Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
J Biol Chem ; 298(12): 102684, 2022 12.
Article in English | MEDLINE | ID: mdl-36370851

ABSTRACT

The bone morphogenetic protein (BMP) signaling pathway plays pivotal roles in various biological processes during embryogenesis and adult homeostasis. Transmembrane anterior posterior transformation 1 (TAPT1) is an evolutionarily conserved protein involved in murine axial skeletal patterning. Genetic defects in TAPT1 result in complex lethal osteochondrodysplasia. However, the specific cellular activity of TAPT1 is not clear. Herein, we report that TAPT1 inhibits BMP signaling and destabilizes the SMAD1/5 protein by facilitating its interaction with SMURF1 E3 ubiquitin ligase, which leads to SMAD1/5 proteasomal degradation. In addition, we found that the activation of BMP signaling facilitates the redistribution of TAPT1 and promotes its association with SMAD1. TAPT1-deficient murine C2C12 myoblasts or C3H/10T1/2 mesenchymal stem cells exhibit elevated SMAD1/5/9 protein levels, which amplifies BMP activation, in turn leading to a boost in the transdifferentiation or differentiation processing of these distinct TAPT1-deficient cell lines changing into mature osteoblasts. Furthermore, the enhancing effect of TAPT1 deficiency on osteogenic differentiation of C3H/10T1/2 cells was observed in an in vivo ectopic bone formation model. Importantly, a subset of TAPT1 mutations identified in humans with lethal skeletal dysplasia exhibited gain-of-function activity on SMAD1 protein levels. Thus, this finding elucidates the role of TAPT1 in the regulation of SMAD1/5 protein stability for controlling BMP signaling.


Subject(s)
Signal Transduction , Smad1 Protein , Smad5 Protein , Animals , Humans , Mice , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation , Cell Line , Membrane Proteins , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/genetics , Protein Stability , Signal Transduction/genetics , Smad1 Protein/genetics , Smad1 Protein/metabolism , Smad5 Protein/genetics , Smad5 Protein/metabolism , Smad8 Protein/genetics , Smad8 Protein/metabolism
2.
Dev Biol ; 478: 183-204, 2021 10.
Article in English | MEDLINE | ID: mdl-34216573

ABSTRACT

The mechanisms regulating nervous system development are still unknown for a wide variety of taxa. In insects and vertebrates, bone morphogenetic protein (BMP) signaling plays a key role in establishing the dorsal-ventral (D-V) axis and limiting the neuroectoderm to one side of that axis, leading to speculation about the conserved evolution of centralized nervous systems. Studies outside of insects and vertebrates show a more diverse picture of what, if any role, BMP signaling plays in neural development across Bilateria. This is especially true in the morphologically diverse Spiralia (≈Lophotrochozoa). Despite several studies of D-V axis formation and neural induction in spiralians, there is no consensus for how these two processes are related, or whether BMP signaling may have played an ancestral role in either process. To determine the function of BMP signaling during early development of the spiralian annelid Capitella teleta, we incubated embryos and larvae in BMP4 protein for different amounts of time. Adding exogenous BMP protein to early-cleaving C. teleta embryos had a striking effect on formation of the brain, eyes, foregut, and ventral midline in a time-dependent manner. However, adding BMP did not block brain or VNC formation or majorly disrupt the D-V axis. We identified three key time windows of BMP activity. 1) BMP treatment around birth of the 3rd-quartet micromeres caused the loss of the eyes, radialization of the brain, and a reduction of the foregut, which we interpret as a loss of A- and C-quadrant identities with a possible trans-fate switch to a D-quadrant identity. 2) Treatment after the birth of micromere 4d induced formation of a third ectopic brain lobe, eye, and foregut lobe, which we interpret as a trans-fate switch of B-quadrant micromeres to a C-quadrant identity. 3) Continuous BMP treatment from late cleavage (4d â€‹+ â€‹12 â€‹h) through mid-larval stages resulted in a modest expansion of Ct-chrdl expression in the dorsal ectoderm and a concomitant loss of the ventral midline (neurotroch ciliary band). Loss of the ventral midline was accompanied by a collapse of the bilaterally-symmetric ventral nerve cord, although the total amount of neural tissue was not greatly affected. Our results compared with those from other annelids and molluscs suggest that BMP signaling was not ancestrally involved in delimiting neural tissue to one region of the D-V axis. However, the effects of ectopic BMP on quadrant-identity during cleavage stages may represent a non-axial organizing signal that was present in the last common ancestor of annelids and mollusks. Furthermore, in the last common ancestor of annelids, BMP signaling may have functioned in patterning ectodermal fates along the D-V axis in the trunk. Ultimately, studies on a wider range of spiralian taxa are needed to determine the role of BMP signaling during neural induction and neural patterning in the last common ancestor of this group. Ultimately, these comparisons will give us insight into the evolutionary origins of centralized nervous systems and body plans.


Subject(s)
Bone Morphogenetic Protein 4/pharmacology , Bone Morphogenetic Proteins/metabolism , Polychaeta/embryology , Polychaeta/metabolism , Zebrafish Proteins/pharmacology , Animals , Body Patterning/drug effects , Bone Morphogenetic Proteins/genetics , Brain/embryology , Digestive System/embryology , Embryo, Nonmammalian/metabolism , Embryonic Development , Eye/embryology , Nerve Tissue Proteins/metabolism , Nervous System/embryology , Polychaeta/drug effects , Polychaeta/growth & development , Recombinant Proteins/pharmacology , Signal Transduction , Smad1 Protein/genetics , Smad1 Protein/metabolism , Smad5 Protein/genetics , Smad5 Protein/metabolism , Smad8 Protein/genetics , Smad8 Protein/metabolism
3.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35886863

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease characterized by skeletal muscle instability, progressive muscle wasting, and fibrosis. A major driver of DMD pathology stems from aberrant upregulation of transforming growth factor ß (TGFß) signaling. In this report, we investigated the major transducers of TGFß signaling, i.e., receptor Smads (R-Smads), in DMD patient skeletal muscle and observed a 48-fold increase in Smad8 mRNA. Smad1, Smad2, Smad3, and Smad5 mRNA were only minimally increased. A similar pattern was observed in the muscle from the mdx5cv mouse. Western blot analysis showed upregulation of phosphorylated Smad1, Smad5, and Smad8 compared to total Smad indicating activation of this pathway. In parallel, we observed a profound diminishment of muscle-enriched microRNAs (myomiRs): miR-1, miR-133a, and miR-133b. The pattern of Smad8 induction and myomiR suppression was recapitulated in C2C12 muscle cells after stimulation with bone morphogenetic protein 4 (BMP4), a signaling factor that we found upregulated in DMD muscle. Silencing Smad8 in C2C12 myoblasts derepressed myomiRs and promoted myoblast differentiation; there was also a concomitant upregulation of myogenic regulatory factors (myogenin and myocyte enhancer factor 2D) and suppression of a pro-inflammatory cytokine (interleukin-6). Our data suggest that Smad8 is a negative regulator of miR-1, miR-133a, and miR-133b in muscle cells and that the BMP4-Smad8 axis is a driver of dystrophic pathology in DMD.


Subject(s)
MicroRNAs , Muscular Dystrophy, Duchenne , Smad8 Protein , Animals , Mice , Mice, Inbred mdx , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , RNA, Messenger/metabolism , Smad8 Protein/genetics , Smad8 Protein/metabolism , Transforming Growth Factor beta/metabolism
4.
Protein Expr Purif ; 184: 105878, 2021 08.
Article in English | MEDLINE | ID: mdl-33812004

ABSTRACT

Smad8 is a transcriptional regulator that participates in the intracellular signaling pathway of the transforming growth factor-ß (TGF-ß) family. Full-length Smad8 is an inactive protein in the absence of ligand stimulation. The expression of a truncated version of the protein lacking the MH1 domain (cSmad8) revealed constitutive activity in genetically engineered mesenchymal stem cells and, in combination with BMP-2, exhibited a tendon cell-inducing potential. To further explore function and applicability of Smad8 in regenerative medicine recombinant production is required. Herein, we further engineered cSmad8 to include the transactivation signal (TAT) of the human immunodeficiency virus (HIV) to allow internalization into cells. TAT-hcSmad8 was produced in endotoxin-free ClearColi® BL21 (DE3), refolded from inclusion bodies (IBs) and purified by Heparin chromatography. Analysis of TAT-hcSmad8 by thermal shift assay revealed the formation of a hydrophobic core. The presence of mixed α-helixes and ß-sheets, in line with theoretical models, was proven by circular dichroism. TAT-hcSmad8 was successfully internalized by C3H10T1/2 cells, where it was mainly found in the cytoplasm and partially in the nucleus. Finally, it was shown that TAT-hcSmad8 exhibited biological activity in C3H10T1/2 cells after co-stimulation with BMP-2.


Subject(s)
Escherichia coli , Inclusion Bodies , Protein Refolding , Smad8 Protein , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Inclusion Bodies/chemistry , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Smad8 Protein/biosynthesis , Smad8 Protein/chemistry , Smad8 Protein/genetics , Smad8 Protein/isolation & purification
5.
Mol Cell Biochem ; 476(5): 2085-2097, 2021 May.
Article in English | MEDLINE | ID: mdl-33517521

ABSTRACT

BMP10 plays an essential role in regulating cardiac growth, chamber maturation, and maintaining normal expressions of several key cardiogenic factors; however, other functional roles of BMP10 in muscle remain unexplored. This study therefore undertook to investigate the roles of BMP10 in muscle physiology, using mouse-derived C2C12 myoblasts. Bmp10 silencing prevented a number of biological processes such as myogenic differentiation, glucose uptake, and lipid catabolism, whereas exogenous induction of BMP10 in C2C12 cells significantly stimulated the expression of proteins and genes involved in these processes, as well as mitochondrial biogenesis and thermogenesis, resulting in reduced lipid accumulation. A mechanistic study revealed that BMP10 stimulates myogenesis mainly via the Smad 1/5/8 signaling pathway. In conclusion, our data unveiled a previously unknown mechanism in the regulation of lipid metabolisms by BMP10 in muscle cells and identified its significant roles in systemic metabolic homeostasis, shedding light on BMP10 as a pharmacotherapeutic target to treat metabolic disorders.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Cell Differentiation , Muscle Development , Myoblasts/metabolism , Signal Transduction , Smad1 Protein/metabolism , Smad5 Protein/metabolism , Smad8 Protein/metabolism , Animals , Bone Morphogenetic Proteins/genetics , Cell Line , Mice , Smad1 Protein/genetics , Smad5 Protein/genetics , Smad8 Protein/genetics
6.
Bull Exp Biol Med ; 171(3): 305-311, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34302205

ABSTRACT

We studied the effects and mechanisms of action of conophylline in different concentrations in the original in vitro model of myocardial fibrosis (treatment of cardiac fibroblasts isolated form the hearts of newborn rats with angiotensin II). Viability, collagen content, and expression of related protein in cardiac fibroblasts were assessed using the MTT-test, Sircol assay, and Western blotting, respectively. Conophylline markedly protected the cultured cells against the development of angiotensin II-induced fibrosis, which was seen from reduced viability of fibroblasts, decreased collagen content, and down-regulation of the expression of α-smooth muscle actin (α-SMA). Conophylline did not affect the TGF-ß pathway altered by angiotensin II, but markedly decreased the level of bone morphogenetic protein-4 (BMP4) enhanced by angiotensin II and BMP4 itself. Conophylline produced no effect on phosphorylation of α-SMA and Smad homologue-1/5/8, the classic BMP4 downstream pathway elements, but reduced the level of c-Jun N-terminal kinase (JNK) elevated by BMP4. Conophylline did not inhibit the development of myocardial fibrosis in the presence of JNK activator anisomycin. Thus, conophylline inhibited angiotensin II-provoked myocardial fibrosis via the BMP4/JNK pathway.


Subject(s)
Angiotensin II/pharmacology , Antifibrotic Agents/pharmacology , Bone Morphogenetic Protein 4/genetics , Fibroblasts/drug effects , MAP Kinase Kinase 4/genetics , Vinca Alkaloids/pharmacology , Animals , Animals, Newborn , Bone Morphogenetic Protein 4/antagonists & inhibitors , Bone Morphogenetic Protein 4/metabolism , Collagen/genetics , Collagen/metabolism , Endomyocardial Fibrosis/genetics , Endomyocardial Fibrosis/metabolism , Endomyocardial Fibrosis/pathology , Endomyocardial Fibrosis/prevention & control , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation , MAP Kinase Kinase 4/antagonists & inhibitors , MAP Kinase Kinase 4/metabolism , Models, Biological , Myocardium/metabolism , Myocardium/pathology , Phosphorylation/drug effects , Primary Cell Culture , Rats , Rats, Wistar , Signal Transduction , Smad1 Protein/genetics , Smad1 Protein/metabolism , Smad5 Protein/genetics , Smad5 Protein/metabolism , Smad8 Protein/genetics , Smad8 Protein/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Mol Hum Reprod ; 23(3): 155-165, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27986931

ABSTRACT

STUDY QUESTION: Does bone morphogenetic protein 2 (BMP2) regulate connexin43 (Cx43) and modulate cell-cell communication in luteinized human granulosa cells? SUMMARY ANSWER: BMP2 decreases gap junction intercellular communication (GJIC) of luteinized human granulosa cells by down-regulating Cx43 expression through an activin receptor-like kinase (ALK)2/ALK3-mediated Sma- and Mad-related protein (SMAD)-dependent signaling pathway. WHAT IS KNOWN ALREADY: BMP2 and its putative receptors are highly expressed in the human corpus luteum and are involved in the process of luteolysis. Cx43-coupled gap junctions play a critical role in the development and maintenance of corpus luteum. STUDY DESIGN DURATION: This is a laboratory study conducted over a 1-year period. At least three independent experiments with three replicates were conducted and the experimental samples were compared with the appropriate vehicle controls for all of the inhibition-approach, concentration-dependent or time-course studies. PARTICIPANTS/MATERIALS, SETTING, METHODS: SVOG cell line (immortalized human granulosa-lutein cells derived from in vitro fertilization patients in an academic research center) was used as the study model. The changes of Cx43 expression and levels of phosphorylated SMAD1/5/8 protein were evaluated after exposure to recombinant human BMP2. Real-time quantitative PCR and Western blot analysis were used to examine the specific mRNA and protein levels, respectively. The BMP/TGF-ß type I receptor inhibitors (Dorsomorphin, DMH-1 and SB431542) and target depletion small interfering RNAs (ALK2, ALK3, ALK6 and SMAD4) were used to investigate the underlying molecular mechanisms. A scrape loading and dye transfer assay was used to evaluate the GJIC between the SVOG cells. MAIN RESULTS AND THE ROLE OF CHANCE: Treatment with BMP2 down-regulated the expression of Cx43 and decreased the GJIC activity, whereas it increased the phosphorylated SMAD1/5/8 protein in SVOG cells (P < 0.05). These biological effects were abolished by pre-treatment with the BMP type I receptor inhibitors, Dorsomorphin and DMH-1 (P < 0.05), but not SB431542. Additionally, the individual or concomitant small interfering RNA-mediated knockdown of ALK2 and ALK3, but not ALK6 attenuated the BMP2-induced increases in phosphorylated SMAD1/5/8 and down-regulation of Cx43 expression (P < 0.05). The knockdown of SMAD4 completely abolished the BMP2-induced down-regulation of Cx43 expression (P < 0.05). LIMITATIONS REASONS FOR CAUTION: This experimental study was conducted in an in vitro cell culture system, and may not reflect a realistic intra-ovarian environment. WIDER IMPLICATIONS OF THE FINDINGS: Our results suggested that BMP2 may be involved in the local modulation of cell-cell communication in the luteal phase. This study also represents the first comprehensive research of molecular mechanisms of BMP2 in the down-regulation Cx43 in luteinized human granulosa cells. Such data may provide valuable insights into ovarian physiology and benefit the development of potential therapeutic methods for patients suffering from luteal insufficiency. LARGE SCALE DATA: N/A. STUDY FUNDING AND COMPETING INTEREST(s): This research was supported by an operating grant from the China-Canadian Joint Health Research Initiative Grants Program to P.C.K. Leung and J.Z. Sheng. The authors declare no competing interest with the contents of this article.


Subject(s)
Activin Receptors, Type I/genetics , Bone Morphogenetic Protein 2/pharmacology , Cell Communication/drug effects , Connexin 43/genetics , Luteal Cells/drug effects , Activin Receptors, Type I/metabolism , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Cell Line, Transformed , Connexin 43/antagonists & inhibitors , Connexin 43/metabolism , Female , Gap Junctions/drug effects , Gap Junctions/metabolism , Gene Expression Regulation , Humans , Luteal Cells/cytology , Luteal Cells/metabolism , Phosphorylation/drug effects , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Quinolines/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Smad1 Protein/antagonists & inhibitors , Smad1 Protein/genetics , Smad1 Protein/metabolism , Smad5 Protein/antagonists & inhibitors , Smad5 Protein/genetics , Smad5 Protein/metabolism , Smad8 Protein/antagonists & inhibitors , Smad8 Protein/genetics , Smad8 Protein/metabolism
8.
Lung ; 195(3): 377-385, 2017 06.
Article in English | MEDLINE | ID: mdl-28393260

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a deadly disease, and the molecular mechanism of PAH has not been clarified clearly. The objective of this study was to identify possible biomarkers and explore the potential mechanisms of Schistosoma-induced PAH. METHODS: GSE49114 RNA-Seq data developed from mouse whole lung tissues were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between control samples and schistosomiasis-induced PAH samples were identified by the edgeR software. Gene Ontology (GO) and pathway enrichment analysis of DEGs were performed, followed by metabolic pathway network construction. Moreover, pathways with higher connectivity degrees in the metabolic pathway network were identified. RESULTS: Totally, 877 up- and 520 downregulated DEGs were screened. The upregulated DEGs such as IL-4 (Interleukin-4) were significantly related with immune system process, transmembrane signaling receptor activity, and signal transducer activity. Downregulated DEGs (i.e., Smad9 (SMAD family member 9), BMPR2 (bone morphogenetic protein type 2 receptor), and Eng (endoglin)) were significantly enriched in signal transducer activity, growth factor binding, and signal transduction. The top 10 metabolic pathways with highest connectivity degree were screened, including leishmaniasis (degree = 26), antigen processing and presentation (degree = 20), hematopoietic cell lineage (degree = 20), chemokine signaling pathway (degree = 18), and JAK-STAT signaling pathway (degree = 18). CONCLUSIONS: Smad9, BMPR2, Eng and IL4, and their relative functions such as signal transduction, signal transducer activity, and immune system process might play important roles in schistosomiasis-induced PAH. Moreover, the interaction of metabolic pathways was critical in the development of schistosomiasis-PAH.


Subject(s)
Hypertension, Pulmonary/genetics , Lung/metabolism , RNA/genetics , Schistosoma mansoni/pathogenicity , Schistosomiasis mansoni/genetics , Sequence Analysis, RNA , Animals , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Computational Biology , Databases, Genetic , Disease Models, Animal , Endoglin/genetics , Endoglin/metabolism , Gene Expression Regulation , Gene Regulatory Networks , Genetic Markers , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/parasitology , Interleukin-4/genetics , Interleukin-4/metabolism , Lung/parasitology , Mice, Inbred C57BL , RNA/metabolism , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , Smad8 Protein/genetics , Smad8 Protein/metabolism , Transcriptome
9.
J Cell Biochem ; 117(8): 1788-96, 2016 08.
Article in English | MEDLINE | ID: mdl-26748560

ABSTRACT

Members of the transforming growth factor-ß (TGF-ß) family function through Smad-dependent and Smad-independent pathways. The Smad-dependent pathway is stimulated through the phosphorylation of receptor-regulated Smad (R-Smad) and inhibited through the dephosphorylation of R-Smad or the gene induction of inhibitory Smad (I-Smad). Little information is available on the regulation of R-Smad gene expression. BMP4 potentiated the up-regulation of Smad8/9 expression in C2C12, H9c2, 3T3-L1, HepG2, B16, and primary fibroblasts. BMP4-induced Smad8/9 expression was cycloheximide-insensitive and LDN-193189-sensitive, suggesting a direct event mediated through BMP type I receptors. BMP4 transcriptionally stimulated the Smad8/9 gene, and BMP-responsive elements (BREs) spanning nt -121 to nt -44 are involved in the up-regulation of Smad8/9 expression in response to BMP4. Phosphorylated Smad1/5/8/9 specifically bound to the BREs of Smad8/9 gene. The present study reveals that Smad8/9 is a unique R-Smad regulated through the BMP pathway at the mRNA level. J. Cell. Biochem. 117: 1788-1796, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Signal Transduction/physiology , Smad8 Protein/metabolism , 3T3-L1 Cells , Animals , Bone Morphogenetic Protein 4/genetics , Gene Expression Regulation/physiology , Hep G2 Cells , Humans , Mice , Smad8 Protein/genetics
10.
Gastroenterology ; 149(4): 886-9.e5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26122142

ABSTRACT

Hamartomatous polyposis syndromes (HPS) account for a small but appreciable proportion of inherited gastrointestinal cancer predisposition syndromes; patients with HPS have an increased risk for colon and extracolonic malignancies. We present a unique case of familial juvenile polyposis syndrome associated with gastrointestinal ganglioneuromas of unknown etiology. The patient was tested for HPS-associated genes, but no mutation was detected. Exome sequencing identified a germline heterozygous mutation in SMAD9 (SMAD9(V90M)). This mutation was predicted to be an activating mutation. HEK cells transfected to express SMAD9(V90M) had reduced expression of phosphatase and tensin homolog; this reduction was also observed in a polyp from the patient. We have therefore identified a new susceptibility locus for HPS. Patients with hamartomatous polyposis in the colon associated with ganglioneuromatosis should be referred for genetic assessments.


Subject(s)
Colonic Polyps/genetics , Digestive System Neoplasms/genetics , Exome , Ganglioneuroma/genetics , Germ-Line Mutation , Multiple Endocrine Neoplasia Type 2b/genetics , PTEN Phosphohydrolase/metabolism , Peutz-Jeghers Syndrome/genetics , Smad8 Protein/genetics , Adult , Colonic Polyps/diagnosis , Colonic Polyps/enzymology , DNA Mutational Analysis , Digestive System Neoplasms/diagnosis , Digestive System Neoplasms/enzymology , Down-Regulation , Female , Ganglioneuroma/diagnosis , Ganglioneuroma/enzymology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , HEK293 Cells , Humans , Male , Multiple Endocrine Neoplasia Type 2b/diagnosis , Multiple Endocrine Neoplasia Type 2b/enzymology , PTEN Phosphohydrolase/genetics , Peutz-Jeghers Syndrome/diagnosis , Peutz-Jeghers Syndrome/enzymology , Phenotype , Smad8 Protein/metabolism , Transfection
11.
Eur Respir J ; 47(2): 541-52, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26699722

ABSTRACT

Genetic causes of pulmonary arterial hypertension (PAH) and pulmonary veno-occlusive disease (PVOD) have been identified, leading to a growing need for genetic counselling.Between 2003 and 2014, genetic counselling was offered to 529 PAH and 100 PVOD patients at the French Referral Centre for Pulmonary Hypertension.Mutations in PAH-predisposing genes were identified in 72 patients presenting as sporadic PAH (17% of cases; 62 mutations in BMPR2, nine in ACVRL1 (ALK1) and one in ENG) and in 94 patients with a PAH family history (89% of cases; 89 mutations in BMPR2, three in ACVRL1 (ALK1) and two in KCNK3). Bi-allelic mutations in EIF2AK4 were identified in all patients with a family history of PVOD (n=19) and in seven patients (8.6%) presenting as sporadic PVOD. Pre-symptomatic genetic diagnosis was offered to 272 relatives of heritable PAH patients, identifying mutations in 36.4% of them. A screening programme is now offered to asymptomatic mutation carriers to detect PAH in an early phase and to identify predictors of outcomes in asymptomatic BMPR2 mutation carriers. BMPR2 screening allowed us to offer pre-implantation diagnosis to two couples with a BMPR2 mutation.Genetic counselling can be implemented in pulmonary hypertension centres.


Subject(s)
Asymptomatic Diseases , Familial Primary Pulmonary Hypertension/genetics , Family , Genetic Counseling/methods , Pulmonary Veno-Occlusive Disease/genetics , Activin Receptors, Type II/genetics , Adult , Antigens, CD/genetics , Bone Morphogenetic Protein Receptors, Type II/genetics , Caveolin 1/genetics , Endoglin , Female , France , Genetic Testing/methods , Humans , Hypertension, Pulmonary/genetics , Male , Mutation , Nerve Tissue Proteins/genetics , Potassium Channels, Tandem Pore Domain/genetics , Preimplantation Diagnosis , Protein Serine-Threonine Kinases/genetics , Receptors, Cell Surface/genetics , Smad8 Protein/genetics , Tertiary Care Centers
12.
Biochem J ; 466(1): 55-68, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25378054

ABSTRACT

Gremlin (Grem1) is a member of the DAN family of secreted bone morphogenetic protein (BMP) antagonists. Bone morphogenetic protein-7 (BMP-7) mediates protective effects during renal fibrosis associated with diabetes and other renal diseases. The pathogenic mechanism of Grem1 during diabetic nephropathy (DN) has been suggested to be binding and inhibition of BMP-7. However, the precise interactions between Grem1, BMP-7 and other BMPs have not been accurately defined. In the present study, we show the affinity of Grem1 for BMP-7 is lower than that of BMP-2 and BMP-4, using a combination of surface plasmon resonance and cell culture techniques. Using kidney proximal tubule cells and HEK (human embryonic kidney)-293 cell Smad1/5/8 phosphorylation and BMP-dependent gene expression as readouts, Grem1 consistently demonstrated a higher affinity for BMP-2>BMP-4>BMP-7. Cell-associated Grem1 did not inhibit BMP-2- or BMP-4-mediated signalling, suggesting that Grem1-BMP-2 binding occurred in solution, preventing BMP receptor activation. These data suggest that Grem1 preferentially binds to BMP-2 and this may be the dominant complex in a disease situation where levels of Grem1 and BMPs are elevated.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Epithelial Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Kidney Tubules, Proximal/metabolism , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 7/genetics , Bone Morphogenetic Protein 7/metabolism , Cell Line , Epithelial Cells/cytology , Gene Expression Regulation , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Kidney Tubules, Proximal/cytology , Phosphorylation , Protein Binding , Signal Transduction , Smad1 Protein/genetics , Smad1 Protein/metabolism , Smad5 Protein/genetics , Smad5 Protein/metabolism , Smad8 Protein/genetics , Smad8 Protein/metabolism , Surface Plasmon Resonance
13.
J Biol Chem ; 289(10): 6604-6618, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24488494

ABSTRACT

Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play crucial roles during embryonic development and cell fate determination. Nuclear transduction of BMP signals requires the receptor type Smad proteins, Smad1, Smad5, and Smad9. However, how these Smad proteins cooperate in vivo to regulate various developmental processes is largely unknown. In zebrafish, it was widely believed that the maternally expressed smad5 is essential for dorso-ventral (DV) patterning, and the zygotically transcribed smad1 is not required for normal DV axis establishment. In the present study, we have identified zygotically expressed smad9, which cooperates with smad1 downstream of smad5, to mediate zebrafish early DV patterning in a functional redundant manner. Although knockdown of smad1 or smad9 alone does not lead to visible dorsalization, double knockdown strongly dorsalizes zebrafish embryos, which cannot be efficiently rescued by smad5 overexpression, whereas the dorsalization induced by smad5 knockdown can be fully rescued by overexpression of smad1 or smad9. We have further revealed that the transcription initiations of smad1 and smad9 are repressed by each other, that they are direct transcriptional targets of Smad5, and that smad9, like smad1, is required for myelopoiesis. In conclusion, our study uncovers that smad1 and smad9 act redundantly to each other downstream of smad5 to mediate ventral specification and to regulate embryonic myelopoiesis.


Subject(s)
Body Patterning/genetics , Bone Morphogenetic Proteins/metabolism , Myelopoiesis/genetics , Smad1 Protein/metabolism , Smad5 Protein/metabolism , Smad8 Protein/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Amino Acid Sequence , Animals , Bone Morphogenetic Proteins/genetics , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Molecular Sequence Data , Phylogeny , Smad1 Protein/classification , Smad1 Protein/genetics , Smad5 Protein/classification , Smad5 Protein/genetics , Smad8 Protein/classification , Smad8 Protein/genetics , Transcription Initiation, Genetic , Zebrafish/genetics , Zebrafish Proteins/classification , Zebrafish Proteins/genetics
14.
Biochim Biophys Acta ; 1839(11): 1256-72, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25218966

ABSTRACT

Emerging studies on circulating microRNAs (miRNAs) or microvesicles (MVs) have shown the potential of them to be novel biomarkers and therapeutic targets for cancer. However, the biological roles of these miRNAs and MVs have not been validated yet. To determine the biological significance of MVs, we used human colorectal cancer cells as the MV donor and endothelial cells (HUVECs) as the MV recipient and demonstrated the transfer of colorectal cancer cell-derived MVs (CRC-MVs) to HUVECs and evaluated the roles of these MVs and their cargo in tumor angiogenesis. Consequently, the incubation of HUVECs with CRC-MVs promoted the proliferation, migration, and tube formation activities of these cells. Among the cargoes shuttled by the MVs, miR-1246 and TGF-ß were considered to be responsible for the pro-angiogenic function of MVs by activating Smad 1/5/8 signaling in the HUVECs. These results suggest that colorectal cancer cells secreted MVs to contribute to tumor angiogenesis.


Subject(s)
Colorectal Neoplasms/pathology , Cytoplasmic Vesicles/pathology , Endothelial Cells/metabolism , MicroRNAs/genetics , Neovascularization, Pathologic/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Cells, Cultured , Colorectal Neoplasms/blood supply , Colorectal Neoplasms/genetics , Cytoplasmic Vesicles/physiology , Down-Regulation/genetics , HeLa Cells , Hep G2 Cells , Human Umbilical Vein Endothelial Cells , Humans , MicroRNAs/metabolism , Neovascularization, Pathologic/pathology , Nuclear Proteins/metabolism , Promyelocytic Leukemia Protein , Signal Transduction/genetics , Smad1 Protein/genetics , Smad1 Protein/metabolism , Smad5 Protein/genetics , Smad5 Protein/metabolism , Smad8 Protein/genetics , Smad8 Protein/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
15.
J Cell Physiol ; 230(9): 2038-48, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25536014

ABSTRACT

Phosphodiesterase (PDE) inhibitors have been suggested as a possible candidate for the treatment of osteopenia, including osteoporosis. KMUP-1 is a novel xanthine derivative with inhibitory activities on the PDE 3, 4, and 5 iso-enzymes to suppress the degradation of cAMP and cGMP. This study aimed to investigate the effect of KMUP-1 on osteoblast differentiation and the underlying cellular and molecular mechanisms. Primary osteoblasts and osteoblastic MC3T3-E1 cells were examined. KMUP-1 enhanced alkaline phosphatase (ALP) activity and mineralization compared to untreated controls in primary osteoblasts and MC3T3-E1 cells. KMUP-1 also increased the mRNA expression of the osteoblastic differentiation markers, including collagen type 1a, ALP, osteocalcin, osteoprotegerin, BMP-2, and Runx2, a key transcription regulator for osteoblastic differentiation. The osteogenic effect of KMUP-1 was abolished by BMP signaling inhibitor, noggin. Furthermore, we found that KMUP-1 upregulated Smad1/5/8 phosphorylations with subsequent BRE-Luc activation confirmed by transient transfection assay. In addition, KMUP-1 inactivated glycogen synthase kinase-3ß (GSK-3ß), with associated nuclear translocation of ß-catenin. Co-treatment with H89 and KT5823, cAMP and cGMP pathway inhibitors, respectively, reversed the KMUP-1-induced activations of Smad1/5/8, ß-catenin, and Runx2. The findings demonstrate for the first time that KMUP-1 can promote osteoblast maturation and differentiation in vitro via BMP-2/Smad1/5/8 and Wnt/ß-catenin pathways. These effects are mediated, in part, by the cAMP and cGMP signaling. Thus, KMUP-1 may be a novel osteoblast activator and a potential new therapy for osteoporosis.


Subject(s)
Bone Morphogenetic Protein 2/biosynthesis , Cell Differentiation/drug effects , Piperidines/administration & dosage , Smad1 Protein/biosynthesis , Smad5 Protein/biosynthesis , Smad8 Protein/biosynthesis , Xanthines/administration & dosage , Animals , Bone Morphogenetic Protein 2/genetics , Calcification, Physiologic , Cell Line , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Gene Expression Regulation, Developmental/drug effects , Mice , Osteoblasts/drug effects , RNA, Messenger/biosynthesis , Smad1 Protein/genetics , Smad5 Protein/genetics , Smad8 Protein/genetics , Wnt Signaling Pathway
16.
Stem Cells ; 32(2): 534-47, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24023003

ABSTRACT

Hair follicles (HFs) are regenerative miniorgans that offer a highly informative model system to study the regulatory mechanisms of hair follicle stem cells (hfSCs) homeostasis and differentiation. Bone morphogenetic protein (BMP) signaling is key in both of these processes, governing hfSCs quiescence in the bulge and differentiation of matrix progenitors. However, whether canonical or noncanonical pathways of BMP signaling are responsible for these processes remains unresolved. Here, we conditionally ablated two canonical effectors of BMP signaling, Smad1 and Smad5 during hair morphogenesis and postnatal cycling in mouse skin. Deletion of Smad1 and Smad5 (dKO) in the epidermis during morphogenesis resulted in neonatal lethality with lack of visible whiskers. Interestingly, distinct patterns of phospho-Smads (pSmads) activation were detected with pSmad8 restricted to epidermis and pSmad1 and pSmad5 exclusively activated in HFs. Engraftment of dKO skin revealed retarded hair morphogenesis and failure to differentiate into visible hair. The formation of the prebulge and bulge reservoir for quiescent hfSCs was precluded in dKO HFs which remained in prolonged anagen. Surprisingly, in postnatal telogen HFs, pSmad8 expression was no longer limited to epidermis and was also present in dKO bulge hfSCs and matrix progenitors. Although pSmad8 activity alone could not prevent dKO hfSCs precocious anagen activation, it sustained efficient postnatal differentiation and regeneration of visible hairs. Together, our data suggest a pivotal role for canonical BMP signaling demonstrating distinguished nonoverlapping function of pSmad8 with pSmad1 and pSmad5 in hfSCs regulation and hair morphogenesis but a redundant role in adult hair progenitors differentiation.


Subject(s)
Hair Follicle/growth & development , Smad1 Protein/metabolism , Smad5 Protein/metabolism , Smad8 Protein/metabolism , Animals , Cell Differentiation , Epidermis/growth & development , Epidermis/metabolism , Hair/growth & development , Hair/metabolism , Hair Follicle/metabolism , Mice , Morphogenesis/genetics , Regeneration , Smad1 Protein/genetics , Smad5 Protein/genetics , Smad8 Protein/genetics , Stem Cells/metabolism
17.
Lung ; 193(4): 571-4, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25917481

ABSTRACT

The aim of this study was to characterize the mutational spectrum of pulmonary hypertension (PH) patients through a next generation sequencing platform. In a total of 22 patients, the BMPR2, SMAD9, CAV1, KCNK3, and EIF2AK4 genes were sequenced with semiconductor chips and the ion torrent personal genome machine. We found six putative mutations in SMAD (p.R263Q), BMPR2 (p.S301P, p.T493I), CAV1 (p.V155I), and EIF2AK4 (p.L489P, p.P1115L) in five patients. One patient was compound heterozygous for BMPR2 + SMAD mutations, and one patient was homozygous for EIF2AK4 p.P1115L. The reported procedure would facilitate the rapid mutational screening of large cohorts of PH patients.


Subject(s)
Hypertension, Pulmonary/genetics , Oligonucleotide Array Sequence Analysis/methods , Adult , Aged , Bone Morphogenetic Protein Receptors, Type II/genetics , Caveolin 1/genetics , DNA Mutational Analysis , Female , Genetic Testing/methods , Genomics , Humans , Hypertension, Pulmonary/physiopathology , Male , Middle Aged , Mutation , Nerve Tissue Proteins/genetics , Oligonucleotide Array Sequence Analysis/instrumentation , Potassium Channels, Tandem Pore Domain/genetics , Protein Serine-Threonine Kinases/genetics , Semiconductors , Smad8 Protein/genetics , Spain
18.
Mol Cell Biochem ; 387(1-2): 227-39, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24218084

ABSTRACT

Satb2 acts as a potent transcription factor to promote osteoblast differentiation and bone regeneration. Recently, microRNAs (miRNA) have been identified as critical regulators of osteogenic differentiation. This study aimed to identify specific miRNAs and their regulatory roles in the process of Satb2-induced osteogenic differentiation. We studied the differentially expressed miRNAs by Satb2 overexpression in murine bone marrow stromal cells using miRNA microarray. Ten down-regulated miRNAs including miR-27a, miR-125a-5p, and miR-466f-3p, and 18 up-regulated miRNAs including miR-17, miR-20a and miR-210 were found to be differentially expressed and their expression were verified by quantitative real time PCR. The differentially expressed miRNAs were further subjected to gene ontology and KEGG analysis. The highly enriched GOs and KEGG pathway showed target genes of these miRNAs were significantly involved in multiple biological processes (mesenchymal cell differentiation, bone formation, and skeletal development), and several osteogenic pathways (TGF-ß/BMP, MAPK, and Wnt signaling pathway). Finally, miR-27a was selected for target verification and function analysis. BMP2, BMPR1A, and Smad9, members of the TGF-ß/BMP superfamily, which were predicted to be target genes of miR-27a, were confirmed to be significantly up-regulated in Satb2-overexpressing cells by quantitative real time PCR. Overexpression of miR-27a significantly inhibited osteogenesis and repressed BMP2, BMPR1A, and Smad9 expression. In this study, we identified that a number of differentially regulated miRNAs, whose target genes involved in the TGF-ß/BMP signaling pathway, play an important role in the early stage of Satb2-induced osteogenic differentiation.


Subject(s)
Cell Differentiation , Matrix Attachment Region Binding Proteins/physiology , Mesenchymal Stem Cells/physiology , MicroRNAs/metabolism , Transcription Factors/physiology , Transcriptome , Alkaline Phosphatase/metabolism , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Cells, Cultured , Gene Ontology , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Osteogenesis , RNA Interference , Signal Transduction , Smad8 Protein/genetics , Smad8 Protein/metabolism , Tissue Engineering , Transforming Growth Factor beta/metabolism
19.
Parasitol Res ; 113(10): 3745-57, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25039015

ABSTRACT

Smad family proteins are essential cellular mediators of the transforming growth factor-ß superfamily. In the present study, we identified two members of the Smad proteins, Smad8 and Smad4 homologues (termed as EgSmadE and EgSmadD, respectively), from Echinococcus granulosus, the causative agent of cystic echinococcosis (CE). Phylogenetic analysis placed EgSmadE in the Smad1, 5, and 8 subgroup of the R-Smad sub-family and EgSmadD in the Co-Smad family. Furthermore, EgSmadE and EgSmadD attained a high homology to EmSmadE and EmSmadD of E. multilocularis, respectively. Both EgSmadE and EgSmadD were co-expressed in the larval stages and exhibited the highest transcript levels in activated protoscoleces, and their encoded proteins were co-localized in the sub-tegumental and tegumental layer of the parasite. As shown by yeast two-hybrid and pull-down analysis, EgSmadE displayed a positive binding interaction with EgSmadD. In addition, EgSmadE localized in the nuclei of Mv1Lu cells (mink lung epithelial cells) upon treatment with human TGF-ß1 or human BMP2, indicating that EgSmadE is capable of being translocated into nucleus, in vitro. Our study suggests that EgSmadE and EgSmadD may take part in critical biological processes, including echinococcal growth, development, and parasite-host interaction.


Subject(s)
Echinococcosis/parasitology , Echinococcus granulosus/genetics , Signal Transduction , Smad4 Protein/genetics , Smad8 Protein/genetics , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Cell Line , DNA, Helminth/chemistry , DNA, Helminth/genetics , Echinococcus granulosus/classification , Echinococcus granulosus/physiology , Gene Expression Regulation, Developmental , Genome, Helminth/genetics , Helminth Proteins/genetics , Helminth Proteins/immunology , Helminth Proteins/metabolism , Host-Parasite Interactions , Humans , Immune Sera/immunology , Phylogeny , Rabbits , Smad4 Protein/immunology , Smad4 Protein/metabolism , Smad8 Protein/immunology , Smad8 Protein/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
20.
Am J Respir Cell Mol Biol ; 49(3): 403-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23590310

ABSTRACT

Heritable pulmonary arterial hypertension (HPAH) is a serious lung vascular disease caused by heterozygous mutations in the bone morphogenetic protein (BMP) pathway genes, BMPR2 and SMAD9. One noncanonical function of BMP signaling regulates biogenesis of a subset of microRNAs. We have previously shown that this function is abrogated in patients with HPAH, making it a highly sensitive readout of BMP pathway integrity. Ataluren (PTC124) is an investigational drug that permits ribosomal readthrough of premature stop codons, resulting in a full-length protein. It exhibits oral bioavailability and limited toxicity in human trials. Here, we tested ataluren in lung- or blood-derived cells from patients with HPAH with nonsense mutations in BMPR2 (n = 6) or SMAD9 (n = 1). Ataluren significantly increased BMP-mediated microRNA processing in six of the seven cases. Moreover, rescue was achieved even for mutations exhibiting significant nonsense-mediated mRNA decay. Response to ataluren was dose dependent, and complete correction was achieved at therapeutic doses currently used in clinical trials for cystic fibrosis. BMP receptor (BMPR)-II protein levels were normalized and ligand-dependent phosphorylation of downstream target Smads was increased. Furthermore, the usually hyperproliferative phenotype of pulmonary artery endothelial and smooth muscle cells was reversed by ataluren. These results indicate that ataluren can effectively suppress a high proportion of BMPR2 and SMAD9 nonsense mutations and correct BMP signaling in vitro. Approximately 29% of all HPAH mutations are nonsense point mutations. In light of this, we propose ataluren as a potential new personalized therapy for this significant subgroup of patients with PAH.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Codon, Nonsense , Drugs, Investigational/pharmacology , Hypertension, Pulmonary/genetics , Myocytes, Smooth Muscle/drug effects , Oxadiazoles/pharmacology , Smad8 Protein/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Familial Primary Pulmonary Hypertension , Gene Expression Regulation/drug effects , Heterozygote , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Nonsense Mediated mRNA Decay/drug effects , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Signal Transduction , Smad8 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL