Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 250
Filter
1.
J Biol Chem ; 298(9): 102377, 2022 09.
Article in English | MEDLINE | ID: mdl-35970388

ABSTRACT

Biosynthesis of riboflavin (RF), the precursor of the redox cofactors FMN and FAD, was thought to be well understood in bacteria, with all the pathway enzymes presumed to be known and essential. Our previous research has challenged this view by showing that, in the bacterium Sinorhizobium meliloti, deletion of the ribBA gene encoding the enzyme that catalyzes the initial steps on the RF biosynthesis pathway only causes a reduction in flavin secretion rather than RF auxotrophy. This finding led us to hypothesize that RibBA participates in the biosynthesis of flavins destined for secretion, whereas S. meliloti has another enzyme that performs this function for internal cellular metabolism. Here, we identify and biochemically characterize a novel formamidase (SMc02977) involved in the production of RF for intracellular functions in S. meliloti. This catalyst, which we named Sm-BrbF, releases formate from the early RF precursor 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate to yield 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate. We show that homologs of this enzyme are present in many bacteria, are highly abundant in the Rhizobiales order, and that sequence homologs from Brucella abortus and Liberobacter solanacearum complement the RF auxotrophy of the Sm1021ΔSMc02977 mutant. Furthermore, we show that the B. abortus enzyme (Bab2_0247, Ba-BrbF) is also an 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate formamidase, and that the bab2_0247 mutant is a RF auxotroph exhibiting a lower level of intracellular infection than the wildtype strain. Finally, we show that Sm-BrbF and Ba-BrbF directly interact with other RF biosynthesis pathway enzymes. Together, our results provide novel insight into the intricacies of RF biosynthesis in bacteria.


Subject(s)
Amidohydrolases , Riboflavin , Sinorhizobium meliloti , Amidohydrolases/metabolism , Flavin Mononucleotide , Flavin-Adenine Dinucleotide , Formates , Phosphates , Riboflavin/biosynthesis , Sinorhizobium meliloti/enzymology
2.
Biochemistry ; 60(47): 3610-3620, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34752700

ABSTRACT

Thiazolidine carboxylates such as thiazolidine-4-carboxylate (T4C) and thiazolidine-2-carboxylate (T2C) are naturally occurring sulfur analogues of proline. These compounds have been observed to have both beneficial and toxic effects in cells. Given that proline dehydrogenase has been proposed to be a key enzyme in the oxidative metabolism of thioprolines, we characterized T4C and T2C as substrates of proline catabolic enzymes using proline utilization A (PutA), which is a bifunctional enzyme with proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) activities. PutA is shown here to catalyze the FAD-dependent PRODH oxidation of both T4C and T2C with catalytic efficiencies significantly higher than with proline. Stopped-flow experiments also demonstrate that l-T4C and l-T2C reduce PutA-bound FAD at rates faster than proline. Unlike proline, however, oxidation of T4C and T2C does not generate a substrate for NAD+-dependent GSALDH. Instead, PutA/PRODH oxidation of T4C leads to cysteine formation, whereas oxidation of T2C generates an apparently stable Δ4-thiazoline-2-carboxylate species. Our results provide new insights into the metabolism of T2C and T4C.


Subject(s)
Bacterial Proteins/metabolism , Membrane Proteins/metabolism , Proline/analogs & derivatives , Thiazolidines/metabolism , Bacterial Proteins/isolation & purification , Cysteine/metabolism , Enzyme Assays , Kinetics , Membrane Proteins/isolation & purification , Proline/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sinorhizobium meliloti/enzymology
3.
Arch Biochem Biophys ; 698: 108727, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33333077

ABSTRACT

Proline utilization A (PutA) proteins are bifunctional proline catabolic enzymes that catalyze the 4-electron oxidation of l-proline to l-glutamate using spatially-separated proline dehydrogenase and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH, a.k.a. ALDH4A1) active sites. The observation that l-proline inhibits both the GSALDH activity of PutA and monofunctional GSALDHs motivated us to study the inhibition of PutA by proline stereoisomers and analogs. Here we report five high-resolution crystal structures of PutA with the following ligands bound in the GSALDH active site: d-proline, trans-4-hydroxy-d-proline, cis-4-hydroxy-d-proline, l-proline, and trans-4-hydroxy-l-proline. Three of the structures are of ternary complexes of the enzyme with an inhibitor and either NAD+ or NADH. To our knowledge, the NADH complex is the first for any GSALDH. The structures reveal a conserved mode of recognition of the inhibitor carboxylate, which results in the pyrrolidine rings of the d- and l-isomers having different orientations and different hydrogen bonding environments. Activity assays show that the compounds are weak inhibitors with millimolar inhibition constants. Curiously, although the inhibitors occupy the aldehyde binding site, kinetic measurements show the inhibition is uncompetitive. Uncompetitive inhibition may involve proline binding to a remote site or to the enzyme-NADH complex. Together, the structural and kinetic data expand our understanding of how proline-like molecules interact with GSALDH, reveal insight into the relationship between stereochemistry and inhibitor affinity, and demonstrate the pitfalls of inferring the mechanism of inhibition from crystal structures alone.


Subject(s)
Bacterial Proteins/metabolism , Enzyme Inhibitors/metabolism , Glutamate-5-Semialdehyde Dehydrogenase/metabolism , Hydroxyproline/metabolism , Membrane Proteins/metabolism , Proline/metabolism , Bacterial Proteins/chemistry , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Glutamate-5-Semialdehyde Dehydrogenase/chemistry , Hydroxyproline/chemistry , Membrane Proteins/chemistry , Proline/chemistry , Protein Binding , Sinorhizobium meliloti/enzymology , Stereoisomerism
4.
RNA Biol ; 18(8): 1111-1123, 2021 08.
Article in English | MEDLINE | ID: mdl-33043803

ABSTRACT

Function of bacterial small non-coding RNAs (sRNAs) and overall RNA metabolism is largely shaped by a vast diversity of RNA-protein interactions. However, in non-model bacteria with defined non-coding transcriptomes the sRNA interactome remains almost unexplored. We used affinity chromatography to capture proteins associated in vivo with MS2-tagged trans-sRNAs that regulate nutrient uptake (AbcR2 and NfeR1) and cell cycle (EcpR1) mRNAs by antisense-based translational inhibition in the nitrogen-fixing α-rhizobia Sinorhizobium meliloti. The three proteomes were rather distinct, with that of EcpR1 particularly enriched in cell cycle-related enzymes, whilst sharing several transcription/translation-related proteins recurrently identified associated with sRNAs. Strikingly, MetK, the synthetase of the major methyl donor S-adenosylmethionine, was reliably recovered as a binding partner of the three sRNAs, which reciprocally co-immunoprecipitated with a FLAG-tagged MetK variant. Induced (over)expression of the trans-sRNAs and MetK depletion did not influence canonical riboregulatory traits, `for example, protein titration or sRNA stability, respectively. An in vitro filter assay confirmed binding of AbcR2, NfeR1 and EcpR1 to MetK and further revealed interaction of the protein with other non-coding and coding transcripts but not with the 5S rRNA. These findings uncover a broad specificity for RNA binding as an unprecedented feature of this housekeeping prokaryotic enzyme.


Subject(s)
Methionine Adenosyltransferase/genetics , RNA, Bacterial/genetics , RNA, Messenger/genetics , RNA, Small Untranslated/genetics , RNA-Binding Proteins/genetics , Sinorhizobium meliloti/genetics , Gene Expression Regulation, Bacterial , Methionine Adenosyltransferase/metabolism , Nitrogen Fixation/physiology , Plant Root Nodulation/physiology , Plants/microbiology , Protein Binding , Protein Interaction Mapping , RNA, Bacterial/classification , RNA, Bacterial/metabolism , RNA, Messenger/classification , RNA, Messenger/metabolism , RNA, Small Untranslated/classification , RNA, Small Untranslated/metabolism , RNA-Binding Proteins/metabolism , S-Adenosylmethionine/metabolism , Sinorhizobium meliloti/enzymology , Symbiosis/physiology , Transcriptome
5.
Microbiology (Reading) ; 166(5): 484-497, 2020 05.
Article in English | MEDLINE | ID: mdl-32216867

ABSTRACT

In bacteria, l-arginine is a precursor of various metabolites and can serve as a source of carbon and/or nitrogen. Arginine catabolism by arginase, which hydrolyzes arginine to l-ornithine and urea, is common in nature but has not been studied in symbiotic nitrogen-fixing rhizobia. The genome of the alfalfa microsymbiont Sinorhizobium meliloti 1021 has two genes annotated as arginases, argI1 (smc03091) and argI2 (sma1711). Biochemical assays with purified ArgI1 and ArgI2 (as 6His-Sumo-tagged proteins) showed that only ArgI1 had detectable arginase activity. A 1021 argI1 null mutant lacked arginase activity and grew at a drastically reduced rate with arginine as sole nitrogen source. Wild-type growth and arginase activity were restored in the argI1 mutant genetically complemented with a genomically integrated argI1 gene. In the wild-type, arginase activity and argI1 transcription were induced several fold by exogenous arginine. ArgI1 purified as a 6His-Sumo-tagged protein had its highest in vitro enzymatic activity at pH 7.5 with Ni2+ as cofactor. The enzyme was also active with Mn2+ and Co2+, both of which gave the enzyme the highest activities at a more alkaline pH. The 6His-Sumo-ArgI1 comprised three identical subunits based on the migration of the urea-dissociated protein in a native polyacrylamide gel. A Lrp-like regulator (smc03092) divergently transcribed from argI1 was required for arginase induction by arginine or ornithine. This regulator was designated ArgIR. Electrophoretic mobility shift assays showed that purified ArgIR bound to the argI1 promoter in a region preceding the predicted argI1 transcriptional start. Our results indicate that ArgI1 is the sole arginase in S. meliloti, that it contributes substantially to arginine catabolism in vivo and that argI1 induction by arginine is dependent on ArgIR.


Subject(s)
Arginase/physiology , Arginine/metabolism , Bacterial Proteins/physiology , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/physiology , Arginase/genetics , Bacterial Proteins/genetics , Gene Expression Regulation , Genetic Complementation Test , Genome, Bacterial , Hydrogen-Ion Concentration , Mutation , Nitrogen/metabolism , Ornithine/metabolism , Recombinant Proteins , Sinorhizobium meliloti/enzymology , Urea/metabolism
6.
J Bacteriol ; 201(10)2019 05 15.
Article in English | MEDLINE | ID: mdl-30833352

ABSTRACT

Sinorhizobium meliloti produces multiple extracellular glycans, including among others, lipopolysaccharides (LPS), and the exopolysaccharides (EPS) succinoglycan (SG) and galactoglucan (GG). These polysaccharides serve cell protective roles. Furthermore, SG and GG promote the interaction of S. meliloti with its host Medicago sativa in root nodule symbiosis. ExoB has been suggested to be the sole enzyme catalyzing synthesis of UDP-galactose in S. meliloti (A. M. Buendia, B. Enenkel, R. Köplin, K. Niehaus, et al. Mol Microbiol 5:1519-1530, 1991, https://doi.org/10.1111/j.1365-2958.1991.tb00799.x). Accordingly, exoB mutants were previously found to be affected in the synthesis of the galactose-containing glycans LPS, SG, and GG and consequently, in symbiosis. Here, we report that the S. meliloti Rm2011 uxs1-uxe-apsS-apsH1-apsE-apsH2 (SMb20458-63) gene cluster directs biosynthesis of an arabinose-containing polysaccharide (APS), which contributes to biofilm formation, and is solely or mainly composed of arabinose. Uxe has previously been identified as UDP-xylose 4-epimerase. Collectively, our data from mutational and overexpression analyses of the APS biosynthesis genes and in vitro enzymatic assays indicate that Uxe functions as UDP-xylose 4- and UDP-glucose 4-epimerase catalyzing UDP-xylose/UDP-arabinose and UDP-glucose/UDP-galactose interconversions, respectively. Overexpression of uxe suppressed the phenotypes of an exoB mutant, evidencing that Uxe can functionally replace ExoB. We suggest that under conditions stimulating expression of the APS biosynthesis operon, Uxe contributes to the synthesis of multiple glycans and thereby to cell protection, biofilm formation, and symbiosis. Furthermore, we show that the C2H2 zinc finger transcriptional regulator MucR counteracts the previously reported CuxR-c-di-GMP-mediated activation of the APS biosynthesis operon. This integrates the c-di-GMP-dependent control of APS production into the opposing regulation of EPS biosynthesis and swimming motility in S. melilotiIMPORTANCE Bacterial extracellular polysaccharides serve important cell protective, structural, and signaling roles. They have particularly attracted attention as adhesives and matrix components promoting biofilm formation, which significantly contributes to resistance against antibiotics. In the root nodule symbiosis between rhizobia and leguminous plants, extracellular polysaccharides have a signaling function. UDP-sugar 4-epimerases are important enzymes in the synthesis of the activated sugar substrates, which are frequently shared between multiple polysaccharide biosynthesis pathways. Thus, these enzymes are potential targets to interfere with these pathways. Our finding of a bifunctional UDP-sugar 4-epimerase in Sinorhizobium meliloti generally advances the knowledge of substrate promiscuity of such enzymes and specifically of the biosynthesis of extracellular polysaccharides involved in biofilm formation and symbiosis in this alphaproteobacterium.


Subject(s)
Carbohydrate Epimerases/metabolism , Polysaccharides, Bacterial/biosynthesis , Sinorhizobium meliloti/enzymology , Sinorhizobium meliloti/metabolism , Carbohydrate Epimerases/genetics , Sinorhizobium meliloti/genetics , Uridine Diphosphate Galactose/metabolism , Uridine Diphosphate Glucose/metabolism , Uridine Diphosphate Sugars/metabolism , Uridine Diphosphate Xylose/metabolism
7.
J Bacteriol ; 201(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30670545

ABSTRACT

Symbiotic nitrogen fixation (SNF) in the interaction between the soil bacteria Sinorhizobium meliloti and legume plant Medicago sativa is carried out in specialized root organs called nodules. During nodule development, each symbiont must drastically alter their proteins, transcripts, and metabolites in order to support nitrogen fixation. Moreover, bacteria within the nodules are under stress, including challenges by plant antimicrobial peptides, low pH, limited oxygen availability, and strongly reducing conditions, all of which challenge proteome integrity. S. meliloti stress adaptation, proteome remodeling, and quality control are controlled in part by the large oligomeric protease complexes HslUV and ClpXP1. To improve understanding of the roles of S. meliloti HslUV and ClpXP1 under free-living conditions and in symbiosis with M. sativa, we generated ΔhslU, ΔhslV, ΔhslUV, and ΔclpP1 knockout mutants. The shoot dry weight of M. sativa plants inoculated with each deletion mutant was significantly reduced, suggesting a role in symbiosis. Further, slower free-living growth of the ΔhslUV and ΔclpP1 mutants suggests that HslUV and ClpP1 were involved in adapting to heat stress, the while ΔhslU and ΔclpP1 mutants were sensitive to kanamycin. All deletion mutants produced less exopolysaccharide and succinoglycan, as shown by replicate spot plating and calcofluor binding. We also generated endogenous C-terminal enhanced green fluorescent protein (eGFP) fusions to HslU, HslV, ClpX, and ClpP1 in S. meliloti Using anti-eGFP antibodies, native coimmunoprecipitation experiments with proteins from free-living and nodule tissues were performed and analyzed by mass spectrometry. The results suggest that HslUV and ClpXP were closely associated with ribosomal and proteome quality control proteins, and they identified several novel putative protein-protein interactions.IMPORTANCE Symbiotic nitrogen fixation (SNF) is the primary means by which biologically available nitrogen enters the biosphere, and it is therefore a critical component of the global nitrogen cycle and modern agriculture. SNF is the result of highly coordinated interactions between legume plants and soil bacteria collectively referred to as rhizobia, e.g., Medicago sativa and S. meliloti, respectively. Accomplishing SNF requires significant proteome changes in both organisms to create a microaerobic environment suitable for high-level bacterial nitrogenase activity. The bacterial protease systems HslUV and ClpXP are important in proteome quality control, in metabolic remodeling, and in adapting to stress. This work shows that S. meliloti HslUV and ClpXP are involved in SNF, in exopolysaccharide production, and in free-living stress adaptation.


Subject(s)
Endopeptidase Clp/metabolism , Medicago sativa/microbiology , Sinorhizobium meliloti/enzymology , Sinorhizobium meliloti/growth & development , Symbiosis , Endopeptidase Clp/genetics , Gene Deletion , Medicago sativa/growth & development , Plant Shoots/growth & development , Ribosomal Proteins/metabolism , Root Nodules, Plant/microbiology , Sinorhizobium meliloti/genetics
8.
BMC Microbiol ; 19(1): 10, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30630415

ABSTRACT

BACKGROUND: Toxin-antitoxin (TA) systems are little genetic units generally composed of two genes encoding antitoxin and toxin. These systems are known to be involved in many functions that can lead to growth arrest and cell death. Among the different types of TA systems, the type II gathers together systems where the antitoxin directly binds and inhibits the toxin. Among these type II TA systems, the HicAB module is widely distributed in free-living Bacteria and Archaea and the toxin HicA functions via RNA binding and cleavage. The genome of the symbiotic Sinorhizobium meliloti encodes numerous TA systems and only a few of them are functional. Among the predicted TA systems, there is one homologous to HicAB modules. RESULTS: In this study, we characterize the HicAB toxin-antitoxin module of S. meliloti. The production of the HicA of S. meliloti in Escherichia coli cells abolishes growth and decreases cell viability. We show that expression of the HicB of S. meliloti counteracts HicA toxicity. The results of double hybrid assays and co-purification experiments allow demonstrating the interaction of HicB with the toxin HicA. Purified HicA, but not HicAB complex, is able to degrade ribosomal RNA in vitro. The analysis of separated domains of HicB protein permits us to define the antitoxin activity and the operator-binding domain. CONCLUSIONS: This study points out the first characterization of the HicAB system of the symbiotic S. meliloti whereas HicA is a toxin with ribonuclease activity and HicB has two domains: the COOH-terminal one that binds the operator and the NH2-terminal one that inhibits the toxin.


Subject(s)
Antitoxins/genetics , Bacterial Toxins/genetics , Sinorhizobium meliloti/genetics , Cell Survival/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Gene Expression , Protein Binding , Protein Domains , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Sinorhizobium meliloti/enzymology
9.
J Bacteriol ; 200(7)2018 04 01.
Article in English | MEDLINE | ID: mdl-29358497

ABSTRACT

Reactive oxygen species such as peroxides play an important role in plant development, cell wall maturation, and defense responses. During nodulation with the host plant Medicago sativa, Sinorhizobium meliloti cells are exposed to H2O2 in infection threads and developing nodules (R. Santos, D. Hérouart, S. Sigaud, D. Touati, and A. Puppo, Mol Plant Microbe Interact 14:86-89, 2001, https://doi.org/10.1094/MPMI.2001.14.1.86). S. meliloti cells likely also experience oxidative stress, from both internal and external sources, during life in the soil. Here, we present microarray transcription data for S. meliloti wild-type cells compared to a mutant deficient in the key oxidative regulatory protein OxyR, each in response to H2O2 treatment. Several alternative sigma factor genes are upregulated in the response to H2O2; the stress sigma gene rpoE2 shows OxyR-dependent induction by H2O2, while rpoH1 expression is induced by H2O2 irrespective of the oxyR genotype. The activity of the RpoE2 sigma factor in turn causes increased expression of two more sigma factor genes, rpoE5 and rpoH2 Strains with deletions of rpoH1 showed improved survival in H2O2 as well as increased levels of oxyR and total catalase expression. These results imply that ΔrpoH1 strains are primed to deal with oxidative stress. This work presents a global view of S. meliloti gene expression changes, and of regulation of those changes, in response to H2O2IMPORTANCE Like all aerobic organisms, the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti experiences oxidative stress throughout its complex life cycle. This report describes the global transcriptional changes that S. meliloti makes in response to H2O2 and the roles of the OxyR transcriptional regulator and the RpoH1 sigma factor in regulating those changes. By understanding the complex regulatory response of S. meliloti to oxidative stress, we may further understand the role that reactive oxygen species play as both stressors and potential signals during symbiosis.


Subject(s)
Gene Expression Regulation, Bacterial , Oxidative Stress/genetics , Repressor Proteins/genetics , Sinorhizobium meliloti/genetics , Transcription, Genetic , Catalase/drug effects , Catalase/genetics , Gene Expression Profiling , Heat-Shock Proteins/genetics , Hydrogen Peroxide/pharmacology , Microarray Analysis , Mutation , Oxidative Stress/drug effects , Repressor Proteins/deficiency , Repressor Proteins/drug effects , Sigma Factor/genetics , Sinorhizobium meliloti/drug effects , Sinorhizobium meliloti/enzymology , Sinorhizobium meliloti/physiology , Transcription Factors/genetics
10.
Biochemistry ; 57(11): 1748-1757, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29457884

ABSTRACT

Vitamin B12 (cobalamin) is an essential micronutrient for humans that is synthesized by only a subset of bacteria and archaea. The aerobic biosynthesis of 5,6-dimethylbenzimidazole, the lower axial ligand of cobalamin, is catalyzed by the "flavin destructase" enzyme BluB, which fragments reduced flavin mononucleotide following its reaction with oxygen to yield this ligand. BluB is similar in sequence and structure to members of the flavin oxidoreductase superfamily, yet the flavin destruction process has remained elusive. Using stopped-flow spectrophotometry, we find that the flavin destructase reaction of BluB from Sinorhizobium meliloti is initiated with canonical flavin-O2 chemistry. A C4a-peroxyflavin intermediate is rapidly formed in BluB upon reaction with O2, and has properties similar to those of flavin-dependent hydroxylases. Analysis of reaction mixtures containing flavin analogues indicates that both formation of the C4a-peroxyflavin and the subsequent destruction of the flavin to form 5,6-dimethylbenzimidazole are influenced by the electronic properties of the flavin isoalloxazine ring. The flavin destruction phase of the reaction, which results from the decay of the C4a-peroxyflavin intermediate, occurs more efficiently at pH >7.5. Furthermore, the BluB mutants D32N and S167G are specifically impaired in the flavin destruction phase of the reaction; nevertheless, both form the C4a-peroxyflavin nearly quantitatively. Coupled with a phylogenetic analysis of BluB and related flavin-dependent enzymes, these results demonstrate that the BluB flavin destructase family can be identified by the presence of active site residues D32 and S167.


Subject(s)
Bacterial Proteins/chemistry , Dinitrocresols/chemistry , Flavoproteins/chemistry , Mixed Function Oxygenases/chemistry , Sinorhizobium meliloti/enzymology , Bacterial Proteins/metabolism , Dinitrocresols/metabolism , Flavoproteins/metabolism , Mixed Function Oxygenases/metabolism , Phylogeny
11.
Biochemistry ; 57(6): 963-977, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29309127

ABSTRACT

The d-2-hydroxyacid dehydrogenase (2HADH) family illustrates a complex evolutionary history with multiple lateral gene transfers and gene duplications and losses. As a result, the exact functional annotation of individual members can be extrapolated to a very limited extent. Here, we revise the previous simplified view on the classification of the 2HADH family; specifically, we show that the previously delineated glyoxylate/hydroxypyruvate reductase (GHPR) subfamily consists of two evolutionary separated GHRA and GHRB subfamilies. We compare two representatives of these subfamilies from Sinorhizobium meliloti (SmGhrA and SmGhrB), employing a combination of biochemical, structural, and bioinformatics approaches. Our kinetic results show that both enzymes reduce several 2-ketocarboxylic acids with overlapping, but not equivalent, substrate preferences. SmGhrA and SmGhrB show highest activity with glyoxylate and hydroxypyruvate, respectively; in addition, only SmGhrB reduces 2-keto-d-gluconate, and only SmGhrA reduces pyruvate (with low efficiency). We present nine crystal structures of both enzymes in apo forms and in complexes with cofactors and substrates/substrate analogues. In particular, we determined a crystal structure of SmGhrB with 2-keto-d-gluconate, which is the biggest substrate cocrystallized with a 2HADH member. The structures reveal significant differences between SmGhrA and SmGhrB, both in the overall structure and within the substrate-binding pocket, offering insight into the molecular basis for the observed substrate preferences and subfamily differences. In addition, we provide an overview of all GHRA and GHRB structures complexed with a ligand in the active site.


Subject(s)
Alcohol Oxidoreductases/chemistry , Aldehyde Oxidoreductases/chemistry , Bacterial Proteins/chemistry , Hydroxypyruvate Reductase/chemistry , Sinorhizobium meliloti/enzymology , Alcohol Oxidoreductases/classification , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Aldehyde Oxidoreductases/classification , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Hydroxypyruvate Reductase/classification , Hydroxypyruvate Reductase/genetics , Hydroxypyruvate Reductase/metabolism , Kinetics , Models, Molecular , Phylogeny , Protein Conformation , Sinorhizobium meliloti/chemistry , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Substrate Specificity
12.
Biochim Biophys Acta Bioenerg ; 1859(1): 19-27, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28986298

ABSTRACT

A central conserved arginine, first identified as a clinical mutation leading to sulfite oxidase deficiency, is essential for catalytic competency of sulfite oxidizing molybdoenzymes, but the molecular basis for its effects on turnover and substrate affinity have not been fully elucidated. We have used a bacterial sulfite dehydrogenase, SorT, which lacks an internal heme group, but transfers electrons to an external, electron accepting cytochrome, SorU, to investigate the molecular functions of this arginine residue (Arg78). Assay of the SorT Mo centre catalytic competency in the absence of SorU showed that substitutions in the central arginine (R78Q, R78K and R78M mutations) only moderately altered SorT catalytic properties, except for R78M which caused significant reduction in SorT activity. The substitutions also altered the Mo-centre redox potentials (MoVI/V potential lowered by ca. 60-80mV). However, all Arg78 mutations significantly impaired the ability of SorT to transfer electrons to SorU, where activities were reduced 17 to 46-fold compared to SorTWT, precluding determination of kinetic parameters. This was accompanied by the observation of conformational changes in both the introduced Gln and Lys residues in the crystal structure of the enzymes. Taking into account data collected by others on related SOE mutations we propose that the formation and maintenance of an electron transfer complex between the Mo centre and electron accepting heme groups is the main function of the central arginine, and that the reduced turnover and increases in KMsulfite are caused by the inefficient operation of the oxidative half reaction of the catalytic cycle in enzymes carrying these mutations.


Subject(s)
Arginine/chemistry , Bacterial Proteins/chemistry , Sinorhizobium meliloti/enzymology , Sulfite Dehydrogenase/chemistry , Amino Acid Substitution , Arginine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Electron Transport , Kinetics , Molybdenum , Mutation, Missense , Oxidation-Reduction , Sinorhizobium meliloti/genetics , Sulfite Dehydrogenase/genetics , Sulfite Dehydrogenase/metabolism
13.
Microbiology (Reading) ; 164(4): 600-613, 2018 04.
Article in English | MEDLINE | ID: mdl-29619919

ABSTRACT

Polyamines (PAs) are ubiquitous polycations derived from basic l-amino acids whose physiological roles are still being defined. Their biosynthesis and functions in nitrogen-fixing rhizobia such as Sinorhizobium meliloti have not been extensively investigated. Thin layer chromatographic and mass spectrometric analyses showed that S. meliloti Rm8530 produces the PAs, putrescine (Put), spermidine (Spd) and homospermidine (HSpd), in their free forms and norspermidine (NSpd) in a form bound to macromolecules. The S. meliloti genome encodes two putative ornithine decarboxylases (ODC) for Put synthesis. Activity assays with the purified enzymes showed that ODC2 (SMc02983) decarboxylates both ornithine and lysine. ODC1 (SMa0680) decarboxylates only ornithine. An odc1 mutant was similar to the wild-type in ODC activity, PA production and growth. In comparison to the wild-type, an odc2 mutant had 45 % as much ODC activity and its growth rates were reduced by 42, 14 and 44 % under non-stress, salt stress or acid stress conditions, respectively. The odc2 mutant produced only trace levels of Put, Spd and HSpd. Wild-type phenotypes were restored when the mutant was grown in cultures supplemented with 1 mM Put or Spd or when the odc2 gene was introduced in trans. odc2 gene expression was increased under acid stress and reduced under salt stress and with exogenous Put or Spd. An odc1 odc2 double mutant had phenotypes similar to the odc2 mutant. These results indicate that ODC2 is the major enzyme for Put synthesis in S. meliloti and that PAs are required for normal growth in vitro.


Subject(s)
Ornithine Decarboxylase/metabolism , Polyamines/metabolism , Sinorhizobium meliloti/growth & development , Sinorhizobium meliloti/metabolism , Amino Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Culture Media , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Mutation , Ornithine Decarboxylase/genetics , Polyamines/analysis , Putrescine/metabolism , Sinorhizobium meliloti/enzymology , Spermidine/analogs & derivatives , Spermidine/metabolism , Transcription, Genetic
14.
Appl Environ Microbiol ; 84(3)2018 02 01.
Article in English | MEDLINE | ID: mdl-29150514

ABSTRACT

Glutathione (l-γ-glutamyl-l-cysteinylglycine) (GSH), one of the key antioxidants in Sinorhizobium meliloti, is required for the development of alfalfa (Medicago sativa) nitrogen-fixing nodules. Glutathione exists as either reduced glutathione (GSH) or oxidized glutathione (GSSG), and its content is regulated by two pathways in S. meliloti The first pathway is the de novo synthesis of glutathione from its constituent amino acids, namely, Glu, Cys, and Gly, catalyzed by γ-glutamylcysteine synthetase (GshA) and glutathione synthetase (GshB). The second pathway is the recycling of GSSG via glutathione reductase (GR). However, whether the S. meliloti GR functions similarly to GshA and GshB1 during symbiotic interactions with alfalfa remains unknown. In this study, a plasmid insertion mutation of the S. melilotigor gene, which encodes GR, was constructed, and the mutant exhibited delayed alfalfa nodulation, with 75% reduction in nitrogen-fixing capacity. The gor mutant demonstrated increased accumulation of GSSG and a decreased GSH/GSSG ratio in cells. The mutant also showed defective growth in rich broth and minimal broth and was more sensitive to the oxidants H2O2 and sodium nitroprusside. Interestingly, the expression of gshA, gshB1, katA, and katB was induced in the mutant. These findings reveal that the recycling of glutathione is important for S. meliloti to maintain redox homeostasis and to interact symbiotically with alfalfa.IMPORTANCE The antioxidant glutathione is regulated by its synthetase and reductase in cells. In the symbiotic bacterium S. meliloti, the de novo synthesis of glutathione is essential for alfalfa nodulation and nitrogen fixation. In this study, we observed that the recycling of glutathione from GSSG not only was required for redox homeostasis and oxidative stress protection in S. meliloti cells but also contributed to alfalfa nodule development and competition capacity. Our findings demonstrate that the recycling of glutathione plays a key role in nitrogen fixation symbiosis.


Subject(s)
Glutathione Reductase/genetics , Glutathione/metabolism , Homeostasis/genetics , Sinorhizobium meliloti/enzymology , Symbiosis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Glutathione/biosynthesis , Homeostasis/physiology , Hydrogen Peroxide/metabolism , Medicago sativa/microbiology , Nitrogen/metabolism , Nitrogen Fixation , Oxidants/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Sinorhizobium meliloti/genetics , Symbiosis/physiology
15.
Biochim Biophys Acta Gen Subj ; 1862(3): 752-760, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29051066

ABSTRACT

The Cys-His bridge as electron transfer conduit in the enzymatic catalysis of nitrite to nitric oxide by nitrite reductase from Sinorhizobium meliloti 2011 (SmNir) was evaluated by site-directed mutagenesis, steady state kinetic studies, UV-vis and EPR spectroscopic measurements as well as computational calculations. The kinetic, structural and spectroscopic properties of the His171Asp (H171D) and Cys172Asp (C172D) SmNir variants were compared with the wild type enzyme. Molecular properties of H171D and C172D indicate that these point mutations have not visible effects on the quaternary structure of SmNir. Both variants are catalytically incompetent using the physiological electron donor pseudoazurin, though C172D presents catalytic activity with the artificial electron donor methyl viologen (kcat=3.9(4) s-1) lower than that of wt SmNir (kcat=240(50) s-1). QM/MM calculations indicate that the lack of activity of H171D may be ascribed to the Nδ1H…OC hydrogen bond that partially shortcuts the T1-T2 bridging Cys-His covalent pathway. The role of the Nδ1H…OC hydrogen bond in the pH-dependent catalytic activity of wt SmNir is also analyzed by monitoring the T1 and T2 oxidation states at the end of the catalytic reaction of wt SmNir at pH6 and 10 by UV-vis and EPR spectroscopies. These data provide insight into how changes in Cys-His bridge interrupts the electron transfer between T1 and T2 and how the pH-dependent catalytic activity of the enzyme are related to pH-dependent structural modifications of the T1-T2 bridging chemical pathway.


Subject(s)
Bacterial Proteins/metabolism , Electron Transport , Nitrite Reductases/metabolism , Sinorhizobium meliloti/enzymology , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Copper/chemistry , Cysteine/chemistry , Electron Spin Resonance Spectroscopy , Histidine/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Mutation, Missense , Nitrite Reductases/chemistry , Nitrite Reductases/genetics , Nitrites/metabolism , Oxidation-Reduction , Point Mutation , Protein Conformation , Recombinant Proteins/metabolism , Sinorhizobium meliloti/genetics , Spectrophotometry, Ultraviolet
16.
J Biol Chem ; 291(46): 24065-24075, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27679491

ABSTRACT

Aldehyde dehydrogenases (ALDHs) catalyze the NAD(P)+-dependent oxidation of aldehydes to carboxylic acids and are important for metabolism and detoxification. Although the ALDH superfamily fold is well established, some ALDHs contain an uncharacterized domain of unknown function (DUF) near the C terminus of the polypeptide chain. Herein, we report the first structure of a protein containing the ALDH superfamily DUF. Proline utilization A from Sinorhizobium meliloti (SmPutA) is a 1233-residue bifunctional enzyme that contains the DUF in addition to proline dehydrogenase and l-glutamate-γ-semialdehyde dehydrogenase catalytic modules. Structures of SmPutA with a proline analog bound to the proline dehydrogenase site and NAD+ bound to the ALDH site were determined in two space groups at 1.7-1.9 Å resolution. The DUF consists of a Rossmann dinucleotide-binding fold fused to a three-stranded ß-flap. The Rossmann domain resembles the classic ALDH superfamily NAD+-binding domain, whereas the flap is strikingly similar to the ALDH superfamily dimerization domain. Paradoxically, neither structural element performs its implied function. Electron density maps show that NAD+ does not bind to the DUF Rossmann fold, and small-angle X-ray scattering reveals a novel dimer that has never been seen in the ALDH superfamily. The structure suggests that the DUF is an adapter domain that stabilizes the aldehyde substrate binding loop and seals the substrate-channeling tunnel via tertiary structural interactions that mimic the quaternary structural interactions found in non-DUF PutAs. Kinetic data for SmPutA indicate a substrate-channeling mechanism, in agreement with previous studies of other PutAs.


Subject(s)
Aldehyde Dehydrogenase/chemistry , Bacterial Proteins/chemistry , Protein Folding , Sinorhizobium meliloti/enzymology , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Kinetics , NAD , Protein Domains , Protein Structure, Secondary , Sinorhizobium meliloti/genetics , X-Ray Diffraction
17.
Environ Microbiol ; 19(1): 218-236, 2017 01.
Article in English | MEDLINE | ID: mdl-27727485

ABSTRACT

We report that the smb20752 gene of the alfalfa symbiont Sinorhizobium meliloti is a novel symbiotic gene required for full N2 -fixation. Deletion of smb20752 resulted in lower nitrogenase activity and smaller nodules without impacting overall nodule morphology. Orthologs of smb20752 were present in all alpha and beta rhizobia, including the ngr_b20860 gene of Sinorhizobium fredii NGR234. A ngr_b20860 mutant formed Fix- determinate nodules that developed normally to a late stage of the symbiosis on the host plants Macroptilium atropurpureum and Vigna unguiculata. However an early symbiotic defect was evident during symbiosis with Leucaena leucocephala, producing Fix- indeterminate nodules. The smb20752 and ngr_b20860 genes encode putative 3-hydroxyisobutyryl-CoA (HIB-CoA) hydrolases. HIB-CoA hydrolases are required for l-valine catabolism and appear to prevent the accumulation of toxic metabolic intermediates, particularly methacrylyl-CoA. Evidence presented here and elsewhere (Curson et al., , PLoS ONE 9:e97660) demonstrated that Smb20752 and NGR_b20860 can also prevent metabolic toxicity, are required for l-valine metabolism, and play an undefined role in 3-hydroxybutyrate catabolism. We present evidence that the symbiotic defect of the HIB-CoA hydrolase mutants is independent of the inability to catabolize l-valine and suggest it relates to the toxicity resulting from metabolism of other compounds possibly related to 3-hydroxybutyric acid.


Subject(s)
Bacterial Proteins/metabolism , Sinorhizobium fredii/physiology , Sinorhizobium meliloti/physiology , Symbiosis , Thiolester Hydrolases/metabolism , Bacterial Proteins/genetics , Medicago sativa/microbiology , Nitrogen Fixation , Sinorhizobium fredii/enzymology , Sinorhizobium fredii/genetics , Sinorhizobium meliloti/enzymology , Sinorhizobium meliloti/genetics , Thiolester Hydrolases/genetics
18.
Appl Microbiol Biotechnol ; 101(13): 5325-5332, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28417169

ABSTRACT

Adenosine-5'-triphosphate (ATP) is the energy equivalent of the living system. Polyphosphate (polyP) is the ancient energy storage equivalent of organisms. Polyphosphate kinases (PPKs) catalyze the polyP formation or ATP formation, to store energy or to regenerate ATP, respectively. However, most PPKs are active only in the presence of long polyPs, which are more difficult and more expensive to generate than the short polyPs. We investigated the PPK preference towards polyPs by site-directed mutagenesis and computational simulation, to understand the mechanism and further design enzymes for effective ATP regeneration using short polyPs for in vitro cascade reactions, which are highly desired for research and applications. The results suggest that the short polyPs inhibit PPK by blocking the ADP-binding pocket. Structural comparison between PPK (Corynebacterium glutamicum) and PPK (Sinorhizobium meliloti) indicates that three amino acid residues, i.e., lysine, glutamate, and threonine, are involved in the activity towards short polyP by fixing the adenosine group of ADP in between the subunits of the dimer, while the terminal phosphate group of ADP still offers an active site, which presents a binding pocket for ADP. A proposed triple mutant PPK (SMc02148-KET) demonstrates significant activity towards short polyP to form ATP from ADP. The obtained high glutathione titer (38.79 mM) and glucose-6-phosphate titer (87.35 mM) in cascade reactions with ATP regeneration using the triple mutant PPK (SMc02148-KET) reveal that the tailored PPK establishes the effective ATP regeneration system for ATP-dependent reactions.


Subject(s)
Adenosine Triphosphate/metabolism , Phosphotransferases (Phosphate Group Acceptor)/chemistry , Phosphotransferases (Phosphate Group Acceptor)/genetics , Polyphosphates/metabolism , Amino Acids/metabolism , Biological Products/metabolism , Catalysis , Catalytic Domain , Chemistry, Bioinorganic/economics , Chemistry, Bioinorganic/methods , Computer Simulation , Corynebacterium glutamicum/chemistry , Corynebacterium glutamicum/enzymology , Escherichia coli/genetics , Glucose-6-Phosphate/biosynthesis , Glutathione/analysis , Glutathione/biosynthesis , Mutagenesis, Site-Directed , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Sinorhizobium meliloti/chemistry , Sinorhizobium meliloti/enzymology
19.
Microbiology (Reading) ; 162(3): 552-563, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26813656

ABSTRACT

In Gram-negative bacteria, tyrosine phosphorylation has been shown to play a role in the control of exopolysaccharide (EPS) production. This study demonstrated that the chromosomal ORF SMc02309 from Sinorhizobium meliloti 2011 encodes a protein with significant sequence similarity to low molecular mass protein-tyrosine phosphatases (LMW-PTPs), such as the Escherichia coli Wzb. Unlike other well-characterized EPS biosynthesis gene clusters, which contain neighbouring LMW-PTPs and kinase, the S. meliloti succinoglycan (EPS I) gene cluster located on megaplasmid pSymB does not encode a phosphatase. Biochemical assays revealed that the SMc02309 protein hydrolyses p-nitrophenyl phosphate (p-NPP) with kinetic parameters similar to other bacterial LMW-PTPs. Furthermore, we show evidence that SMc02309 is not the LMW-PTP of the bacterial tyrosine-kinase (BY-kinase) ExoP. Nevertheless, ExoN, a UDP-glucose pyrophosphorylase involved in the first stages of EPS I biosynthesis, is phosphorylated at tyrosine residues and constitutes an endogenous substrate of the SMc02309 protein. Additionally, we show that the UDP-glucose pyrophosphorylase activity is modulated by SMc02309-mediated tyrosine dephosphorylation. Moreover, a mutation in the SMc02309 gene decreases EPS I production and delays nodulation on Medicago sativa roots.


Subject(s)
Polysaccharides, Bacterial/biosynthesis , Protein Tyrosine Phosphatases/metabolism , Sinorhizobium meliloti/enzymology , Sinorhizobium meliloti/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Medicago sativa/microbiology , Plant Root Nodulation , Plant Roots/microbiology
20.
BMC Microbiol ; 16(1): 163, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27456220

ABSTRACT

BACKGROUND: Malic enzymes decarboxylate the tricarboxylic acid (TCA) cycle intermediate malate to the glycolytic end-product pyruvate and are well positioned to regulate metabolic flux in central carbon metabolism. Despite the wide distribution of these enzymes, their biological roles are unclear in part because the reaction catalyzed by these enzymes can be by-passed by other pathways. The N2-fixing alfalfa symbiont Sinorhizobium meliloti contains both a NAD(P)-malic enzyme (DME) and a separate NADP-malic enzyme (TME) and to help understand the role of these enzymes, we investigated growth, metabolomic, and transcriptional consequences resulting from loss of these enzymes in free-living cells. RESULTS: Loss of DME, TME, or both enzymes had no effect on growth with the glycolytic substrate, glucose. In contrast, the dme mutants, but not tme, grew slowly on the gluconeogenic substrate succinate and this slow growth was further reduced upon the addition of glucose. The dme mutant strains incubated with succinate accumulated trehalose and hexose sugar phosphates, secreted malate, and relative to wild-type, these cells had moderately increased transcription of genes involved in gluconeogenesis and pathways that divert metabolites away from the TCA cycle. While tme mutant cells grew at the same rate as wild-type on succinate, they accumulated the compatible solute putrescine. CONCLUSIONS: NAD(P)-malic enzyme (DME) of S. meliloti is required for efficient metabolism of succinate via the TCA cycle. In dme mutants utilizing succinate, malate accumulates and is excreted and these cells appear to increase metabolite flow via gluconeogenesis with a resulting increase in the levels of hexose-6-phosphates and trehalose. For cells utilizing succinate, TME activity alone appeared to be insufficient to produce the levels of pyruvate required for efficient TCA cycle metabolism. Putrescine was found to accumulate in tme cells growing with succinate, and whether this is related to altered levels of NADPH requires further investigation.


Subject(s)
Malate Dehydrogenase/metabolism , Putrescine/metabolism , Sinorhizobium meliloti/metabolism , Trehalose/metabolism , Amino Acids/biosynthesis , Amino Acids/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Citric Acid Cycle , Fatty Acids/biosynthesis , Fatty Acids/genetics , Glucose/metabolism , Malate Dehydrogenase/genetics , Malates/metabolism , Medicago sativa/microbiology , Metabolic Networks and Pathways , Mutation , Nitrogen Fixation , Pyruvic Acid/metabolism , Sinorhizobium meliloti/enzymology , Sinorhizobium meliloti/genetics , Succinic Acid/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL