Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
1.
BMC Bioinformatics ; 25(1): 66, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347515

ABSTRACT

BACKGROUND: DNA methylation is one of the most stable and well-characterized epigenetic alterations in humans. Accordingly, it has already found clinical utility as a molecular biomarker in a variety of disease contexts. Existing methods for clinical diagnosis of methylation-related disorders focus on outlier detection in a small number of CpG sites using standardized cutoffs which differentiate healthy from abnormal methylation levels. The standardized cutoff values used in these methods do not take into account methylation patterns which are known to differ between the sexes and with age. RESULTS: Here we profile genome-wide DNA methylation from blood samples drawn from within a cohort composed of healthy controls of different age and sex alongside patients with Prader-Willi syndrome (PWS), Beckwith-Wiedemann syndrome, Fragile-X syndrome, Angelman syndrome, and Silver-Russell syndrome. We propose a Generalized Additive Model to perform age and sex adjusted outlier analysis of around 700,000 CpG sites throughout the human genome. Utilizing z-scores among the cohort for each site, we deployed an ensemble based machine learning pipeline and achieved a combined prediction accuracy of 0.96 (Binomial 95% Confidence Interval 0.868[Formula: see text]0.995). CONCLUSION: We demonstrate a method for age and sex adjusted outlier detection of differentially methylated loci based on a large cohort of healthy individuals. We present a custom machine learning pipeline utilizing this outlier analysis to classify samples for potential methylation associated congenital disorders. These methods are able to achieve high accuracy when used with machine learning methods to classify abnormal methylation patterns.


Subject(s)
Beckwith-Wiedemann Syndrome , Silver-Russell Syndrome , Humans , Genomic Imprinting , DNA Methylation , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Supervised Machine Learning
2.
Int J Med Sci ; 21(1): 8-18, 2024.
Article in English | MEDLINE | ID: mdl-38164354

ABSTRACT

Background: Silver-Russell syndrome (SRS; OMIM #180860) is a clinically and genetically heterogeneous imprinting disorder characterized by prenatal and postnatal growth failure. The aim of this study was to identify the epigenotype-phenotype correlations in these patients using quantitative DNA methylation analysis. Methods: One hundred and eighty-three subjects clinically suspected of having SRS were referred for diagnostic testing by the methylation profiling of H19-associated imprinting center (IC) 1 and imprinted PEG1/MEST regions using methylation-specific high-resolution melting analysis and methylation quantification with the MassARRAY assay. Correlations between quantitative DNA methylation status and clinical manifestations of the subjects according to the Netchine-Harbison (N-H) clinical scoring system for SRS were analyzed. Results: Among the 183 subjects, 90 had a clinical diagnosis of SRS [N-H score ≥ 4 (maximum = 6)] and 93 had an SRS score < 4. Molecular lesions were detected in 41% (37/90) of the subjects with a clinical diagnosis of SRS, compared with 3% (3/93) of those with an N-H score < 4. The IC1 methylation level was negatively correlated with the N-H score. The molecular diagnosis rate was positively correlated with the N-H score. Thirty-one subjects had IC1 hypomethylation (IC1 methylation level <35% by the MassARRAY assay), seven had maternal uniparental disomy 7, and two had pathogenic copy number variants. Among the 90 subjects with an N-H score ≥ 4, the IC1 methylation level was significantly different between those with or without some clinical SRS features, including birth length ≤ 10th centile, relative macrocephaly at birth, normal cognitive development, body asymmetry, clinodactyly of the fifth finger, and genital abnormalities. Conclusions: This study confirmed the suitability of the N-H clinical scoring system as clinical diagnostic criteria for SRS. Quantitative DNA methylation analysis using the MassARRAY assay can improve the detection of epigenotype-phenotype correlations, further promoting better genetic counseling and multidisciplinary management for these patients.


Subject(s)
Imprinting Disorders , Silver-Russell Syndrome , Infant, Newborn , Female , Pregnancy , Humans , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Silver-Russell Syndrome/pathology , DNA Methylation/genetics , Phenotype , Uniparental Disomy/genetics
3.
J Med Genet ; 60(2): 134-136, 2023 02.
Article in English | MEDLINE | ID: mdl-35772847

ABSTRACT

BACKGROUND: Imprinting centre 2 (IC2) in the chromosomal region 11p15.5 regulates the monoallelic expression of imprinted genes by differential methylation of paternal and maternal chromosomes. Copy number variants in IC2 are associated with Beckwith-Wiedemann syndrome and Silver-Russell syndrome (SRS). Clinical outcome of IC2 deletions seems to depend on the parental origin of the chromosome, deletion size and inclusion or exclusion of enhancer and promoter regions. RESULTS: A paternally inherited 132 bp deletion within the KCNQ1OT1 gene was found in a proband with an SRS clinical phenotype. The patient's father and paternal grandmother, who both carry the deletion on their maternal chromosome, are unaffected. Review of other IC2 deletions and their associated clinical presentation was useful in understanding the genetic-phenotypic correlation. CONCLUSION: Only six cases have been reported with deletions involving exclusively IC2, one being identical to our proband's 132 bp deletion. Our study, which is based on more extensive segregation data than the previous 132 bp deletion report, confirms the association of this deletion with growth restriction when paternally inherited. Remarkably, even though our patient has the same deletion, he has more pronounced phenotypic features; our findings thus suggest that some degree of clinical variability may be associated with this loss.


Subject(s)
Beckwith-Wiedemann Syndrome , RNA, Long Noncoding , Silver-Russell Syndrome , Humans , Male , Beckwith-Wiedemann Syndrome/genetics , DNA Methylation/genetics , Genomic Imprinting/genetics , Phenotype , Silver-Russell Syndrome/genetics , Female , RNA, Long Noncoding/genetics
4.
Cytogenet Genome Res ; 163(1-2): 32-35, 2023.
Article in English | MEDLINE | ID: mdl-37369188

ABSTRACT

Optical genome mapping (OGM) appears as a new tool for matching standard cytogenetic methods (karyotype and microarray) into a single assay. The chromosomal region 11p15.5 harbours two differentially methylated regions, the imprinting centre regions 1 and 2 (ICR1, ICR2). Disturbances in both regions alter human growth and are associated with two imprinting disorders, Beckwith-Wiedemann (BWS) and Silver-Russell syndromes. Herein, we present a prenatal case with a triplication in 11p15.5, including the H19/IGF2 imprinted region, detected by microarray and OGM. A 30-year-old pregnant woman of 17 weeks of gestation was referred for prenatal karyotype and microarray study because of increased nuchal translucency, short femur, megabladder, hyperechogenic bowel, and renal ectasia. Microarray, OGM, and MS-MLPA were performed, and a tandem cis-triplication in 11p15.5 and hypermethylation of the ICR1 region, compatible with BWS was detected. OGM, with its power to detect all classes of structural variants, including copy number variants, at a higher resolution than traditional cytogenetic methods can play a significant role in prenatal care and management as a next-generation cytogenomic tool. This study further supports the hypotheses that the amplification/duplication-triplication of the H19/IGF2 region could be related to BWS if it is of paternal origin.


Subject(s)
Beckwith-Wiedemann Syndrome , Silver-Russell Syndrome , Pregnancy , Female , Humans , Adult , Genomic Imprinting , Beckwith-Wiedemann Syndrome/genetics , Beckwith-Wiedemann Syndrome/diagnosis , DNA Methylation/genetics , Silver-Russell Syndrome/genetics , Chromosome Mapping , Insulin-Like Growth Factor II/genetics
5.
Eur J Pediatr ; 182(6): 2607-2614, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36947243

ABSTRACT

Genetic syndromes often show facial features that provide clues for the diagnosis. However, memorizing these features is a challenging task for clinicians. In the last years, the app Face2Gene proved to be a helpful support for the diagnosis of genetic diseases by analyzing features detected in one or more facial images of affected individuals. Our aim was to evaluate the performance of the app in patients with Silver-Russell syndrome (SRS) and Prader-Willi syndrome (PWS). We enrolled 23 pediatric patients with clinically or genetically diagnosed SRS and 29 pediatric patients with genetically confirmed PWS. One frontal photo of each patient was acquired. Top 1, top 5, and top 10 sensitivities were analyzed. Correlation with the specific genetic diagnosis was investigated. When available, photos of the same patient at different ages were compared. In the SRS group, Face2Gene showed top 1, top 5, and top 10 sensitivities of 39%, 65%, and 91%, respectively. In 41% of patients with genetically confirmed SRS, SRS was the first syndrome suggested, while in clinically diagnosed patients, SRS was suggested as top 1 in 33% of cases (p = 0.74). Face2Gene performed better in younger patients with SRS: in all patients in whom a photo taken at a younger age than the age of enrollment was available, SRS was suggested as top 1, albeit with variable degree of probability. In the PWS group, the top 1, top 5, and top 10 sensitivities were 76%, 97%, and 100%, respectively. PWS was suggested as top 1 in 83% of patients genetically diagnosed with paternal deletion of chromosome 15q11-13 and in 60% of patients presenting with maternal uniparental disomy of chromosome 15 (p = 0.17). The performance was uniform throughout the investigated age range (1-15 years). CONCLUSION: In addition to a thorough medical history and detailed clinical examination, the Face2Gene app can be a useful tool to support clinicians in identifying children with a potential diagnosis of SRS or PWS. WHAT IS KNOWN: • Several genetic syndromes present typical facial features that may provide clues for the diagnosis. • Memorizing all syndromic facial characteristics is a challenging task for clinicians. WHAT IS NEW: • Face2Gene may represent a useful support for pediatricians for the diagnosis of genetic syndromes. • Face2Gene app can be a useful tool to integrate in the diagnostic path of patients with SRS and PWS.


Subject(s)
Prader-Willi Syndrome , Silver-Russell Syndrome , Humans , Child , Infant , Child, Preschool , Adolescent , Prader-Willi Syndrome/diagnosis , Prader-Willi Syndrome/genetics , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Family , Computers , Chromosomes, Human, Pair 15/genetics
6.
Prenat Diagn ; 43(6): 724-726, 2023 06.
Article in English | MEDLINE | ID: mdl-37165482

ABSTRACT

We report a case of maternally inherited autosomal dominant PLAG-1 related Silver Russell syndrome (SRS) in a fetus with IUGR and a mother who had growth and feeding problems in early life, dextrocardia and an atrio-ventricular septal defect. Amniocentesis was performed due to marked intra-uterine growth restriction (IUGR). The array was normal. Whole exome sequencing (WES) revealed a maternally inherited heterozygous likely pathogenic variant in PLAG1 (NM_002655.3): c.402delT p.(Gly135Aspfs*94). This variant has not been reported previously. PLAG1 pathogenic variants are associated with autosomal dominant Silver Russell syndrome, which fits with the clinical phenotypes of both fetus and mother. PLAG1 variants have previously been reported post-natally in Silver Russell syndrome, but the phenotype tends to be milder than in 11p15.5 methylation-related cases with fewer physical features. Although cardiac anomalies are uncommon in SRS, they have been previously reported. To our knowledge, dextrocardia has not been previously associated with SRS and there were no other potential causative genetic variants found. This report aims to highlight this rare type of SRS as a cause of IUGR.


Subject(s)
Dextrocardia , Silver-Russell Syndrome , Humans , Female , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , DNA Methylation , Maternal Inheritance , Fetal Growth Retardation/diagnosis , Fetal Growth Retardation/genetics , Phenotype , Fetus , Dextrocardia/genetics
7.
J Med Genet ; 59(6): 613-622, 2022 06.
Article in English | MEDLINE | ID: mdl-34135092

ABSTRACT

BACKGROUND: Silver-Russell syndrome (SRS) is an imprinting disorder characterised by prenatal and postnatal growth restriction, but its clinical features are non-specific and its differential diagnosis is broad. Known molecular causes of SRS include imprinting disturbance, single nucleotide variant (SNV), CNV or UPD affecting several genes; however, up to 40% of individuals with a clinical diagnosis of SRS currently receive no positive molecular diagnosis. METHODS: To determine whether whole-genome sequencing (WGS) could uncover pathogenic variants missed by current molecular testing, we analysed data of 72 participants recruited to the 100,000 Genomes Project within the clinical category of SRS. RESULTS: In 20 participants (27% of the cohort) we identified genetic variants plausibly accounting for SRS. Coding SNVs were identified in genes including CDKN1C, IGF2, IGF1R and ORC1. Maternal-effect variants were found in mothers of five participants, including two participants with imprinting disturbance and one with multilocus imprinting disorder. Two regions of homozygosity were suggestive of UPD involving imprinted regions implicated in SRS and Temple syndrome, and three plausibly pathogenic CNVs were found, including a paternal deletion of PLAGL1. In 48 participants with no plausible pathogenic variant, unbiased analysis of SNVs detected a potential association with STX4. CONCLUSION: WGS analysis can detect UPD, CNV and SNV and is potentially a valuable addition to diagnosis of SRS and related growth-restricting disorders.


Subject(s)
Abnormalities, Multiple , Silver-Russell Syndrome , Abnormalities, Multiple/genetics , DNA Methylation , Female , Genomic Imprinting/genetics , Humans , Maternal Inheritance , Pregnancy , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Uniparental Disomy
8.
J Med Genet ; 59(12): 1241-1246, 2022 12.
Article in English | MEDLINE | ID: mdl-35906012

ABSTRACT

BACKGROUND: Two imprinting control centres, H19/IGF2:IG-differentialy methylated region (DMR) and KCNQ1OT1:TSS-DMR, reside on chromosome 11p15.5. Paternal deletions involving the KCNQ1OT1:TSS-DMR result in variable phenotypes, namely, normal phenotype, Silver-Russel syndrome (SRS) and fetal demise. However, expression analyses for CDKN1C in these patients are very limited. CASES: Patient 1 (adult woman) and patient 2 (boy in early childhood) showed prenatal and postnatal growth failure and clinical suspicion of SRS. MOLECULAR ANALYSES: Both patients showed hypermethylation of the KCNQ1OT1:TSS-DMR caused by the paternal heterozygous de novo deletions involving the KCNQ1OT1:TSS-DMR, but not including CDKN1C enhancers. The deletion sizes were 5 kb and 12 kb for patients 1 and 2, respectively. CDKN1C gene expressions in immortalised leucocytes of both patients were increased compared with those of controls. CONCLUSION: Paternal deletions involving the KCNQ1OT1:TSS-DMR, but not including CDKN1C enhancers, disrupt KCNQ1OT1 expression, strongly activate CDKN1C expression and consequently cause severe growth failure.


Subject(s)
RNA, Long Noncoding , Silver-Russell Syndrome , Pregnancy , Female , Humans , Child, Preschool , Genomic Imprinting/genetics , Paternal Inheritance , Silver-Russell Syndrome/genetics , DNA Methylation/genetics , Phenotype , Failure to Thrive/genetics , RNA, Long Noncoding/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics
9.
J Hum Genet ; 67(10): 607-611, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35606504

ABSTRACT

Silver-Russel syndrome (SRS) is a representative imprinting disorder (ID) characterized by growth failure and diagnosed by clinical features. Recently, international consensus has recommended using the Netchine-Harbison clinical scoring system (NH-CSS) as clinical diagnostic criteria. Loss of methylation of H19/IGF2:intergenic differentially methylated region (H19LOM) and maternal uniparental disomy chromosome 7 (UPD(7)mat) are common etiologies of SRS; however, other IDs, pathogenic variants (PVs) of genes, and pathogenic copy number variants (PCNVs) have been reported in patients meeting NH-CSS. To clarify the frequency and clinical characteristics of each etiology, we conducted (epi)genetic analysis in 173 patients satisfying NH-CSS. H19LOM and UPD(7)mat were identified in 34.1%. PCNVs, other IDs, and PVs were in 15.0%. Patients with all six NH-CSS items were most frequently observed with H19LOM and UPD(7)mat. This study confirmed the suitability of NH-CSS as clinical diagnostic criteria, the (epi)genetic heterogeneity of SRS, and showed the necessity of further discussion regarding the "SRS spectrum".


Subject(s)
Silver-Russell Syndrome , DNA Copy Number Variations , DNA Methylation , Genomic Imprinting , Humans , Phenotype , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Uniparental Disomy/genetics
10.
Clin Endocrinol (Oxf) ; 97(3): 284-292, 2022 09.
Article in English | MEDLINE | ID: mdl-35261046

ABSTRACT

OBJECTIVE: Silver-Russell syndrome (SRS) causes short stature. Growth hormone (GH) treatment aims to increase adult height. However, data are limited on the long-term outcomes of GH in patients with molecularly confirmed SRS. This study evaluated height, body mass index (BMI) and GH treatment in molecularly confirmed SRS. DESIGN: An observational study with retrospective data collection. PATIENTS: Individuals with molecularly confirmed SRS aged ≥13 years. MEASUREMENTS: Data were collected on height, height gain (change in height standard deviation score [SDS] from childhood to final or near-final height), BMI and gain in BMI (from childhood to adulthood) and previous GH treatment. RESULTS: Seventy-one individuals (40 female) were included. The median age was 22.0 years (range 13.2-69.7). The molecular diagnoses: H19/IGF2:IG-DMR LOM in 80.3% (57/71); upd(7)mat in 16.9% (12/71) and IGF2 mutation in 2.8% (2/71). GH treatment occurred in 77.5% (55/71). Total height gain was greater in GH-treated individuals (median 1.53 SDS vs. 0.53 SDS, p = .007), who were shorter at treatment initiation (-3.46 SDS vs. -2.91 SDS, p = .04) but reached comparable heights to GH-untreated individuals (-2.22 SDS vs. -2.74 SDS, p = .7). In GH-treated individuals, BMI SDS was lower at the most recent assessment (median -1.10 vs. 1.66, p = .002) with lower BMI gain (2.01 vs. 3.58, p = .006) despite similar early BMI SDS to GH-untreated individuals (median -2.65 vs. -2.78, p = .3). CONCLUSIONS: These results support the use of GH in SRS for increasing height SDS. GH treatment was associated with lower adult BMI which may reflect improved metabolic health even following discontinuation of therapy.


Subject(s)
Body Height , Body Mass Index , Human Growth Hormone , Silver-Russell Syndrome , Adolescent , Adult , Aged , Female , Human Growth Hormone/therapeutic use , Humans , Male , Middle Aged , Retrospective Studies , Silver-Russell Syndrome/drug therapy , Young Adult
11.
Am J Med Genet A ; 188(8): 2421-2428, 2022 08.
Article in English | MEDLINE | ID: mdl-35593535

ABSTRACT

Maternal uniparental disomy of human chromosome 7 [upd(7)mat] is well-characterized as a cause of the growth disorder Silver-Russell syndrome (SRS). However, the causative gene is not currently known. There is growing evidence that molecular changes at the imprinted MEST region in 7q32.2 are associated with a phenotype evocative of SRS. This report details a patient with a SRS-like phenotype and a paternally inherited microdeletion of 79 kilobases (35-fold smaller than the previously reported smallest deletion) in the 7q32.2 region. This microdeletion encompasses only five genes, including MEST, which corroborates the hypothesis that MEST plays a central role in the 7q32.2 microdeletion growth disorder, as well as further implicating MEST in upd(7)mat SRS itself.


Subject(s)
Silver-Russell Syndrome , Chromosomes, Human, Pair 7/genetics , Genomic Imprinting , Growth Disorders/genetics , Humans , Paternal Inheritance , Phenotype , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Uniparental Disomy/genetics
12.
Am J Med Genet A ; 188(6): 1896-1903, 2022 06.
Article in English | MEDLINE | ID: mdl-35266280

ABSTRACT

Beckwith-Wiedemann syndrome (BWS) and Temple syndrome (TS) are classical imprinting disorders (IDs) with nonconfluent clinical features. We report here on a patient with clinical features of both syndromes, in whom epimutations were found at the BWS and TS imprinted regions, consistent with multilocus imprinting disturbance (MLID). This is the first case report of a patient with clinical features of both conditions who was found to have loss of methylation (LOM) of KCNQ1OT1: TSS-DMR (ICR2) in the 11p15 imprinted region associated with BWS and LOM of MEG3: TSS-DMR in the 14q32 imprinted region associated with TS. The report draws attention to the importance of testing for MLID as a cause of atypical clinical presentations of patients with IDs.


Subject(s)
Beckwith-Wiedemann Syndrome , Silver-Russell Syndrome , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , DNA Methylation , Genomic Imprinting/genetics , Humans , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Uniparental Disomy/genetics
13.
J Med Genet ; 58(6): 427-432, 2021 06.
Article in English | MEDLINE | ID: mdl-32576657

ABSTRACT

BACKGROUND: ZNF597, encoding a zinc-finger protein, is the human-specific maternally expressed imprinted gene located on 16p13.3. The parent-of-origin expression of ZNF597 is regulated by the ZNF597:TSS-DMR, of which only the paternal allele acquires methylation during postimplantation period. Overexpression of ZNF597 may contribute to some of the phenotypes associated with maternal uniparental disomy of chromosome 16 (UPD(16)mat), and some patients with UPD(16)mat presenting with Silver-Russell syndrome (SRS) phenotype have recently been reported. METHODS: A 6-year-old boy presented with prenatal growth restriction, macrocephaly at birth, forehead protrusion in infancy and clinodactyly of the fifth finger. Methylation, expression, microsatellite marker, single nucleotide polymorphism array and trio whole-exome sequencing analyses were conducted. RESULTS: Isolated hypomethylation of the ZNF597:TSS-DMR and subsequent loss of imprinting and overexpression of ZNF597 were confirmed in the patient. Epigenetic alterations, such as UPD including UPD(16)mat and other methylation defects, were excluded. Pathogenic sequence or copy number variants affecting his phenotypes were not identified, indicating that primary epimutation occurred postzygotically. CONCLUSION: We report the first case of isolated ZNF597 imprinting defect, showing phenotypic overlap with SRS despite not satisfying the clinical SRS criteria. A novel imprinting disorder entity involving the ZNF597 imprinted domain can be speculated.


Subject(s)
Abnormalities, Multiple/genetics , Fetal Growth Retardation/genetics , Genomic Imprinting , Transcription Factors/genetics , Child , DNA Methylation , Humans , Male , Silver-Russell Syndrome/genetics
14.
J Med Genet ; 58(3): 173-176, 2021 03.
Article in English | MEDLINE | ID: mdl-32447323

ABSTRACT

BACKGROUND: The chromosomal region 11p15.5 harbours two imprinting centres (H19/IGF2:IG-DMR/IC1, KCNQ1OT1:TSS-DMR/IC2). Molecular alterations of the IC2 are associated with Beckwith-Wiedemann syndrome (BWS), whereas only single patients with growth retardation and Silver-Russell syndrome (SRS) features have been reported. CNVs in 11p15.5 account for less than 1% of patients with BWS and SRS, and they mainly consist of duplications of both ICs either affecting the maternal (SRS) or the paternal (BWS) allele. However, this correlation does not apply to smaller CNVs, which are associated with diverse clinical outcomes. METHODS AND RESULTS: We identified a family with a 132 bp deletion within the KCNQ1OT1 gene, associated with growth retardation in case of paternal transmission but a normal phenotype when maternally inherited. Comparison of molecular and clinical data with cases from the literature helped to delineate its functional relevance. CONCLUSION: Microdeletions within the paternal IC2 affecting the KCNQ1OT1 gene have been described in only five families, and they all include the differentially methylated region KCNQ1OT1:TSS-DMR/IC2 and parts of the KCNQ1 gene. However, these deletions have different impacts on the expression of both genes and the cell-cycle inhibitor CDKN1C. They thereby cause different phenotypes. The 132 bp deletion is the smallest deletion in the IC2 reported so far. It does not affect the IC2 methylation in general and the coding sequence of the KCNQ1 gene. Thus, the deletion is only associated with a growth retardation phenotype when paternally transmitted but not with other clinical features in case of maternal inheritance as observed for larger deletions.


Subject(s)
Genomic Imprinting/genetics , Growth Disorders/genetics , KCNQ1 Potassium Channel/genetics , Beckwith-Wiedemann Syndrome/epidemiology , Beckwith-Wiedemann Syndrome/genetics , Beckwith-Wiedemann Syndrome/pathology , Child, Preschool , Chromosomes, Human, Pair 11/genetics , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Female , Genetic Predisposition to Disease , Germany , Growth Disorders/epidemiology , Growth Disorders/pathology , Humans , Infant , Insulin-Like Growth Factor II/genetics , Pedigree , Potassium Channels, Voltage-Gated/genetics , RNA, Long Noncoding/genetics , Silver-Russell Syndrome/epidemiology , Silver-Russell Syndrome/genetics , Silver-Russell Syndrome/pathology
15.
J Med Genet ; 58(6): 422-425, 2021 06.
Article in English | MEDLINE | ID: mdl-32447322

ABSTRACT

Silver-Russell syndrome (SRS) is a representative imprinting disorder. A major cause is the loss of methylation (LOM) of imprinting control region 1 (ICR1) within the IGF2/H19 domain. ICR1 is a gametic differentially methylated region (DMR) consisting of two repeat blocks, with each block including three CTCF target sites (CTSs). ICR1-LOM on the paternal allele allows CTCF to bind to CTSs, resulting in IGF2 repression on the paternal allele and biallelic expression of H19 We analysed 10 differentially methylated sites (DMSs) (ie, seven CTSs and three somatic DMRs within the IGF2/H19 domain, including two IGF2-DMRs and the H19-promoter) in five SRS patients with ICR1-LOM. Four patients showed consistent hypomethylation at all DMSs; however, one exhibited a peculiar LOM pattern, showing LOM at the centromeric region of the IGF2/H19 domain but normal methylation at the telomeric region. This raised important points: there may be a separate regulation of DNA methylation for the two repeat blocks within ICR1; there is independent control of somatic DMRs under each repeat block; sufficient IGF2 repression to cause SRS phenotypes occurs by LOM only in the centromeric block; and the need for simultaneous methylation analysis of several DMSs in both blocks for a correct molecular diagnosis.


Subject(s)
Centromere/metabolism , DNA Methylation , Silver-Russell Syndrome/genetics , Catalytic Domain , Child , Child, Preschool , Female , Humans , Insulin-Like Growth Factor II/genetics , Male , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Telomere/metabolism
16.
Gac Med Mex ; 158(4): 202-209, 2022.
Article in English | MEDLINE | ID: mdl-36256576

ABSTRACT

INTRODUCTION: Epigenetic and genomic imprinting alterations of the 11p15.5 region cause excessive or deficient growth, which result in Beckwith-Wiedemann syndrome (BWS) or Silver-Russell syndrome (SRS), respectively. OBJECTIVE: To evaluate the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) methylation analysis technique in the diagnosis of BWS and SRS. METHODS: 11p15.5 methylation and variants were evaluated in patients with clinical diagnosis of BWS and SRS using the MS-MLPA technique in peripheral blood DNA. RESULTS: Paternal uniparental disomy and loss of maternal IC2 methylation were identified in two patients with BWS who had omphalocele and macroglossia, respectively. Paternal IC1hypomethylation was recorded in two patients with SRS of classic phenotype. CONCLUSIONS: Adequate genotype-phenotype correlation was observed with the methylation defects that were identified, which confirms the usefulness of MLPA as a first-line study in patients diagnosed with BWS and SRS.


INTRODUCCIÓN: Las alteraciones epigenéticas y genómicas de la región improntada 11p15.5 producen crecimiento excesivo o deficiente, que se manifiesta como síndrome de Beckwith-Wiedemann o síndrome de Silver-Russell, respectivamente. OBJETIVO: Evaluar la técnica de análisis de metilación MLPA (MS-MLPA, methylation-specific multiplex ligation-dependent probe amplification) en el diagnóstico de los síndromes de Beckwith-Wiedemann y de Silver-Russell. MÉTODOS: Se evaluó la metilación y las variantes de 11p15.5 en pacientes con diagnóstico clínico de síndrome de Beckwith-Wiedemann y síndrome de Silver-Russell mediante la técnica MS-MLPA en ADN de sangre periférica. RESULTADOS: Se identificó disomía uniparental paterna y pérdida de metilación del IC2 materno en dos pacientes con síndrome de Beckwith-Wiedemann, quienes presentaron onfalocele y macroglosia, respectivamente. Se registró hipometilación paterna del IC1 en dos pacientes con síndrome de Silver-Russell de fenotipo clásico. CONCLUSIONES: Se observó adecuada correlación genotipo-fenotipo con los defectos de metilación encontrados, lo que confirma la utilidad del MLPA como estudio de primera línea en pacientes con diagnóstico de síndrome de Beckwith-Wiedemann y síndrome de Silver-Russell.


Subject(s)
Beckwith-Wiedemann Syndrome , Silver-Russell Syndrome , Humans , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/genetics , Beckwith-Wiedemann Syndrome/diagnosis , Beckwith-Wiedemann Syndrome/genetics , Multiplex Polymerase Chain Reaction/methods , DNA Methylation , Genomic Imprinting
17.
J Hum Genet ; 66(11): 1121-1126, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34031513

ABSTRACT

Silver-Russell syndrome (SRS) is a congenital disorder characterized by prenatal and postnatal growth failure and craniofacial features. Hypomethylation of the H19/IGF2:IG-differential methylated region (H19LOM) is observed in 50% of SRS patients, and 15% of SRS patients with H19LOM had multilocus imprinting disturbance (MLID). Schimke immuno-osseous dysplasia (SIOD), characterized by spondyloepiphyseal dysplasia and nephropathy, is an autosomal recessive disorder caused by mutations in SMARCAL1 on chromosome 2. We report a patient with typical SRS-related features, spondyloepiphyseal dysplasia, and severe nephropathy. Molecular analyses showed H19LOM, paternal uniparental isodisomy of chromosome 2 (iUPD(2)pat), and a paternally inherited homozygous frameshift variant in SMARCAL1. Genome-wide methylation analysis showed MLID in this patient, although it showed no MLID in another patient with SIOD without SRS phenotype. These results suggest that iUPD(2)pat unmasked the recessive mutation in SMARCAL1 and that the SMARCAL1 gene mutation may have no direct effect on the patient's methylation defects.


Subject(s)
Arteriosclerosis/genetics , DNA Helicases/genetics , DNA Methylation/genetics , Nephrotic Syndrome/genetics , Osteochondrodysplasias/genetics , Primary Immunodeficiency Diseases/genetics , Pulmonary Embolism/genetics , Silver-Russell Syndrome/genetics , Arteriosclerosis/complications , Arteriosclerosis/physiopathology , Child , Child, Preschool , Chromosomes, Human, Pair 2/genetics , Female , Genome, Human/genetics , Genomic Imprinting/genetics , Humans , Infant, Newborn , Male , Nephrotic Syndrome/complications , Nephrotic Syndrome/physiopathology , Osteochondrodysplasias/complications , Osteochondrodysplasias/physiopathology , Phenotype , Primary Immunodeficiency Diseases/complications , Primary Immunodeficiency Diseases/physiopathology , Pulmonary Embolism/complications , Pulmonary Embolism/physiopathology , Silver-Russell Syndrome/complications , Silver-Russell Syndrome/physiopathology , Uniparental Disomy/genetics , Uniparental Disomy/physiopathology
18.
Am J Med Genet A ; 185(10): 3136-3145, 2021 10.
Article in English | MEDLINE | ID: mdl-34223693

ABSTRACT

Silver-Russell syndrome (SRS) is a rare genetic condition primarily characterized by growth restriction and facial dysmorphisms. While hypomethylation of H19/IGF2:IG-DMR (imprinting control region 1 [IC1]) located at 11p15.5 and maternal uniparental disomy of chromosome 7 (upd[7]mat) are the most common genetic mechanisms responsible for SRS, the expanding body of literature describing alternative causative variants suggests SRS is a highly heterogeneous condition, also involving variation in the HMGA2-PLAG1-IGF2 pathway. We report a familial PLAG1 deletion in association with a complex chromosomal rearrangement. We describe two siblings with differing unbalanced chromosomal rearrangements inherited from a mother with a 5-breakpoint balanced complex rearrangement involving chromosomes 2, 8, and 21. The overlapping but diverse phenotypes in the siblings were characterized by shared SRS-like features, underlined by a PLAG1 whole gene deletion. Genetic analysis and interpretation was further complicated by a meiotic recombination event occurring in one of the siblings. This family adds to the limited literature available on PLAG1-related SRS. We have reviewed all currently known cases aiming to define the associated phenotype and guide future genetic testing strategies. The heterogeneity of SRS is further expanded by the involvement of complex cytogenomic abnormalities, imposing requirements for a comprehensive approach to testing and genetic counseling.


Subject(s)
DNA-Binding Proteins/genetics , Genetic Testing , Silver-Russell Syndrome/genetics , Child , Child, Preschool , DNA Methylation/genetics , Female , Genetic Predisposition to Disease , Genomic Imprinting/genetics , HMGA2 Protein/genetics , Humans , Insulin-Like Growth Factor II/genetics , Male , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/pathology
19.
Am J Med Genet A ; 185(2): 549-554, 2021 02.
Article in English | MEDLINE | ID: mdl-33191647

ABSTRACT

Silver-Russell syndrome (SRS) is characterized by pre- and postnatal growth deficiency. It is most often caused by hypomethylation of the paternal imprinting center 1 of chromosome 11p15.5. In contrast, Sotos syndrome is an overgrowth syndrome that results either from pathogenic NSD1 gene variants or copy number variations affecting the NSD1 gene. Here, we report on a 6 month-old boy with severe short stature, relative macrocephaly, severe feeding difficulties with underweight, muscular hypotonia, motor delay, medullary nephrocalcinosis, bilateral sensorineural hearing impairment and facial dysmorphisms. SNP array revealed a 2.1 Mb de novo interstitial deletion of 5q35.2q35.3 encompassing the NSD1 gene. As Sotos syndrome could not satisfactorily explain his symptoms, diagnostic testing for SRS was initiated. It demonstrated hypomethylation of the imprinting center 1 of chromosome 11p15.5 confirming the clinically suspected SRS. We compared the symptoms of our patient with the typical clinical features of individuals with SRS and Sotos syndrome, respectively. To our knowledge, this is the first study reporting the very unusual coincidence of both Sotos syndrome and SRS in the same patient.


Subject(s)
Histone-Lysine N-Methyltransferase/genetics , Silver-Russell Syndrome/genetics , Sotos Syndrome/genetics , Chromosome Deletion , Chromosomes, Human, Pair 5/genetics , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Genomic Imprinting/genetics , Humans , Infant , Infant, Newborn , Male , Phenotype , Polymorphism, Single Nucleotide/genetics , Silver-Russell Syndrome/complications , Silver-Russell Syndrome/diagnosis , Silver-Russell Syndrome/pathology , Sotos Syndrome/complications , Sotos Syndrome/diagnosis , Sotos Syndrome/pathology
20.
Am J Med Genet A ; 185(10): 3053-3056, 2021 10.
Article in English | MEDLINE | ID: mdl-34042264

ABSTRACT

We report on a 14-year old boy, his father, and his paternal uncle, all three carriers of a duplication of chromosomal region 11p15.3-p15.1. The aberration was transmitted by the grandmother, who is carrier of a balanced insertion 46,XX,ins(14;11)(q32.1;p15.3p15.1). In order to determine the precise molecular basis of this structural variant, we performed low-coverage whole genome sequencing on the boy's father. This approach allowed precise determination of the genomic breakpoints and revealed a duplication of 6.9 Mb, centromeric to the Beckwith-Wiedemann/Silver-Russell syndrome critical region in 11p15.5, that inserted in inverse orientation into 14q32.12 (according to HGVS nomenclature: NC_000014.8:g.92871000_92871001ins[NC_000011.9:g.12250642_19165928inv;T]). To our knowledge, this is the first report of a duplication of 11p15.3-p15.1 involving more than 40 genes and transmitted through two generations without apparent clinical effects.


Subject(s)
Beckwith-Wiedemann Syndrome/genetics , Genetic Predisposition to Disease , Silver-Russell Syndrome/genetics , Translocation, Genetic/genetics , Adolescent , Beckwith-Wiedemann Syndrome/pathology , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 14/genetics , Genome, Human/genetics , Humans , Male , Pedigree , Silver-Russell Syndrome/pathology , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL