Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 289
Filter
1.
Immunity ; 44(6): 1455-69, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27332734

ABSTRACT

Aedes aegypti mosquitoes are responsible for transmitting many medically important viruses such as those that cause Zika and dengue. The inoculation of viruses into mosquito bite sites is an important and common stage of all mosquito-borne virus infections. We show, using Semliki Forest virus and Bunyamwera virus, that these viruses use this inflammatory niche to aid their replication and dissemination in vivo. Mosquito bites were characterized by an edema that retained virus at the inoculation site and an inflammatory influx of neutrophils that coordinated a localized innate immune program that inadvertently facilitated virus infection by encouraging the entry and infection of virus-permissive myeloid cells. Neutrophil depletion and therapeutic blockade of inflammasome activity suppressed inflammation and abrogated the ability of the bite to promote infection. This study identifies facets of mosquito bite inflammation that are important determinants of the subsequent systemic course and clinical outcome of virus infection.


Subject(s)
Arbovirus Infections/immunology , Bunyamwera virus/physiology , Inflammation/immunology , Insect Bites and Stings/immunology , Neutrophils/immunology , Semliki forest virus/physiology , Virus Replication , Animals , Cell Movement , Cells, Cultured , Culicidae/immunology , Humans , Immunity, Innate , Inflammasomes/metabolism , Inflammation/virology , Insect Bites and Stings/virology , Mice , Neutrophils/virology
2.
PLoS Pathog ; 17(5): e1009603, 2021 05.
Article in English | MEDLINE | ID: mdl-34019569

ABSTRACT

The positive-sense, single-stranded RNA alphaviruses pose a potential epidemic threat. Understanding the complex interactions between the viral and the host cell proteins is crucial for elucidating the mechanisms underlying successful virus replication strategies and for developing specific antiviral interventions. Here we present the first comprehensive protein-protein interaction map between the proteins of Semliki Forest Virus (SFV), a mosquito-borne member of the alphaviruses, and host cell proteins. Among the many identified cellular interactors of SFV proteins, the enrichment of factors involved in translation and nonsense-mediated mRNA decay (NMD) was striking, reflecting the virus' hijacking of the translation machinery and indicating viral countermeasures for escaping NMD by inhibiting NMD at later time points during the infectious cycle. In addition to observing a general inhibition of NMD about 4 hours post infection, we also demonstrate that transient expression of the SFV capsid protein is sufficient to inhibit NMD in cells, suggesting that the massive production of capsid protein during the SFV reproduction cycle is responsible for NMD inhibition.


Subject(s)
Alphavirus Infections/virology , Capsid Proteins/metabolism , Host-Pathogen Interactions , Nonsense Mediated mRNA Decay/genetics , Semliki forest virus/physiology , Capsid Proteins/genetics , HeLa Cells , Humans , Semliki forest virus/genetics , Virus Replication
3.
J Virol ; 95(14): e0043321, 2021 06 24.
Article in English | MEDLINE | ID: mdl-33952645

ABSTRACT

Negeviruses are a group of insect-specific viruses (ISVs) that have been found in many arthropods. Their presence in important vector species led us to examine their interactions with arboviruses during coinfections. Wild-type negeviruses reduced the replication of several alphaviruses during coinfections in mosquito cells. Negev virus (NEGV) isolates were also used to express green fluorescent protein (GFP) and anti-chikungunya virus (CHIKV) antibody fragments during coinfections with CHIKV. NEGV expressing anti-CHIKV antibody fragments was able to further reduce replication of CHIKV during coinfections, while reductions of CHIKV with NEGV expressing GFP were similar to titers with wild-type NEGV alone. These results are the first to show that negeviruses induce superinfection exclusion of arboviruses and to demonstrate a novel approach to deliver antiviral antibody fragments with paratransgenic ISVs. The ability to inhibit arbovirus replication and express exogenous proteins in mosquito cells makes negeviruses a promising platform for control of arthropod-borne pathogens. IMPORTANCE Negeviruses are a group of insect-specific viruses (ISVs), viruses known to infect only insects. They have been discovered over a wide geographical and species range. Their ability to infect mosquito species that transmit dangerous arboviruses makes negeviruses a candidate for a pathogen control platform. Coinfections of mosquito cells with a negevirus and an alphavirus demonstrated that negeviruses can inhibit the replication of alphaviruses. Additionally, modifying Negev virus (NEGV) to express a fragment of an anti-CHIKV antibody further reduced the replication of CHIKV in coinfected cells. This is the first evidence to demonstrate that negeviruses can inhibit the replication of important arboviruses in mosquito cells. The ability of a modified NEGV to drive the expression of antiviral proteins also highlights a method for negeviruses to target specific pathogens and limit the incidence of vector-borne diseases.


Subject(s)
Alphavirus/physiology , Insect Viruses/physiology , Virus Replication , Aedes/virology , Animals , Cells, Cultured , Chikungunya virus/physiology , Chlorocebus aethiops , Culex/virology , O'nyong-nyong Virus/physiology , Semliki forest virus/physiology , Vero Cells
4.
PLoS Pathog ; 15(6): e1007842, 2019 06.
Article in English | MEDLINE | ID: mdl-31199850

ABSTRACT

G3BP-1 and -2 (hereafter referred to as G3BP) are multifunctional RNA-binding proteins involved in stress granule (SG) assembly. Viruses from diverse families target G3BP for recruitment to replication or transcription complexes in order to block SG assembly but also to acquire pro-viral effects via other unknown functions of G3BP. The Old World alphaviruses, including Semliki Forest virus (SFV) and chikungunya virus (CHIKV) recruit G3BP into viral replication complexes, via an interaction between FGDF motifs in the C-terminus of the viral non-structural protein 3 (nsP3) and the NTF2-like domain of G3BP. To study potential proviral roles of G3BP, we used human osteosarcoma (U2OS) cell lines lacking endogenous G3BP generated using CRISPR-Cas9 and reconstituted with a panel of G3BP1 mutants and truncation variants. While SFV replicated with varying efficiency in all cell lines, CHIKV could only replicate in cells expressing G3BP1 variants containing both the NTF2-like and the RGG domains. The ability of SFV to replicate in the absence of G3BP allowed us to study effects of different domains of the protein. We used immunoprecipitation to demonstrate that that both NTF2-like and RGG domains are necessary for the formation a complex between nsP3, G3BP1 and the 40S ribosomal subunit. Electron microscopy of SFV-infected cells revealed that formation of nsP3:G3BP1 complexes via the NTF2-like domain was necessary for clustering of cytopathic vacuoles (CPVs) and that the presence of the RGG domain was necessary for accumulation of electron dense material containing G3BP1 and nsP3 surrounding the CPV clusters. Clustered CPVs also exhibited localised high levels of translation of viral mRNAs as detected by ribopuromycylation staining. These data confirm that G3BP is a ribosomal binding protein and reveal that alphaviral nsP3 uses G3BP to concentrate viral replication complexes and to recruit the translation initiation machinery, promoting the efficient translation of viral mRNAs.


Subject(s)
Carrier Proteins/metabolism , Chikungunya Fever/metabolism , Chikungunya virus/physiology , DNA Helicases/metabolism , Peptide Chain Initiation, Translational , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Semliki forest virus/physiology , Virus Replication , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/genetics , Cell Line, Tumor , Chikungunya Fever/genetics , Chikungunya Fever/pathology , Cricetinae , DNA Helicases/genetics , Humans , Poly-ADP-Ribose Binding Proteins/genetics , Protein Domains , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins , Ribosome Subunits, Small, Eukaryotic/genetics , Ribosome Subunits, Small, Eukaryotic/metabolism
5.
Arch Virol ; 166(4): 1015-1033, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33582855

ABSTRACT

Multiple sclerosis (MS) is a common inflammatory demyelinating disease of the central nervous system. Although the etiology of MS is unknown, genetics and environmental factors, such as infections, play a role. Viral infections of mice have been used as model systems to study this demyelinating disease of humans. Three viruses that have long been studied in this capacity are Theiler's murine encephalomyelitis virus, mouse hepatitis virus, and Semliki Forest virus. This review describes the viruses themselves, the infection process, the disease caused by infection and its accompanying pathology, and the model systems and their usefulness in studying MS.


Subject(s)
Disease Models, Animal , Multiple Sclerosis/pathology , Multiple Sclerosis/virology , RNA Virus Infections/pathology , RNA Virus Infections/virology , Animals , Central Nervous System/pathology , Central Nervous System/physiology , Central Nervous System/virology , Humans , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/physiopathology , Murine hepatitis virus/pathogenicity , Murine hepatitis virus/physiology , RNA Virus Infections/immunology , RNA Virus Infections/physiopathology , Semliki forest virus/pathogenicity , Semliki forest virus/physiology , Theilovirus/pathogenicity , Theilovirus/physiology
6.
J Virol ; 93(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31142668

ABSTRACT

Dynamin GTPases, best known for their role in membrane fission of endocytic vesicles, provide a target for viruses to be exploited during endocytic uptake. Recently, we found that entry of herpes simplex virus 1 (HSV-1) into skin cells depends on dynamin, although our results supported that viral internalization occurs via both direct fusion with the plasma membrane and via endocytic pathways. To further explore the role of dynamin for efficient HSV-1 entry, we utilized conditional dynamin 1 and dynamin 2 double-knockout (DKO) fibroblasts as an experimental tool. Strikingly, HSV-1 entered control and DKO fibroblasts with comparable efficiencies. For comparison, we infected DKO cells with Semliki Forest virus, which is known to adopt clathrin-mediated endocytosis as its internalization pathway, and observed efficient virus entry. These results support the notion that the DKO cells provide alternative pathways for viral uptake. Treatment of cells with the dynamin inhibitor dynasore confirmed that HSV-1 entry depended on dynamin in the control fibroblasts. As expected, dynasore did not interfere with viral entry into DKO cells. Electron microscopy of HSV-1-infected cells suggests viral entry after fusion with the plasma membrane and by endocytosis in both dynamin-expressing and dynamin-deficient cells. Infection at low temperatures where endocytosis is blocked still resulted in HSV-1 entry, although at a reduced level, which suggests that nonendocytic pathways contribute to successful entry. Overall, our results strengthen the impact of dynamin for HSV-1 entry, as only cells that adapt to the lack of dynamin allow dynamin-independent entry.IMPORTANCE The human pathogen herpes simplex virus 1 (HSV-1) can adapt to a variety of cellular pathways to enter cells. In general, HSV-1 is internalized by fusion of its envelope with the plasma membrane or by endocytic pathways, which reflects the high adaptation to differences in its target cells. The challenges are to distinguish whether multiple or only one of these internalization pathways leads to successful entry and, furthermore, to identify the mode of viral uptake. In this study, we focused on dynamin, which promotes endocytic vesicle fission, and explored how the presence and absence of dynamin can influence viral entry. Our results support the idea that HSV-1 entry into mouse embryonic fibroblasts depends on dynamin; however, depletion of dynamin still allows efficient viral entry, suggesting that alternative pathways present upon dynamin depletion can accomplish viral internalization.


Subject(s)
Dynamin II/genetics , Dynamin I/genetics , Fibroblasts/metabolism , Fibroblasts/virology , Herpes Simplex/genetics , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Virus Internalization , Animals , Cells, Cultured , Endocytosis , Gene Knockdown Techniques , Genetic Predisposition to Disease , Host-Pathogen Interactions/genetics , Humans , Mice , Semliki forest virus/physiology
7.
PLoS Pathog ; 14(1): e1006835, 2018 01.
Article in English | MEDLINE | ID: mdl-29377936

ABSTRACT

Virus reprogramming of cellular metabolism is recognised as a critical determinant for viral growth. While most viruses appear to activate central energy metabolism, different viruses have been shown to rely on alternative mechanisms of metabolic activation. Whether related viruses exploit conserved mechanisms and induce similar metabolic changes is currently unclear. In this work we investigate how two alphaviruses, Semliki Forest virus and Ross River virus, reprogram host metabolism and define the molecular mechanisms responsible. We demonstrate that in both cases the presence of a YXXM motif in the viral protein nsP3 is necessary for binding to the PI3K regulatory subunit p85 and for activating AKT. This leads to an increase in glucose metabolism towards the synthesis of fatty acids, although additional mechanisms of metabolic activation appear to be involved in Ross River virus infection. Importantly, a Ross River virus mutant that fails to activate AKT has an attenuated phenotype in vivo, suggesting that viral activation of PI3K/AKT contributes to virulence and disease.


Subject(s)
Alphavirus Infections/metabolism , Alphavirus Infections/virology , Alphavirus/physiology , Glucose/metabolism , Host-Pathogen Interactions , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Alphavirus/pathogenicity , Animals , Cells, Cultured , Cricetinae , Enzyme Activation , Glycolysis/physiology , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Ross River virus/physiology , Semliki forest virus/physiology , Virulence
8.
PLoS Pathog ; 14(1): e1006815, 2018 01.
Article in English | MEDLINE | ID: mdl-29370307

ABSTRACT

Introduced transinfections of the inherited bacteria Wolbachia can inhibit transmission of viruses by Aedes mosquitoes, and in Ae. aegypti are now being deployed for dengue control in a number of countries. Only three Wolbachia strains from the large number that exist in nature have to date been introduced and characterized in this species. Here novel Ae. aegypti transinfections were generated using the wAlbA and wAu strains. In its native Ae. albopictus, wAlbA is maintained at lower density than the co-infecting wAlbB, but following transfer to Ae. aegypti the relative strain density was reversed, illustrating the strain-specific nature of Wolbachia-host co-adaptation in determining density. The wAu strain also reached high densities in Ae. aegypti, and provided highly efficient transmission blocking of dengue and Zika viruses. Both wAu and wAlbA were less susceptible than wMel to density reduction/incomplete maternal transmission resulting from elevated larval rearing temperatures. Although wAu does not induce cytoplasmic incompatibility (CI), it was stably combined with a CI-inducing strain as a superinfection, and this would facilitate its spread into wild populations. Wolbachia wAu provides a very promising new option for arbovirus control, particularly for deployment in hot tropical climates.


Subject(s)
Aedes/microbiology , Aedes/virology , Antibiosis/physiology , Dengue Virus , Infectious Disease Transmission, Vertical/prevention & control , Wolbachia/physiology , Alphavirus Infections/microbiology , Alphavirus Infections/transmission , Alphavirus Infections/virology , Animals , Dengue Virus/pathogenicity , Female , Infectious Disease Transmission, Vertical/veterinary , Inheritance Patterns , Male , Pest Control, Biological , Semliki forest virus/pathogenicity , Semliki forest virus/physiology , Viral Load
9.
J Virol ; 92(14)2018 07 15.
Article in English | MEDLINE | ID: mdl-29695431

ABSTRACT

Polyprotein processing has an important regulatory role in the life cycle of positive-strand RNA viruses. In the case of alphaviruses, sequential cleavage of the nonstructural polyprotein (ns-polyprotein) at three sites eventually yields four mature nonstructural proteins (nsPs) that continue working in complex to replicate viral genomic RNA and transcribe subgenomic RNA. Recognition of cleavage sites by viral nsP2 protease is guided by short sequences upstream of the scissile bond and, more importantly, by the spatial organization of the replication complex. In this study, we analyzed the consequences of the artificially accelerated processing of the Semliki Forest virus ns-polyprotein. It was found that in mammalian cells, not only the order but also the correct timing of the cleavage events is essential for the success of viral replication. Analysis of the effects of compensatory mutations in rescued viruses as well as in vitro translation and trans-replicase assays corroborated our findings and revealed the importance of the V515 residue in nsP2 for recognizing the P4 position in the nsP1/nsP2 cleavage site. We also extended our conclusions to Sindbis virus by analyzing the properties of the hyperprocessive variant carrying the N614D mutation in nsP2. We conclude that the sequence of the nsP1/nsP2 site in alphaviruses is under selective pressure to avoid the presence of sequences that are recognized too efficiently and would otherwise lead to premature cleavage at this site before completion of essential tasks of RNA synthesis or virus-induced replication complex formation. Even subtle changes in the ns-polyprotein processing pattern appear to lead to virus attenuation.IMPORTANCE The polyprotein expression strategy is a cornerstone of alphavirus replication. Three sites within the ns-polyprotein are recognized by the viral nsP2 protease and cleaved in a defined order. Specific substrate targeting is achieved by the recognition of the short sequence upstream of the scissile bond and a correct macromolecular assembly of ns-polyprotein. Here, we highlighted the importance of the timeliness of proteolytic events, as an additional layer of regulation of efficient virus replication. We conclude that, somewhat counterintuitively, the cleavage site sequences at the nsP1/nsP2 and nsP2/nsP3 junctions are evolutionarily selected to be recognized by protease inefficiently, to avoid premature cleavages that would be detrimental for the assembly and functionality of the replication complex. Understanding the causes and consequences of viral polyprotein processing events is important for predicting the properties of mutant viruses and should be helpful for the development of better vaccine candidates and understanding potential mechanisms of resistance to protease inhibitors.


Subject(s)
Alphavirus Infections/virology , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Proteolysis , Semliki forest virus/physiology , Viral Nonstructural Proteins/metabolism , Alphavirus Infections/metabolism , Cells, Cultured , Genome, Viral , Kidney/virology , Mutation , RNA, Viral , Viral Nonstructural Proteins/genetics , Virus Replication
10.
Traffic ; 17(9): 997-1013, 2016 09.
Article in English | MEDLINE | ID: mdl-27219333

ABSTRACT

Interferon inducible transmembrane proteins (IFITMs) are broad-spectrum antiviral factors. In cell culture the entry of many enveloped viruses, including orthomyxo-, flavi-, and filoviruses, is inhibited by IFITMs, though the mechanism(s) involved remain unclear and may vary between viruses. We demonstrate that Sindbis and Semliki Forest virus (SFV), which both use endocytosis and acid-induced membrane fusion in early endosomes to infect cells, are restricted by the early endosomal IFITM3. The late endosomal IFITM2 is less restrictive and the plasma membrane IFITM1 does not inhibit normal infection by either virus. IFITM3 inhibits release of the SFV capsid into the cytosol, without inhibiting binding, internalization, trafficking to endosomes or low pH-induced conformational changes in the envelope glycoprotein. Infection by SFV fusion at the cell surface was inhibited by IFITM1, but was equally inhibited by IFITM3. Furthermore, an IFITM3 mutant (Y20A) that is localized to the plasma membrane inhibited infection by cell surface fusion more potently than IFITM1. Together, these results indicate that IFITMs, in particular IFITM3, can restrict alphavirus infection by inhibiting viral fusion with cellular membranes. That IFITM3 can restrict SFV infection by fusion at the cell surface equivalently to IFITM1 suggests that IFITM3 has greater antiviral potency against SFV.


Subject(s)
Antigens, Differentiation/metabolism , Endosomes/metabolism , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Semliki forest virus/physiology , Sindbis Virus/physiology , A549 Cells , Alphavirus Infections/metabolism , Alphavirus Infections/virology , Antigens, Differentiation/genetics , Endocytosis/physiology , Endosomes/virology , Humans , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , Virus Internalization
11.
J Virol ; 90(9): 4289-97, 2016 May.
Article in English | MEDLINE | ID: mdl-26865714

ABSTRACT

UNLABELLED: Alphaviruses are small enveloped RNA viruses that infect cells via clathrin-mediated endocytosis and low-pH-triggered fusion in the early endosome. Using a small interfering RNA (siRNA) screen in human cells, we previously identified TSPAN9 as a host factor that promotes infection by the alphaviruses Sindbis virus (SINV), Semliki Forest virus (SFV), and chikungunya virus (CHIKV). Depletion of TSPAN9 specifically decreases SFV membrane fusion in endosomes. TSPAN9 is a member of the tetraspanin family of multipass membrane proteins, but its cellular function is currently unknown. Here we used U-2 OS cells stably overexpressing TSPAN9 to show that TSPAN9 is localized at the plasma membrane and in early and late endosomes. Internalized SFV particles colocalized with TSPAN9 in vesicles early during infection. Depletion of TSPAN9 led to reductions in the amounts of the late endosomal proteins LAMP1 and CD63 and an increase in the amount of LAMP2. However, TSPAN9 depletion did not alter the delivery of SFV to early endosomes or change their pH or protease activity. Comparative studies showed that TSPAN9 depletion strongly inhibited infection by several viruses that fuse in early endosomes (SFV, SINV, CHIKV, and vesicular stomatitis virus [VSV]), while viruses that fuse in the late endosome (recombinant VSV-Lassa and VSV-Junin), including an SFV point mutant with a lower pH threshold for fusion (SFV E2 T12I), were relatively resistant. Our data suggest that TSPAN9 modulates the early endosome compartment to make it more permissive for membrane fusion of early-penetrating viruses. IMPORTANCE: Alphaviruses are spread by mosquitoes and can cause serious human diseases such as arthritis and encephalitis. Recent outbreaks of CHIKV infection are responsible for millions of cases of acute illness and long-term complications. There are no vaccines or antiviral treatments for these important human pathogens. Alphaviruses infect host cells by utilizing the endocytic machinery of the cell and fusing their membrane with that of the endosome. Although the mechanism of virus-membrane fusion is well studied, we still know relatively little about the host cell proteins that are involved in alphavirus entry. Here we characterized the role of the host membrane protein TSPAN9 in alphavirus infection. TSPAN9 was localized to early endosomes containing internalized alphavirus, and depletion of TSPAN9 inhibited virus fusion with the early endosome membrane. In contrast, infection of viruses that enter through the late endosome was relatively resistant to TSPAN9 depletion, suggesting an important role for TSPAN9 in the early endosome.


Subject(s)
Alphavirus Infections/genetics , Alphavirus Infections/virology , Alphavirus/physiology , Endosomes/virology , Host-Pathogen Interactions , Tetraspanins/genetics , Virus Internalization , Alphavirus Infections/metabolism , Cell Line , Cholesterol/metabolism , Endocytosis , Endosomes/metabolism , Gene Expression , Humans , Hydrogen-Ion Concentration , Intracellular Space , Peptide Hydrolases/metabolism , Protein Transport , Semliki forest virus/physiology , Tetraspanins/metabolism , Vesicular Transport Proteins/metabolism
12.
J Virol ; 90(3): 1687-92, 2016 02 01.
Article in English | MEDLINE | ID: mdl-26581991

ABSTRACT

The alphaviruses induce membrane invaginations known as spherules as their RNA replication sites. Here, we show that inactivation of any function (polymerase, helicase, protease, or membrane association) essential for RNA synthesis also prevents the generation of spherule structures in a Semliki Forest virus trans-replication system. Mutants capable of negative-strand synthesis, including those defective in RNA capping, gave rise to spherules. Recruitment of RNA to membranes in the absence of spherule formation was not detected.


Subject(s)
Cell Membrane/metabolism , RNA, Viral/metabolism , Semliki forest virus/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication
13.
J Gen Virol ; 97(6): 1395-1407, 2016 06.
Article in English | MEDLINE | ID: mdl-26953094

ABSTRACT

During virus multiplication, the viral genome is recognized and recruited for replication based on specific cis-acting elements. Here, we dissected the important cis-acting sequence elements in Semliki Forest virus RNA by using a trans-replication system. As the viral replicase is expressed from a separate plasmid, the template RNA can be freely modified in this system. We show that the cis-acting element at the beginning of the non-structural protein 1 (nsP1) coding region together with the end of the 3' UTR are the minimal requirements for minus-strand synthesis. To achieve a high level of replication, the native 5' UTR was also needed. The virus-induced membranous replication compartments (spherules) were only detected when a replication-competent template was present with an active replicase and minus strands were produced. No translation could be detected from the minus strands, suggesting that they are segregated from the cytoplasm. Minus strands could not be recruited directly to initiate the replication process. Thus, there is only one defined pathway for replication, starting with plus-strand recognition followed by concomitant spherule formation and minus-strand synthesis.


Subject(s)
RNA, Viral/biosynthesis , RNA, Viral/genetics , Semliki forest virus/genetics , Semliki forest virus/physiology , Virus Replication , Animals , Cell Line , Cricetinae , Protein Binding , Protein Biosynthesis , RNA-Dependent RNA Polymerase/metabolism , Transcription, Genetic
14.
J Virol ; 89(20): 10637-47, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26269187

ABSTRACT

UNLABELLED: Glioblastoma is a terminal disease with no effective treatment currently available. Among the new therapy candidates are oncolytic viruses capable of selectively replicating in cancer cells, causing tumor lysis and inducing adaptive immune responses against the tumor. However, tumor antiviral responses, primarily mediated by type I interferon (IFN-I), remain a key problem that severely restricts viral replication and oncolysis. We show here that the Semliki Forest virus (SFV) strain SFV4, which causes lethal encephalitis in mice, is able to infect and replicate independent of the IFN-I defense in mouse glioblastoma cells and cell lines originating from primary human glioblastoma patient samples. The ability to tolerate IFN-I was retained in SFV4-miRT124 cells, a derivative cell line of strain SFV4 with a restricted capacity to replicate in neurons due to insertion of target sites for neuronal microRNA 124. The IFN-I tolerance was associated with the viral nsp3-nsp4 gene region and distinct from the genetic loci responsible for SFV neurovirulence. In contrast to the naturally attenuated strain SFV A7(74) and its derivatives, SFV4-miRT124 displayed increased oncolytic potency in CT-2A murine astrocytoma cells and in the human glioblastoma cell lines pretreated with IFN-I. Following a single intraperitoneal injection of SFV4-miRT124 into C57BL/6 mice bearing CT-2A orthotopic gliomas, the virus homed to the brain and was amplified in the tumor, resulting in significant tumor growth inhibition and improved survival. IMPORTANCE: Although progress has been made in development of replicative oncolytic viruses, information regarding their overall therapeutic potency in a clinical setting is still lacking. This could be at least partially dependent on the IFN-I sensitivity of the viruses used. Here, we show that the conditionally replicating SFV4-miRT124 virus shares the IFN-I tolerance of the pathogenic wild-type SFV, thereby allowing efficient targeting of a glioma that is refractory to naturally attenuated therapy vector strains sensitive to IFN-I. This is the first evidence of orthotopic syngeneic mouse glioma eradication following peripheral alphavirus administration. Our findings indicate a clear benefit in harnessing the wild-type virus replicative potency in development of next-generation oncolytic alphaviruses.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Interferon Type I/immunology , MicroRNAs/immunology , Oncolytic Viruses/physiology , Semliki forest virus/physiology , Aged , Animals , Brain Neoplasms/immunology , Brain Neoplasms/mortality , Brain Neoplasms/virology , Cell Line, Tumor , Clone Cells , Drug Resistance, Neoplasm , Female , Gene Expression Regulation , Glioblastoma/immunology , Glioblastoma/mortality , Glioblastoma/virology , Humans , Interferon Type I/genetics , Male , Mice , MicroRNAs/genetics , Neurons/immunology , Neurons/pathology , Neurons/virology , Oncolytic Virotherapy/methods , Signal Transduction , Survival Analysis , Tumor Burden , Virus Replication
15.
J Immunol ; 192(3): 1171-83, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24391214

ABSTRACT

Semliki Forest virus (SFV) requires RNA replication and Bax/Bak for efficient apoptosis induction. However, cells lacking Bax/Bak continue to die in a caspase-dependent manner. In this study, we show in both mouse and human cells that this Bax/Bak-independent pathway involves dsRNA-induced innate immune signaling via mitochondrial antiviral signaling (MAVS) and caspase-8. Bax/Bak-deficient or Bcl-2- or Bcl-xL-overexpressing cells lacking MAVS or caspase-8 expression are resistant to SFV-induced apoptosis. The signaling pathway triggered by SFV does neither involve death receptors nor the classical MAVS effectors TNFR-associated factor-2, IRF-3/7, or IFN-ß but the physical interaction of MAVS with caspase-8 on mitochondria in a FADD-independent manner. Consistently, caspase-8 and -3 activation are reduced in MAVS-deficient cells. Thus, after RNA virus infection MAVS does not only elicit a type I antiviral response but also recruits caspase-8 to mitochondria to mediate caspase-3 activation and apoptosis in a Bax/Bak-independent manner.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Apoptosis/physiology , Caspase 8/physiology , Cytopathogenic Effect, Viral/physiology , Mitochondria/physiology , Semliki forest virus/physiology , Animals , Caspase 3/metabolism , DEAD-box RNA Helicases/physiology , Enzyme Activation , Fas-Associated Death Domain Protein/physiology , Fibroblasts/virology , HEK293 Cells/virology , HeLa Cells/virology , Humans , Interferon-Induced Helicase, IFIH1 , Mice , Mitochondria/enzymology , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Interference , RNA, Viral/genetics , Signal Transduction , Virus Replication , bcl-X Protein/metabolism
16.
Methods ; 90: 49-56, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-25916619

ABSTRACT

Electron microscopy (EM) is a powerful tool to study structural changes within cells caused e.g. by ectopic protein expression, gene silencing or virus infection. Correlative light and electron microscopy (CLEM) has proven to be useful in cases when it is problematic to identify a particular cell among a majority of unaffected cells at the EM level. In this technique the cells of interest are first identified by fluorescence microscopy and then further processed for EM. CLEM has become crucial when studying positive-strand RNA virus replication, as it takes place in nanoscale replication sites on specific cellular membranes. Here we have employed CLEM for Semliki Forest virus (SFV) replication studies both by transfecting viral replication components to cells or by infecting different cell types. For the transfection-based system, we developed an RNA template that can be detected in the cells even in the absence of replication and thus allows exploration of lethal mutations in viral proteins. In infected mammalian and mosquito cells, we were able to find replication-positive cells by using a fluorescently labeled viral protein even in the cases of low infection efficiency. The fluorescent region within these cells was shown to correspond to an area rich in modified membranes. These results show that CLEM is a valuable technique for studying virus replication and membrane modifications at the ultrastructural level.


Subject(s)
Microscopy, Electron/methods , Semliki forest virus/ultrastructure , Virus Replication , Aedes/virology , Animals , Cell Line , Cricetinae , Host-Pathogen Interactions , Microscopy, Fluorescence , Semliki forest virus/physiology
17.
J Gen Virol ; 96(9): 2693-2696, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26297236

ABSTRACT

Viruses are obligate intracellular pathogens which rely on the cell's machinery to produce the energy and macromolecules required for replication. Infection is associated with a modified metabolic profile and one pathway which can be modified is glycolysis. In this study, we investigated if the glycolysis pathway is required for alphavirus replication. Pre-treatment of Vero cells with three different glycolysis inhibitors (2-deoxyglucose, lonidamine and oxamate) resulted in a significant reduction (but not abrogation) of Semliki Forest virus and Sindbis virus replication, but not of the unrelated virus, vaccinia virus. Reduced virus yield was not associated with any significant cytotoxic effect and delayed treatment up to 3 h post-infection still resulted in a significant reduction. This suggested that glycolysis is required for optimal replication of alphaviruses by supporting post-entry life cycle steps.


Subject(s)
Alphavirus Infections/metabolism , Semliki forest virus/physiology , Sindbis Virus/physiology , Vaccinia virus/physiology , Vaccinia/metabolism , Virus Replication , Alphavirus Infections/virology , Animals , Cell Line , Glycolysis , Humans , Semliki forest virus/genetics , Sindbis Virus/genetics , Vaccinia/virology , Vaccinia virus/genetics
18.
J Virol ; 88(10): 5888-93, 2014 May.
Article in English | MEDLINE | ID: mdl-24623412

ABSTRACT

The Old World alphaviruses block stress granule assembly by sequestration of RasGAP SH3-domain binding protein (G3BP). Here, we show that the proline-rich sequences in the hypervariable domain of nonstructural protein 3 (nsP3) of both Semliki Forest virus and Chikungunya virus were dispensable for binding to G3BP. nsP3 variants with or without this domain colocalized with G3BP. Furthermore, we show that the C-terminal repeat motifs of nsP3 were sufficient for G3BP binding.


Subject(s)
Chikungunya virus/physiology , Host-Pathogen Interactions , Semliki forest virus/physiology , Viral Nonstructural Proteins/metabolism
19.
PLoS Pathog ; 9(9): e1003610, 2013.
Article in English | MEDLINE | ID: mdl-24039580

ABSTRACT

Type I interferons (IFN) are important for antiviral responses. Melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-induced gene I (RIG-I) proteins detect cytosolic double-stranded RNA (dsRNA) or 5'-triphosphate (5'-ppp) RNA and mediate IFN production. Cytosolic 5'-ppp RNA and dsRNA are generated during viral RNA replication and transcription by viral RNA replicases [RNA-dependent RNA polymerases (RdRp)]. Here, we show that the Semliki Forest virus (SFV) RNA replicase can induce IFN-ß independently of viral RNA replication and transcription. The SFV replicase converts host cell RNA into 5'-ppp dsRNA and induces IFN-ß through the RIG-I and MDA-5 pathways. Inactivation of the SFV replicase RdRp activity prevents IFN-ß induction. These IFN-inducing modified host cell RNAs are abundantly produced during both wild-type SFV and its non-pathogenic mutant infection. Furthermore, in contrast to the wild-type SFV replicase a non-pathogenic mutant replicase triggers increased IFN-ß production, which leads to a shutdown of virus replication. These results suggest that host cells can restrict RNA virus replication by detecting the products of unspecific viral replicase RdRp activity.


Subject(s)
Alphavirus Infections/metabolism , DEAD-box RNA Helicases/metabolism , RNA, Double-Stranded/biosynthesis , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/metabolism , Semliki forest virus/physiology , Viral Proteins/metabolism , Virus Replication/physiology , Alphavirus Infections/genetics , Animals , Cell Line , DEAD Box Protein 58 , DEAD-box RNA Helicases/genetics , Humans , Interferon-Induced Helicase, IFIH1 , Interferon-beta/genetics , Interferon-beta/metabolism , Mice , RNA, Double-Stranded/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Receptors, Immunologic , Viral Proteins/genetics
20.
PLoS Pathog ; 9(12): e1003835, 2013.
Article in English | MEDLINE | ID: mdl-24367265

ABSTRACT

The enveloped alphaviruses include important and emerging human pathogens such as Chikungunya virus and Eastern equine encephalitis virus. Alphaviruses enter cells by clathrin-mediated endocytosis, and exit by budding from the plasma membrane. While there has been considerable progress in defining the structure and function of the viral proteins, relatively little is known about the host factors involved in alphavirus infection. We used a genome-wide siRNA screen to identify host factors that promote or inhibit alphavirus infection in human cells. Fuzzy homologue (FUZ), a protein with reported roles in planar cell polarity and cilia biogenesis, was required for the clathrin-dependent internalization of both alphaviruses and the classical endocytic ligand transferrin. The tetraspanin membrane protein TSPAN9 was critical for the efficient fusion of low pH-triggered virus with the endosome membrane. FUZ and TSPAN9 were broadly required for infection by the alphaviruses Sindbis virus, Semliki Forest virus, and Chikungunya virus, but were not required by the structurally-related flavivirus Dengue virus. Our results highlight the unanticipated functions of FUZ and TSPAN9 in distinct steps of alphavirus entry and suggest novel host proteins that may serve as targets for antiviral therapy.


Subject(s)
Alphavirus Infections/genetics , Alphavirus/physiology , Endocytosis/genetics , Host-Pathogen Interactions/genetics , RNA Interference , Virus Internalization , Alphavirus Infections/virology , Animals , Cells, Cultured , Chikungunya virus/physiology , Cricetinae , Endocytosis/drug effects , Genome, Human , HeLa Cells , Host-Pathogen Interactions/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/virology , Humans , RNA, Small Interfering/genetics , Semliki forest virus/physiology , Sindbis Virus/physiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL