Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 781
Filter
1.
Cell ; 184(16): 4284-4298.e27, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34233164

ABSTRACT

Many organisms evolved strategies to survive desiccation. Plant seeds protect dehydrated embryos from various stressors and can lay dormant for millennia. Hydration is the key trigger to initiate germination, but the mechanism by which seeds sense water remains unresolved. We identified an uncharacterized Arabidopsis thaliana prion-like protein we named FLOE1, which phase separates upon hydration and allows the embryo to sense water stress. We demonstrate that biophysical states of FLOE1 condensates modulate its biological function in vivo in suppressing seed germination under unfavorable environments. We find intragenic, intraspecific, and interspecific natural variation in FLOE1 expression and phase separation and show that intragenic variation is associated with adaptive germination strategies in natural populations. This combination of molecular, organismal, and ecological studies uncovers FLOE1 as a tunable environmental sensor with direct implications for the design of drought-resistant crops, in the face of climate change.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Germination , Intercellular Signaling Peptides and Proteins/metabolism , Prions/metabolism , Seeds/growth & development , Water/metabolism , Arabidopsis/genetics , Arabidopsis/ultrastructure , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/ultrastructure , Dehydration , Imaging, Three-Dimensional , Intercellular Signaling Peptides and Proteins/chemistry , Mutation/genetics , Plant Dormancy , Plants, Genetically Modified , Protein Domains , Protein Isoforms/metabolism , Seeds/ultrastructure
2.
Plant Cell ; 32(4): 1270-1284, 2020 04.
Article in English | MEDLINE | ID: mdl-32086364

ABSTRACT

Male and female gametophytes are generated from micro- or megaspore mother cells through consecutive meiotic and mitotic cell divisions. Defects in these divisions often result in gametophytic lethality. Gametophytic lethality was also reported when genes encoding ribosome-related proteins were mutated. Although numerous ribosomal proteins (RPs) have been identified in plants based on homology with their yeast and metazoan counterparts, how RPs are regulated, e.g., through dynamic subcellular targeting, is unknown. We report here that an Arabidopsis (Arabidopsis thaliana) importin ß, KETCH1 (karyopherin enabling the transport of the cytoplasmic HYL1), is critical for gametogenesis. Karyopherins are molecular chaperones mediating nucleocytoplasmic protein transport. However, the role of KETCH1 during gametogenesis is independent of HYPONASTIC LEAVES 1 (HYL1), a previously reported KETCH1 cargo. Instead, KETCH1 interacts with several RPs and is critical for the nuclear accumulation of RPL27a, whose mutations caused similar gametophytic defects. We further showed that knocking down KETCH1 caused reduced ribosome biogenesis and translational capacity, which may trigger the arrest of mitotic cell cycle progression and lead to gametophytic lethality.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Cell Nucleus/metabolism , Gametogenesis, Plant , Karyopherins/metabolism , Ribosomal Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/ultrastructure , Cell Cycle Checkpoints , Cell Nucleus/ultrastructure , Down-Regulation , Gene Expression Regulation, Plant , Loss of Function Mutation/genetics , Ovule/metabolism , Ovule/ultrastructure , Pollen/growth & development , Pollen/ultrastructure , Protein Binding , Protein Biosynthesis , RNA-Binding Proteins/metabolism , Ribosomes/metabolism , Seeds/metabolism , Seeds/ultrastructure
3.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163383

ABSTRACT

Heterotrimeric G protein signaling is an evolutionarily conserved mechanism in diverse organisms that mediates intracellular responses to external stimuli. In rice, the G proteins are involved in the regulation of multiple important agronomic traits. In this paper, we present our finding that two type C G protein gamma subunits, DEP1 and GS3, antagonistically regulated grain yield and grain quality. The DEP1 gene editing we conducted, significantly increased the grain number per panicle but had a negative impact on taste value, texture properties, and chalkiness-related traits. The GS3 gene editing decreased grain number per panicle but significantly increased grain length. In addition, the GS3 gene-edited plants showed improved taste value, appearance, texture properties, and Rapid Visco Analyser (RVA) profiles. To combine the advantages of both gs3 and dep1, we conducted a molecular design breeding at the GS3 locus of a "super rice" variety, SN265, which has a truncated dep1 allele with erect panicle architecture, high-yield performance, and which is of mediocre eating quality. The elongated grain size of the sn265/gs3 gene-edited plants further increased the grain yield. More importantly, the texture properties and RVA profiles were significantly improved, and the taste quality was enhanced. Beyond showcasing the combined function of dep1 and gs3, this paper presents a strategy for the simultaneous improvement of rice grain yield and quality through manipulating two type C G protein gamma subunits in rice.


Subject(s)
Seeds/growth & development , Base Sequence , DNA Shuffling , GTP-Binding Protein gamma Subunits/genetics , Gene Editing , Mutation/genetics , Oryza/genetics , Oryza/ultrastructure , Plant Proteins/genetics , Seeds/ultrastructure
4.
Molecules ; 27(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35011547

ABSTRACT

Common "glanded" (Gd) cottonseeds contain the toxic compound gossypol that restricts human consumption of the derived products. The "glandless" (Gl) cottonseeds of a new cotton variety, in contrast, show a trace gossypol content, indicating the great potential of cottonseed for agro-food applications. This work comparatively evaluated the chemical composition and thermogravimetric behaviors of the two types of cottonseed kernels. In contrast to the high gossypol content (3.75 g kg-1) observed in Gd kernels, the gossypol level detected in Gl kernels was only 0.06 g kg-1, meeting the FDA's criteria as human food. While the gossypol gland dots in Gd kernels were visually observed, scanning electron microcopy was not able to distinguish the microstructural difference between ground Gd and Gl samples. Chemical analysis and Fourier transform infrared (FTIR) spectroscopy showed that Gl kernels and Gd kernels had similar chemical components and mineral contents, but the former was slightly higher in protein, starch, and phosphorus contents. Thermogravimetric (TG) processes of both kernels and their residues after hexane and ethanol extraction were based on three stages of drying, de-volatilization, and char formation. TG-FTIR analysis revealed apparent spectral differences between Gd and Gl samples, as well as between raw and extracted cottonseed kernel samples, indicating that some components in Gd kernels were more susceptible to thermal decomposition than Gl kernels. The TG and TG-FTIR observations suggested that the Gl kernels could be heat treated (e.g., frying and roasting) at an optimal temperature of 140-150 °C for food applications. On the other hand, optimal pyrolysis temperatures would be much higher (350-500 °C) for Gd cottonseed and its defatted residues for non-food bio-oil and biochar production. The findings from this research enhance the potential utilization of Gd and Gl cottonseed kernels for food applications.


Subject(s)
Gossypium/chemistry , Phytochemicals/analysis , Phytochemicals/chemistry , Seeds/chemistry , Gossypol/analysis , Gossypol/chemistry , Humans , Plant Extracts/analysis , Plant Extracts/chemistry , Seeds/ultrastructure , Spectrum Analysis , Thermogravimetry
5.
BMC Plant Biol ; 21(1): 58, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33482732

ABSTRACT

BACKGROUND: Physical seed dormancy is an important trait in legume domestication. Although seed dormancy is beneficial in wild ecosystems, it is generally considered to be an undesirable trait in crops due to reduction in yield and / or quality. The physiological mechanism and underlying genetic factor(s) of seed dormancy is largely unknown in several legume species. Here we employed an integrative approach to understand the mechanisms controlling physical seed dormancy in common bean (Phaseolus vulgaris L.). RESULTS: Using an innovative CT scan imaging system, we were able to track water movements inside the seed coat. We found that water uptake initiates from the bean seed lens. Using a scanning electron microscopy (SEM) we further identified several micro-cracks on the lens surface of non-dormant bean genotypes. Bulked segregant analysis (BSA) was conducted on a bi-parental RIL (recombinant inbred line) population, segregating for seed dormancy. This analysis revealed that the seed water uptake is associated with a single major QTL on Pv03. The QTL region was fine-mapped to a 118 Kb interval possessing 11 genes. Coding sequence analysis of candidate genes revealed a 5-bp insertion in an ortholog of pectin acetylesterase 8 that causes a frame shift, loss-of-function mutation in non-dormant genotype. Gene expression analysis of the candidate genes in the seed coat of contrasting genotypes indicated 21-fold lower expression of pectin acetylesterase 8 in non-dormant genotype. An analysis of mutational polymorphism was conducted among wild and domesticated beans. Although all the wild beans possessed the functional allele of pectin acetylesterase 8, the majority (77%) of domesticated beans had the non-functional allele suggesting that this variant was under strong selection pressure through domestication. CONCLUSIONS: In this study, we identified the physiological mechanism of physical seed dormancy and have identified a candidate allele causing variation in this trait. Our findings suggest that a 5-bp insertion in an ortholog of pectin acetylesterase 8 is likely a major causative mutation underlying the loss of seed dormancy during domestication. Although the results of current study provide strong evidences for the role of pectin acetylesterase 8 in seed dormancy, further confirmations seem necessary by employing transgenic approaches.


Subject(s)
Chromosomes, Plant/genetics , Esterases/metabolism , Phaseolus/genetics , Plant Dormancy/genetics , Quantitative Trait Loci/genetics , Chromosome Mapping , Crops, Agricultural , Domestication , Ecosystem , Esterases/genetics , Genotype , Microscopy, Electron, Scanning , Mutagenesis, Insertional , Phaseolus/enzymology , Phaseolus/physiology , Phaseolus/ultrastructure , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/enzymology , Seeds/genetics , Seeds/physiology , Seeds/ultrastructure , Water/metabolism
6.
BMC Plant Biol ; 21(1): 590, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34903166

ABSTRACT

BACKGROUND: Arabinogalactan-proteins (AGPs) are structurally complex hydroxyproline-rich cell wall glycoproteins ubiquitous in the plant kingdom. AGPs biosynthesis involves a series of post-translational modifications including the addition of type II arabinogalactans to non-contiguous Hyp residues. To date, eight Hyp-galactosyltransferases (Hyp-GALTs; GALT2-GALT9) belonging to CAZy GT31, are known to catalyze the addition of the first galactose residues to AGP protein backbones and enable subsequent AGP glycosylation. The extent of genetic redundancy, however, remains to be elucidated for the Hyp-GALT gene family. RESULTS: To examine their gene redundancy and functions, we generated various multiple gene knock-outs, including a triple mutant (galt5 galt8 galt9), two quadruple mutants (galt2 galt5 galt7 galt8, galt2 galt5 galt7 galt9), and one quintuple mutant (galt2 galt5 galt7 galt8 galt9), and comprehensively examined their biochemical and physiological phenotypes. The key findings include: AGP precipitations with ß-Yariv reagent showed that GALT2, GALT5, GALT7, GALT8 and GALT9 act redundantly with respect to AGP glycosylation in cauline and rosette leaves, while the activity of GALT7, GALT8 and GALT9 dominate in the stem, silique and flowers. Monosaccharide composition analysis showed that galactose was decreased in the silique and root AGPs of the Hyp-GALT mutants. TEM analysis of 25789 quintuple mutant stems indicated cell wall defects coincident with the observed developmental and growth impairment in these Hyp-GALT mutants. Correlated with expression patterns, galt2, galt5, galt7, galt8, and galt9 display equal additive effects on insensitivity to ß-Yariv-induced growth inhibition, silique length, plant height, and pollen viability. Interestingly, galt7, galt8, and galt9 contributed more to primary root growth and root tip swelling under salt stress, whereas galt2 and galt5 played more important roles in seed morphology, germination defects and seed set. Pollen defects likely contributed to the reduced seed set in these mutants. CONCLUSION: Additive and pleiotropic effects of GALT2, GALT5, GALT7, GALT8 and GALT9 on vegetative and reproductive growth phenotypes were teased apart via generation of different combinations of Hyp-GALT knock-out mutants. Taken together, the generation of higher order Hyp-GALT mutants demonstrate the functional importance of AG polysaccharides decorating the AGPs with respect to various aspects of plant growth and development.


Subject(s)
Arabidopsis/genetics , Galactans/metabolism , Galactosyltransferases/metabolism , Mucoproteins/metabolism , Arabidopsis/enzymology , Arabidopsis/physiology , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Flowers/enzymology , Flowers/genetics , Flowers/physiology , Flowers/ultrastructure , Galactosyltransferases/genetics , Genetic Pleiotropy , Germination , Glucosides/chemistry , Glycosylation , Hydroxyproline/metabolism , Meristem/enzymology , Meristem/genetics , Meristem/physiology , Meristem/ultrastructure , Mucoproteins/genetics , Mutation , Organ Specificity , Phloroglucinol/analogs & derivatives , Phloroglucinol/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stems/enzymology , Plant Stems/genetics , Plant Stems/physiology , Plant Stems/ultrastructure , Protein Biosynthesis , Salt Stress , Seeds/enzymology , Seeds/genetics , Seeds/physiology , Seeds/ultrastructure
7.
Plant Physiol ; 182(2): 933-948, 2020 02.
Article in English | MEDLINE | ID: mdl-31818903

ABSTRACT

MADS box transcription factors (TFs) are subdivided into type I and II based on phylogenetic analysis. The type II TFs regulate floral organ identity and flowering time, but type I TFs are relatively less characterized. Here, we report the functional characterization of two type I MADS box TFs in rice (Oryza sativa), MADS78 and MADS79 Transcript abundance of both these genes in developing seed peaked at 48 h after fertilization and was suppressed by 96 h after fertilization, corresponding to syncytial and cellularized stages of endosperm development, respectively. Seeds overexpressing MADS78 and MADS 79 exhibited delayed endosperm cellularization, while CRISPR-Cas9-mediated single knockout mutants showed precocious endosperm cellularization. MADS78 and MADS 79 were indispensable for seed development, as a double knockout mutant failed to make viable seeds. Both MADS78 and 79 interacted with MADS89, another type I MADS box, which enhances nuclear localization. The expression analysis of Fie1, a rice FERTILIZATION-INDEPENDENT SEED-POLYCOMB REPRESSOR COMPLEX2 component, in MADS78 and 79 mutants and vice versa established an antithetical relation, suggesting that Fie1 could be involved in negative regulation of MADS78 and MADS 79 Misregulation of MADS78 and MADS 79 perturbed auxin homeostasis and carbon metabolism, as evident by misregulation of genes involved in auxin transport and signaling as well as starch biosynthesis genes causing structural abnormalities in starch granules at maturity. Collectively, we show that MADS78 and MADS 79 are essential regulators of early seed developmental transition and impact both seed size and quality in rice.


Subject(s)
Endosperm/growth & development , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , MADS Domain Proteins/metabolism , Oryza/growth & development , Pollen/growth & development , Seeds/growth & development , Arabidopsis Proteins/genetics , Carbon/metabolism , Cell Nucleus/metabolism , Endosperm/genetics , Endosperm/metabolism , Gene Expression Profiling , Gene Knockout Techniques , Indoleacetic Acids/metabolism , MADS Domain Proteins/genetics , Microscopy, Electron, Scanning , Oryza/genetics , Oryza/metabolism , Plant Infertility/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Pollen/genetics , Pollen/metabolism , Polycomb-Group Proteins/metabolism , RNA-Seq , Repressor Proteins/genetics , Repressor Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Seeds/ultrastructure , Transcription Factors/metabolism , Up-Regulation
8.
Plant Cell Rep ; 40(9): 1773-1787, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34181045

ABSTRACT

KEY MESSAGE: The present study showed that the heat stress (40 °C) caused changes in morphophysiological, biochemical, and ultrastructural parameters to the seeds Melanoxylon brauna, ultimately leading to loss of germination capacity. Temperature is an abiotic factor that influences seed germination. In the present study, we investigated morphophysiological, biochemical, and ultrastructural changes during the germination of Melanoxylon brauna seeds under heat stress. Seed germination was evaluated at constant temperatures of 25 and 40 °C. The samples consisted of seeds soaked in distilled and ionized water for 48 and 96 h at both temperatures. For the evaluation of internal morphology, the seeds were radiographed. Ultrastructural parameters were assessed using transmission electron microscopy (TEM). The production of reactive oxygen species (ROS), content of malondialdehyde (MDA) and glucose, carbonylated proteins, and activity of the enzymes (superoxide dismutase-SOD, ascorbate peroxidase-APX, catalase-CAT, peroxidase-POX, glucose-6-phosphate dehydrogenase-G6PDH, lipase, α- and ß-amylase, and protease) were measured by spectrophotometric analysis. An 82% reduction in the germination of M. brauna seeds was observed at 25 °C, and 0% at 40 °C. TEM showed that seeds submitted to heat stress (40 °C) had poorly developed mitochondria and significantly reduced respiration rates. The content of ROS and protein carbonylation in seeds subjected to 40 °C increased compared to that at 25 °C. The activity of antioxidant enzymes, namely SOD, APX, CAT, and POX, was significantly reduced in seeds subjected to heat stress. Glucose content, G6PDH, and lipase activity also decreased when the seeds were exposed to heat stress. Conversely, α- and ß-amylase enzymes and the protease increased due to the increase in temperature. Our data showed that the increase in temperature caused an accumulation of ROS, increasing the oxidative damage to the seeds, which led to mitochondrial dysfunction, ultimately leading to loss of germination.


Subject(s)
Fabaceae/physiology , Heat-Shock Response/physiology , Plant Proteins/metabolism , Seeds/physiology , Seeds/ultrastructure , Antioxidants/metabolism , Carotenoids/metabolism , Enzymes/metabolism , Fabaceae/ultrastructure , Fatty Acids/metabolism , Germination , Glucose/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , Oxidative Stress , Superoxides/metabolism
9.
Int J Mol Sci ; 22(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576106

ABSTRACT

We investigated low-temperature plasma effects on two Brassicaceae seeds (A. thaliana and C. sativa) using dielectric barrier discharge in air. Comparisons of plasma treatments on seeds showed distinct responses on germination rate and speed. Optimal treatment time giving optimal germination is 15 min for A. thaliana with 85% increase compared to control after 48 h of germination and 1 min for C. sativa with 75% increase compared to control after 32 h of germination. Such germination increases are associated with morphological changes shown by SEM of seed surface. For better understanding at the biochemical level, seed surfaces were analyzed using gas chromatography-mass spectrometry which underlined changes of lipidic composition. For both treated seeds, there is a decrease of saturated (palmitic and stearic) fatty acids while treated C. sativa showed a decrease of unsaturated (oleic and linoleic) acids and treated A. thaliana an increase of unsaturated ones. Such lipid changes, specifically a decrease of hydrophobic saturated fatty acids, are coherent with the other analyses (SEM, water uptake and contact angle). Moreover, an increase in A. thaliana of unsaturated acids (very reactive) probably neutralizes plasma RONS effects thus needing longer plasma exposure time (15 min) to reach optimal germination. For C. sativa, 1 min is enough because unsaturated linoleic acid becomes lower in treated C. sativa (1.2 × 107) compared to treated A. thaliana (3.7 × 107).


Subject(s)
Air , Arabidopsis/physiology , Brassicaceae/physiology , Electricity , Plasma Gases/pharmacology , Seeds/drug effects , Arabidopsis/drug effects , Arabidopsis/ultrastructure , Brassicaceae/drug effects , Brassicaceae/ultrastructure , Fatty Acids/metabolism , Germination/drug effects , Lipidomics , Permeability , Seeds/anatomy & histology , Seeds/ultrastructure , Time Factors , Water , Wettability
10.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206400

ABSTRACT

Seeds of common bean (Phaseolus vulgaris L.), of the Etna variety, were treated with low-pressure oxygen plasma sustained by an inductively coupled radiofrequency discharge in the H-mode for a few seconds. The high-intensity treatment improved seed health in regard to fungal contamination. Additionally, it increased the wettability of the bean seeds by altering surface chemistry, as established by X-ray photoelectron spectroscopy, and increasing surface roughness, as seen with a scanning electron microscope. The water contact angle at the seed surface dropped to immeasurably low values after a second of plasma treatment. Hydrophobic recovery within a month returned those values to no more than half of the original water contact angle, even for beans treated for the shortest time (0.5 s). Increased wettability resulted in accelerated water uptake. The treatment increased the bean radicle length, which is useful for seedling establishment in the field. These findings confirm that even a brief plasma treatment is a useful technique for the disinfection and stimulation of radicle growth. The technique is scalable to large systems due to the short treatment times.


Subject(s)
Germination/drug effects , Phaseolus/drug effects , Phaseolus/growth & development , Plasma Gases/pharmacology , Seeds/drug effects , Seeds/growth & development , Photoelectron Spectroscopy , Plant Development/drug effects , Seeds/ultrastructure , Surface Properties , Water , Wettability
11.
Int J Mol Sci ; 22(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467472

ABSTRACT

Melatonin priming is an effective strategy to improve the germination of aged oat (Avena sativa L.) seeds, but the mechanism involved in its time-course responses has remained largely unknown. In the present study, the phenotypic differences, ultrastructural changes, physiological characteristics, and proteomic profiles were examined in aged and melatonin-primed seed (with 10 µM melatonin treatment for 12, 24, and 36 h). Thus, 36 h priming (T36) had a better remediation effect on aged seeds, reflecting in the improved germinability and seedlings, relatively intact cell ultrastructures, and enhanced antioxidant capacity. Proteomic analysis revealed 201 differentially abundant proteins between aged and T36 seeds, of which 96 were up-accumulated. In melatonin-primed seeds, the restoration of membrane integrity by improved antioxidant capacity, which was affected by the stimulation of jasmonic acid synthesis via up-accumulation of 12-oxo-phytodienoic acid reductase, might be a candidate mechanism. Moreover, the relatively intact ultrastructures enabled amino acid metabolism and phenylpropanoid biosynthesis, which were closely associated with energy generation through intermediates of pyruvate, phosphoenolpyruvate, fumarate, and α-ketoglutarate, thus providing energy, active amino acids, and secondary metabolites necessary for germination improvement of aged seeds. These findings clarify the time-course related pathways associated with melatonin priming on promoting the germination of aged oat seeds.


Subject(s)
Avena/metabolism , Germination/drug effects , Melatonin/pharmacology , Proteomics/methods , Seeds/metabolism , Antioxidants/metabolism , Avena/genetics , Avena/ultrastructure , Gene Expression Regulation, Developmental , Gene Ontology , Germination/genetics , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Melatonin/metabolism , Microscopy, Electron, Transmission , Plant Proteins/genetics , Plant Proteins/metabolism , Proteome/genetics , Proteome/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/metabolism , Seeds/genetics , Seeds/ultrastructure , Time Factors
12.
Pak J Pharm Sci ; 34(2): 545-552, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34275828

ABSTRACT

Raphanus sativus L. (Brassicacae) possesses numerous health benefits due to presence of a host of secondary metabolites in its various parts. The present study investigated the nutritive value of Raphanus sativus (RS) seeds and seed oil. Proximate and physico chemical analysis were carried out by official AOAC (Association of Official Analytical Chemists) and AOCS (American oil chemist society) methods. Scanning electron microscopy (SEM) together with energy dispersive X-ray spectroscopy (EDS) described the surface morphology along with atomic elemental composition of the sample. Mineral contents were evaluated by Atomic absorption spectroscopy. Moisture content was 8.67±0.08% whereas protein, crude fiber, crude fat, carbohydrates, total ash values were reported as 20.13±0.15%, 7.86±0.15%, 32.27±0.25%, 27.32±0.85%, 3.75±0.02% respectively. EDS determined carbon, oxygen, magnesium, sulfur and potassium in seeds. All physico-chemical properties varied insignificantly for the two extraction methods, except for acid value and unsaponifiable matter, which were higher for Soxhlet's extracted oil than cold pressed oil. The mineral composition revealed potassium in the highest concentrations in seeds and seed oil i.e.1660.65±69.26 ppm and 47.80 ± 7.02 ppm respectively. The study suggested that the seed and seed oil could be a potential source of naturally originated raw material for the nutritive and pharmaceutical aid.


Subject(s)
Plant Oils/chemistry , Raphanus , Seeds/chemistry , Seeds/ultrastructure , Microscopy, Electron, Scanning , Pakistan , Spectrometry, X-Ray Emission , Spectrophotometry, Atomic
13.
Plant Cell Physiol ; 61(7): 1273-1284, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32374847

ABSTRACT

In this report, we describe studies on symplasmic communication and cellular rearrangement during direct somatic embryogenesis (SE) in the tree fern Cyathea delgadii. We analyzed changes in the symplasmic transport of low-molecular-weight fluorochromes, such as 8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt (HPTS) and fluorescein (delivered to cells as fluorescein diacetate, FDA), within stipe explants and somatic embryos originating from single epidermal cells and developing during 16-d long culture. Induction of SE is preceded by a restriction in fluorochrome distribution between certain explant cells. Microscopic analysis showed a series of cellular changes like a decrease in vacuole size, increase in vacuole numbers, and increased density of cytoplasm and deposition of electron-dense material in cell walls that may be related with embryogenic transition. In somatic embryos, the limited symplasmic communication between cells was observed first in linear tri-cellular embryos. Further development of the fern embryo was associated with the formation of symplasmic domains corresponding to the four segments of the plant body. Using symplasmic tracers, we provided evidence that the changes in plasmodesmata permeability are corelated with somatic-to-embryogenic transition and somatic embryo development.


Subject(s)
Ferns/growth & development , Seeds/growth & development , Ferns/ultrastructure , Fluorescent Dyes , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Plant Epidermis/growth & development , Seeds/ultrastructure
14.
Plant Cell Environ ; 43(10): 2523-2539, 2020 10.
Article in English | MEDLINE | ID: mdl-32519347

ABSTRACT

Seed longevity is a polygenic trait of relevance for agriculture and for understanding the effect of environment on the ageing of biological systems. In order to identify novel longevity genes, we have phenotyped the natural variation of 270 ecotypes of the model plant, Arabidopsis thaliana, for natural ageing and for three accelerated ageing methods. Genome-wide analysis, using publicly available single-nucleotide polymorphisms (SNPs) data sets, identified multiple genomic regions associated with variation in seed longevity. Reverse genetics of 20 candidate genes in Columbia ecotype resulted in seven genes positive for seed longevity (PSAD1, SSLEA, SSTPR, DHAR1, CYP86A8, MYB47 and SPCH) and five negative ones (RBOHD, RBOHE, RBOHF, KNAT7 and SEP3). In this uniform genetic background, natural and accelerated ageing methods provided similar results for seed-longevity in knock-out mutants. The NADPH oxidases (RBOHs), the dehydroascorbate reductase (DHAR1) and the photosystem I subunit (PSAD1) highlight the important role of oxidative stress on seed ageing. The cytochrome P-450 hydroxylase, CYP86A8, and the transcription factors, MYB47, KNAT7 and SEP3, support the protecting role of the seed coat during seed ageing.


Subject(s)
Arabidopsis/genetics , Genes, Plant/genetics , Longevity/genetics , Oxidative Stress/genetics , Seeds/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Genes, Plant/physiology , Genome-Wide Association Study , Microscopy, Confocal , Plants, Genetically Modified , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Reverse Genetics , Seeds/physiology , Seeds/ultrastructure , Transcriptome
15.
Plant Cell Environ ; 43(8): 1925-1943, 2020 08.
Article in English | MEDLINE | ID: mdl-32406163

ABSTRACT

Salt stress activates defence responses in plants, including changes in leaf surface structure. Here, we showed that the transcriptional activation of cutin deposition and antioxidant defence by the R2R3-type MYB transcription factor AtMYB49 contributed to salt tolerance in Arabidopsis thaliana. Characterization of loss-of-function myb49 mutants, and chimeric AtMYB49-SRDX-overexpressing SRDX49 transcriptional repressor and AtMYB49-overexpressing (OX49) overexpressor plants demonstrated a positive role of AtMYB49 in salt tolerance. Transcriptome analysis revealed that many genes belonging to the category "cutin, suberin and wax biosyntheses" were markedly up-regulated and down-regulated in OX49 and SRDX49 plants, respectively, under normal and/or salt stress conditions. Some of these differentially expressed genes, including MYB41, ASFT, FACT and CYP86B1, were also shown to be the direct targets of AtMYB49 and activated by AtMYB49. Biochemical analysis indicated that AtMYB49 modulated cutin deposition in the leaves. Importantly, cuticular transpiration, chlorophyll leaching and toluidine blue-staining assays revealed a link between increased AtMYB49-mediated cutin deposition in leaves and enhanced salt tolerance. Additionally, increased AtMYB49 expression elevated Ca2+ level in leaves and improved antioxidant capacity by up-regulating genes encoding peroxidases and late embryogenesis abundant proteins. These results suggest that genetic manipulation of AtMYB49 may provide a novel way to improve salt tolerance in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Salt Tolerance/physiology , Transcription Factors, General/metabolism , Antioxidants/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Lipids/physiology , Membrane Lipids/biosynthesis , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Stomata/physiology , Plants, Genetically Modified , Seeds/metabolism , Seeds/ultrastructure , Transcription Factors, General/genetics
16.
Int J Mol Sci ; 21(9)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380646

ABSTRACT

Starch and prolamin composition and content are important indexes for determining the processing and nutritional quality of wheat (Triticum aestivum L.) grains. Several transcription factors (TFs) regulate gene expression during starch and protein biosynthesis in wheat. Storage protein activator (TaSPA), a member of the basic leucine zipper (bZIP) family, has been reported to activate glutenin genes and is correlated to starch synthesis related genes. In this study, we generated TaSPA-B overexpressing (OE) transgenic wheat lines. Compared with wild-type (WT) plants, the starch content was slightly reduced and starch granules exhibited a more polarized distribution in the TaSPA-B OE lines. Moreover, glutenin and ω- gliadin contents were significantly reduced, with lower expression levels of related genes (e.g., By15, Dx2, and ω-1,2 gliadin gene). RNA-seq analysis identified 2023 differentially expressed genes (DEGs). The low expression of some DEGs (e.g., SUSase, ADPase, Pho1, Waxy, SBE, SSI, and SS II a) might explain the reduction of starch contents. Some TFs involved in glutenin and starch synthesis might be regulated by TaSPA-B, for example, TaPBF was reduced in TaSPA-B OE-3 lines. In addition, dual-luciferase reporter assay indicated that both TaSPA-B and TaPBF could transactivate the promoter of ω-1,2 gliadin gene. These results suggest that TaSPA-B regulates a complex gene network and plays an important role in starch and protein biosynthesis in wheat.


Subject(s)
Edible Grain/genetics , Edible Grain/metabolism , Gene Expression , Plant Proteins/genetics , Starch/metabolism , Triticum/genetics , Edible Grain/chemistry , Gene Expression Profiling , Gene Ontology , Molecular Sequence Annotation , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Seeds/metabolism , Seeds/ultrastructure , Starch/ultrastructure , Triticum/chemistry , Triticum/metabolism
17.
Int J Mol Sci ; 21(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32054063

ABSTRACT

Sweet cherry (Prunus avium L.) is a delicious nutrient-rich fruit widely cultivated in countries such as China, America, Chile, and Italy. However, the yield often drops severely due to the frequently-abnormal fruitlet abscission, and few studies on the metabolism during its ripening process at the proteomic level have been executed so far. To get a better understanding regarding the sweet cherry abscission mechanism, proteomic analysis between the abscising carpopodium and non-abscising carpopodium of sweet cherry was accomplished using a newly developed Liquid chromatography-mass spectrometry/mass spectrometry with Tandem Mass Tag (TMT-LC-MS/MS) methodology. The embryo viability experiments showed that the vigor of the abscission embryos was significantly lower than that of retention embryo. The activity of cell wall degrading enzymes in abscising carpopodium was significantly higher than that in non-abscising carpopodium. The anatomy results suggested that cells in the abscission zone were small and separated. In total, 6280 proteins were identified, among which 5681 were quantified. It has been observed that differentially accumulated proteins (DAPs) influenced several biological functions and various subcellular localizations. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that plenty of metabolic pathways were notably enriched, particularly those involved in phytohormone biosynthesis, cell wall metabolism, and cytoskeletal metabolism, including 1-aminocyclopropane-1-carboxylate oxidase proteins which promote ethylene synthesis, and proteins promoting cell wall degradation, such as endoglucanases, pectinase, and polygalacturonase. Differential expression of proteins concerning phytohormone biosynthesis might activate the shedding regulation signals. Up-regulation of several cell wall degradation-related proteins possibly regulated the shedding of plant organs. Variations of the phytohormone biosynthesis and cell wall degradation-related proteins were explored during the abscission process. Furthermore, changes in cytoskeleton-associated proteins might contribute to the abscission of carpopodium. The current work represented the first study using comparative proteomics between abscising carpopodium and non-abscising carpopodium. These results indicated that embryo abortion might lead to phytohormone synthesis disorder, which effected signal transduction pathways, and hereby controlled genes involved in cell wall degradation and then caused the abscission of fruitlet. Overall, our data may give an intrinsic explanation of the variations in metabolism during the abscission of carpopodium.


Subject(s)
Plant Proteins/metabolism , Prunus avium/embryology , Prunus avium/metabolism , Lignin/metabolism , Metabolic Networks and Pathways , Plant Growth Regulators/metabolism , Protein Biosynthesis , Proteomics , Prunus avium/ultrastructure , Seeds/embryology , Seeds/metabolism , Seeds/ultrastructure
18.
J Integr Plant Biol ; 62(6): 847-864, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31207036

ABSTRACT

Grain size is a major determinant of cereal grain yields; however, the relevant regulatory mechanisms controlling this trait have not been fully elucidated. The rice (Oryza sativa) mutant short grain6 (sg6) was identified based on its reduced grain length and weight. Here, we functionally characterized the role of SG6 in determining grain size through the regulation of spikelet hull cell division. SG6 encodes a previously uncharacterized plant AT-rich sequence and zinc-binding (PLATZ) protein that is ubiquitously localized throughout the cell and is preferentially expressed in the early developing panicles but not in the endosperm. The overexpression of SG6 resulted in significantly larger and heavier grains, as well as increased plant heights, which is consistent with its elevated spikelet hull cell division rate. Yeast two-hybrid analyses revealed that SG6 interacts with the core cell cycle machinery DP protein and several other putative cell division regulators, consistent with our transcriptomic analysis, which showed that SG6 activates the expression of many DNA replication and cell-cycle-related genes. These results confirm the crucial role of SG6 in determining grain size by regulating spikelet hull cell division and provide clues for understanding the functions of PLATZ family proteins and the network regulating cereal grain size.


Subject(s)
Cell Division , Oryza/anatomy & histology , Oryza/cytology , Plant Proteins/metabolism , Seeds/anatomy & histology , Seeds/cytology , Cell Cycle/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Organ Size , Oryza/genetics , Oryza/ultrastructure , Plant Proteins/genetics , Plants, Genetically Modified , Protein Binding , Seeds/ultrastructure
19.
Planta ; 249(6): 1731-1746, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30684036

ABSTRACT

MAIN CONCLUSION: While plant irrigation usually increases yield, irrigation also affects seed characteristics with respect to endoreplication level, chemical composition, number of carbonyl bands, and cuticular wax profiles. Seeds of sweet varieties of the narrow-leaved lupin have good nutritional properties; however, these plants are sensitive to water deficit. Irrigation improves lupin yield, but can affect seed characteristics. The purpose of the study was to evaluate irrigation influence on lupin seed features and their chemical composition. Morphological analyses showed worse quality of seeds from the irrigated plants, with regard to their size and weight. This was confirmed by cytophotometric analyses which revealed a lower DNA content in the nuclei of cells from the apical and basal regions of the irrigated seeds. The lower degree of polyploidy of the nuclei entails lower cell sizes and limited space for storage components. Fourier transform infrared spectroscopic analysis demonstrated that protein and cuticular wax profiles of the irrigated seeds were different from the control. The electrophoretic analyses indicated differences in protein profiles including changes in the proportion of lupin storage proteins. Among the various studied elements, only the nitrogen content decreased in the embryo axis of irrigated plants. Although germination dynamics of the irrigated seeds was higher, the seedlings' development rate was slightly lower than in the control. The hydrogen peroxide level in root meristem cells was higher during germination in the control suggesting its regulatory role in seed metabolism/signaling. Our study indicated that irrigation of lupin plant affected seed features and composition.


Subject(s)
Agricultural Irrigation , Hydrogen Peroxide/metabolism , Lupinus/physiology , Seeds/physiology , Cotyledon/genetics , Cotyledon/growth & development , Cotyledon/physiology , Cotyledon/ultrastructure , Endoreduplication , Germination , Lupinus/genetics , Lupinus/growth & development , Lupinus/ultrastructure , Meristem/genetics , Meristem/growth & development , Meristem/physiology , Meristem/ultrastructure , Microscopy, Electron, Scanning , Mitosis , Seed Storage Proteins , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seedlings/ultrastructure , Seeds/genetics , Seeds/growth & development , Seeds/ultrastructure , Spectroscopy, Fourier Transform Infrared
20.
New Phytol ; 221(2): 896-907, 2019 01.
Article in English | MEDLINE | ID: mdl-30168136

ABSTRACT

RNA editing plays an important role in organellar gene expression in plants, and pentatricopeptide repeat (PPR) proteins are involved in this function. Because of its large family size, many PPR proteins are not known for their function and roles in plant growth and development. Through genetic and molecular analyses of the empty pericarp18 (emp18) mutant in maize (Zea mays), we cloned the Emp18 gene, revealed its molecular function, and defined its role in the mitochondrial complex assembly and seed development. Emp18 encodes a mitochondrial-localized DYW-PPR protein. Null mutation of Emp18 arrests embryo and endosperm development at an early stage in maize, resulting in embryo lethality. Mutants are deficient in the cytidine (C)-to-uridine (U) editing at atp6-635 and cox2-449, which converts a Leu to Pro in ATP6 and a Met to Thr in Cox2. The atp6 gene encodes the subunit a of F1 Fo -ATPase. The Leu to Pro alteration disrupts an α-helix of subunit a, resulting in a dramatic reduction in assembly and activity of F1 Fo -ATPase holoenzyme and an accumulation of free F1 -subcomplex. These results demonstrate that EMP18 functions in the C-to-U editing of atp6 and cox2, and is essential to mitochondrial biogenesis and seed development in maize.


Subject(s)
Mitochondrial Proteins/metabolism , RNA Editing , Zea mays/genetics , Mitochondria/genetics , Mitochondria/physiology , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Mutation , Organelle Biogenesis , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Seeds/genetics , Seeds/growth & development , Seeds/ultrastructure , Zea mays/growth & development , Zea mays/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL