the genes associated with anthocyanin biosynthesis in the aleurone has not yet been reported. In this manuscript, RNA-Seq was employed to compare the transcriptome differences between the triticale lines HM13 (blue aleurone) and HM5 (white aleurone), and to identify the key genes responsible for the blue aleurone trait. There were 32,406 differentially expressed genes between HM13 and HM5. Seventy-three unigenes were homologous to the structural genes related to anthocyanin biosynthesis, and the average transcript level of the structural genes was higher in HM13 than in HM5, so that quantitative differences between the two lines in transcription rates could be the cause of the blue aleurone. The MYB and bHLH transcription factors had two homologous unigenes, but contained only one differentially expressed unigene each. The relative transcript level of bHLH Unigene5672_All (TsMYC2) in HM13 was 42.71 times that in HM5, while the relative transcript level of the MYB transcription factor Unigene12228_All in HM13 was 2.20 times that in HM5. qPCR experiments determined the relative transcript level of TsMYC2 in developing grain, with the expression of TsMYC2 in grain being the highest compared with that in root, stem or leaf tissue. TsMYC2 was homologous to the bHLH transcription factor regulating anthocyanin biosynthesis and contained three entire functional domains: bHLH-MYC_N, HLH and ACT-like, which were important for exercising regulation of anthocyanin biosynthesis as a bHLH transcription factor. Transient expression of ZmC1 and TsMYC2 could induce anthocyanin biosynthesis in white wheat coleoptile cells, demonstrating that TsMYC2 was a functional bHLH transcription factor. These results indicated that TsMYC2 was associated with the blue aleurone trait and could prove to be a valuable gene with which to breed new triticale cultivars with the blue aleurone trait.


Subject(s)
Plant Proteins/metabolism , Transcription Factors/metabolism , Transcriptome/genetics , Triticale/metabolism , Anthocyanins/metabolism , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Secale/genetics , Secale/metabolism , Transcription Factors/genetics , Triticale/genetics , Triticum/genetics , Triticum/metabolism
14.
J Sci Food Agric ; 99(14): 6307-6314, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31260113

ABSTRACT

BACKGROUND: Pulque bread is a traditional Mexican product obtained by fermentation using microflora present only in pulque. In this study, the possibility of creating a pulque microbial consortium under laboratory conditions and its applications were evaluated. A laboratory-made consortium was compared with a consortium originating in Mexico in bread and pulque production. They were tested in various growth medium systems: pulque made from agave sap and malt extract, Mexican wheat and rye pulque bread, and European wheat and rye bread. RESULTS: Depending on the growth medium, consortiums showed differing influence on many factors, such as specific volume, weight loss after baking, soluble proteins, and crust and crumb color. Indigenous starters increased sensorial acceptance of pulque and Mexican rye bread, decreased pH, and increased titratable acidity of the breads at the highest level whereas laboratory consortia improved sensory acceptance of wheat breads. The laboratory-prepared starter in some cases improved antiradical activity. All pulques received similar consumer evaluations. However, malt pulque was the least appreciated beverage. CONCLUSION: The results show the possibility of creating a pulque microbial consortium under laboratory conditions. Depending on the flour type and the breadmaking technique, the use of a particular microbial consortium allowed modification of certain physicochemical parameters. In conclusion, it is feasible to modify bread parameters to obtain features corresponding to consumer demands by using an appropriate microflora, pulque, or flour type. Moreover, this research describes, for the first time, the use of rye malt for pulque and rye flour for pulque bread preparation as raw materials. © 2019 Society of Chemical Industry.


Subject(s)
Bacteria/metabolism , Bread/microbiology , Microbial Consortia , Agave/metabolism , Agave/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bread/analysis , Fermentation , Flour/analysis , Flour/microbiology , Food Handling , Humans , Mexico , Secale/metabolism , Secale/microbiology , Taste , Triticum/metabolism , Triticum/microbiology
15.
Curr Genet ; 64(6): 1303-1319, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29850931

ABSTRACT

Pathogen-derived cytokinins (CKs) have been recognized as important virulence factor in several host-pathogen interactions and it was demonstrated multiple times that phytopathogenic fungi form CKs via the tRNA degradation pathway. In contrast to previous studies, the focus of this study is on the second step of CK formation and CK degradation to improve our understanding of the biosynthesis in fungi on the one hand, and to understand CK contribution to the infection process of Claviceps purpurea on the other hand. The ergot fungus Claviceps purpurea is a biotrophic phytopathogen with a broad host range including economically important crops causing harvest intoxication upon infection. Its infection process is restricted to unfertilized ovaries without causing macroscopic defense symptoms. Thus, sophisticated host manipulation strategies are implicated. The cytokinin (CK) plant hormones are known to regulate diverse plant cell processes, and several plant pathogens alter CK levels during infection. C. purpurea synthesizes CKs via two mechanisms, and fungus-derived CKs influence the host-pathogen interaction but not fungus itself. CK deficiency in fungi with impact on virulence has only been achieved to date by deletion of a tRNA-ipt gene that is also involved in a process of translation regulation. To obtain a better understanding of CK biosynthesis and CKs' contribution to the plant-fungus interaction, we applied multiple approaches to generate strains with altered or depleted CK content. The first approach is based on deletion of the two CK phosphoribohydrolase (LOG)-encoding genes, which are believed to be essential for the release of active CKs. Single and double deletion strains were able to produce all types of CKs. Apparently, log gene products are dispensable for the formation of CKs and so alternative activation pathways must be present. The CK biosynthesis pathway remains unaffected in the second approach, because it is based on heterologous overexpression of CK-degrading enzymes from maize (ZmCKX1). Zmckx1 overexpressing C. purpurea strains shows strong CKX activity and drastically reduced CK levels. The strains are impaired in virulence, which reinforces the assumption that fungal-derived CKs are crucial for full virulence. Taken together, this study comprises the first analysis of a log depletion mutant that proved the presence of alternative cytokinin activation pathways in fungi and showed that heterologous CKX expression is a suitable approach for CK level reduction.


Subject(s)
Claviceps/physiology , Claviceps/pathogenicity , Cytokinins/metabolism , Host-Pathogen Interactions/physiology , Plant Diseases/microbiology , Secale , Secale/genetics , Secale/metabolism , Secale/microbiology
16.
BMC Genet ; 19(1): 57, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30092756

ABSTRACT

BACKGROUND: Rolling of leaves (RL) is a phenomenon commonly found in grasses. Morphology of the leaf is an important agronomic trait in field crops especially in rice; therefore, majority of the rice breeders are interested in RL. There are only few studies with respect to RL of wheat and barley; however, the information regarding the genetic base of RL with respect to the shape of leaf in rye is lacking. To the best of our knowledge, this is the first study on the localization of loci controlling RL on high density consensus genetic map of rye. RESULTS: Genotypic analysis led to the identification of 43 quantitative trait loci (QTLs) for RL, grouped into 28 intervals, which confirms the multigenic base of the trait stated for wheat and rice. Four stable QTLs were located on chromosomes 3R, 5R, and 7R. Co-localization of QTL for RL and for different morphological, biochemical and physiological traits may suggests pleiotropic effects of some QTLs. QTLs for RL were associated with QTLs for such morphological traits as: grain number and weight, spike number per plant, compactness of spike, and plant height. Two QTLs for RL were found to coincide with QTLs for drought tolerance (4R, 7R), two with QTLs for heading earliness (2R, 7R), one with α-amylase activity QTL (7R) and three for pre-harvest sprouting QTL (1R, 4R, 7R). The set of molecular markers strongly linked to RL was selected, and the putative candidate genes controlling the process of RL were identified. Twelve QTLs are considered as linked to candidate genes on the base of DArT sequences alignment, which is a new information for rye. CONCLUSIONS: Our results expand the knowledge about the network of QTLs for different morphological, biochemical and physiological traits and can be a starting point to studies on particular genes controlling RL and other important agronomic traits (yield, earliness, pre-harvest sprouting, reaction to water deficit) and to appoint markers useful in marker assisted selection (MAS). A better knowledge of the rye genome and genes could both facilitate rye improvement itself and increase the efficiency of utilizing rye genes in wheat breeding.


Subject(s)
Organogenesis, Plant/genetics , Plant Leaves/genetics , Plant Proteins/physiology , Quantitative Trait Loci , Secale/genetics , Genome, Plant , Plant Leaves/growth & development , Plant Proteins/genetics , Secale/growth & development , Secale/metabolism
17.
Biochim Biophys Acta Gen Subj ; 1862(4): 991-998, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29413907

ABSTRACT

BACKGROUND: Ophthalmic acid (OPH), γ-glutamyl-L-2-aminobutyryl-glycine, a tripeptide analogue of glutathione (GSH), has recently captured considerable attention as a biomarker of oxidative stress in animals. The OPH and GSH biosynthesis, as well as some biochemical behaviors, are very similar. Here, we sought to investigate the presence of OPH in plants and its possible relationship with GSH, known to possess multiple functions in the plant development, growth and response to environmental changes. METHODS: HPLC-ESI-MS/MS analysis was used to examine the occurrence of OPH in leaves from various plant species, and flours from several plant seeds. Different types of oxidative stress, i.e., water, dark, paraquat, and cadmium stress, were induced in rye, barley, oat, and winter wheat leaves to evaluate the effects on the levels of OPH and its metabolic precursors. RESULTS: OPH and its dipeptide precursor, γ-glutamyl-2-aminobutyric acid, were found to occur in phylogenetically distant plants. Interestingly, the levels of OPH were tightly associated with the oxidative stress tested. Levels of OPH precursors, γ-glutamyl-2-aminobutyric acid and 2-aminobutyric acid, the latter efficiently formed in plants via biosynthetic pathways absent in the animal kingdom, were also found to increase during oxidative stress. CONCLUSIONS: OPH occurs in plants and its levels are tightly associated with oxidative stress. GENERAL SIGNIFICANCE: OPH behaves as an oxidative stress marker and its biogenesis might occur through a biochemical pathway common to many living organisms.


Subject(s)
Biomarkers/metabolism , Oligopeptides/metabolism , Oxidative Stress , Plant Leaves/metabolism , Animals , Avena/metabolism , Chromatography, High Pressure Liquid/methods , Glutathione/metabolism , Hordeum/metabolism , Secale/metabolism , Tandem Mass Spectrometry/methods , Triticum/metabolism
18.
Eur J Nutr ; 57(4): 1651-1666, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28417207

ABSTRACT

PURPOSE: Rye products have been reported to elicit postprandial insulin and glucose responses which may be beneficial for prevention of type-2 diabetes. However, mechanisms underlying variations in responses related to processing techniques are not fully understood. METHODS: Five differently processed rye products (sourdough-fermented bread, fermented and unfermented crispbread, extrusion-cooked rye, and porridge) and refined wheat bread were characterised. Two in vitro methods, a dynamic method simulating digestion in the stomach and small intestine and a static method, simulating conditions in the stomach were used to determine viscosity development, structural changes and release of glucose during digestion. RESULTS: Structural and compositional differences induced by processing influenced product digestion. Gastric disintegration and digesta particle size were related to characteristics of the starch/protein matrix, while digesta viscosity was reduced due to fibre degradation during fermentation. More cohesive boluses were associated with slower glucose release. Sourdough fermentation increased amylose leakage and appeared to inhibit starch hydrolysis despite low digesta viscosity and rapid disintegration. CONCLUSIONS: The net release of glucose during digestion of foods is determined by several factors which may vary in their importance depending on product specific properties.


Subject(s)
Digestion/physiology , Food Handling , Secale/metabolism , Triticum/metabolism , Blood Glucose , Bread , Dietary Fiber , Postprandial Period , Starch
19.
BMC Genomics ; 18(1): 273, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28372538

ABSTRACT

BACKGROUND: The economically important Ergot fungus Claviceps purpurea is an interesting biotrophic model system because of its strict organ specificity (grass ovaries) and the lack of any detectable plant defense reactions. Though several virulence factors were identified, the exact infection mechanisms are unknown, e.g. how the fungus masks its attack and if the host detects the infection at all. RESULTS: We present a first dual transcriptome analysis using an RNA-Seq approach. We studied both, fungal and plant gene expression in young ovaries infected by the wild-type and two virulence-attenuated mutants. We can show that the plant recognizes the fungus, since defense related genes are upregulated, especially several phytohormone genes. We present a survey of in planta expressed fungal genes, among them several confirmed virulence genes. Interestingly, the set of most highly expressed genes includes a high proportion of genes encoding putative effectors, small secreted proteins which might be involved in masking the fungal attack or interfering with host defense reactions. As known from several other phytopathogens, the C. purpurea genome contains more than 400 of such genes, many of them clustered and probably highly redundant. Since the lack of effective defense reactions in spite of recognition of the fungus could very well be achieved by effectors, we started a functional analysis of some of the most highly expressed candidates. However, the redundancy of the system made the identification of a drastic effect of a single gene most unlikely. We can show that at least one candidate accumulates in the plant apoplast. Deletion of some candidates led to a reduced virulence of C. purpurea on rye, indicating a role of the respective proteins during the infection process. CONCLUSIONS: We show for the first time that- despite the absence of effective plant defense reactions- the biotrophic pathogen C. purpurea is detected by its host. This points to a role of effectors in modulation of the effective plant response. Indeed, several putative effector genes are among the highest expressed genes in planta.


Subject(s)
Claviceps/genetics , Flowers/microbiology , Plant Diseases/microbiology , Secale/microbiology , Claviceps/metabolism , Disease Resistance/genetics , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Fungal , Gene Expression Regulation, Plant , Genes, Fungal , Genes, Plant , Host-Pathogen Interactions , Secale/genetics , Secale/metabolism , Transcriptome , Virulence Factors/genetics
20.
Planta ; 246(4): 673-685, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28631209

ABSTRACT

MAIN CONCLUSION: Exogenous phenylalanine stunted annual ryegrass but not switchgrass or winter grain rye, with deuterium incorporation up to 3% from phenyalanine-d 8 . Toxicity to duckweed varied with illumination intensity and glucose uptake. Isotopic labeling of biomolecules through biosynthesis from deuterated precursors has successfully been employed for both structural studies and metabolic analysis. Phenylalanine is the precursor of many products synthesized by plants, including the monolignols used for synthesis of lignin. Possible allelochemical effects of phenylalanine have not been reported, although its deamination product cinnamic acid is known to have deleterious effects on root elongation and growth of several plant species. The effects of phenylalanine and its deuterated analog phenylalanine-d 8 added to growth media were studied for annual ryegrass (Lolium multiflorum), winter grain rye (Secale cereale), and switchgrass (Panicum virgatum) cultivated under hydroponic conditions. Growth of annual ryegrass was inhibited by phenylalanine while switchgrass and rye were not significantly affected. Growth was less affected by deuterated phenylalanine-d 8 than by its protiated counterpart, which may be a typical deuterium kinetic isotope effect resulting in slower enzymatic reaction rates. Deuterium incorporation levels of 2-3% were achieved in biomass of switchgrass and annual ryegrass. Both protiated and deuterated phenylalanine were moderately toxic (IC25 values 0.6 and 0.8 mM, respectively) to duckweed (Lemna minor) grown using a 12 h diurnal cycle under photoautotrophic conditions. A significant increase in toxicity, greater for the deuterated form, was noted when duckweed was grown under higher intensity, full spectrum illumination with a metal halide lamp compared to fluorescent plant growth lamps emitting in the blue and red spectral regions. Supplementation with glucose increased toxicity of phenylalanine consistent with synergy between hexose and amino acid uptake that has been reported for duckweed.


Subject(s)
Araceae/drug effects , Deuterium/metabolism , Lolium/drug effects , Panicum/drug effects , Phenylalanine/toxicity , Secale/drug effects , Allelopathy , Araceae/growth & development , Araceae/metabolism , Biomass , Germination , Glucose/metabolism , Hydroponics , Lolium/growth & development , Lolium/metabolism , Panicum/growth & development , Panicum/metabolism , Phenylalanine/chemistry , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Stems/drug effects , Plant Stems/growth & development , Plant Stems/metabolism , Secale/growth & development , Secale/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL