Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS Biol ; 19(4): e3001191, 2021 04.
Article in English | MEDLINE | ID: mdl-33886552

ABSTRACT

The Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein-coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism. Here, we show that, rather than conforming to traditional GPCR signaling paradigms, SMO activates GLI by binding and sequestering protein kinase A (PKA) catalytic subunits at the membrane. This sequestration, triggered by GPCR kinase (GRK)-mediated phosphorylation of SMO intracellular domains, prevents PKA from phosphorylating soluble substrates, releasing GLI from PKA-mediated inhibition. Our work provides a mechanism directly linking Hh signal transduction at the membrane to GLI transcription in the nucleus. This process is more fundamentally similar between species than prevailing hypotheses suggest. The mechanism described here may apply broadly to other GPCR- and PKA-containing cascades in diverse areas of biology.


Subject(s)
Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/antagonists & inhibitors , Hedgehog Proteins/metabolism , Smoothened Receptor/physiology , Animals , Animals, Genetically Modified , Catalytic Domain/genetics , Cells, Cultured , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Embryo, Nonmammalian , HEK293 Cells , Hedgehog Proteins/genetics , Humans , Mice , Protein Interaction Domains and Motifs/genetics , Signal Transduction/genetics , Smoothened Receptor/metabolism , Zebrafish
2.
Dev Biol ; 477: 177-190, 2021 09.
Article in English | MEDLINE | ID: mdl-34038742

ABSTRACT

Teleost fish fins, like all vertebrate limbs, comprise a series of bones laid out in characteristic pattern. Each fin's distal bony rays typically branch to elaborate skeletal networks providing form and function. Zebrafish caudal fin regeneration studies suggest basal epidermal-expressed Sonic hedgehog (Shh) promotes ray branching by partitioning pools of adjacent pre-osteoblasts. This Shh role is distinct from its well-studied Zone of Polarizing Activity role establishing paired limb positional information. Therefore, we investigated if and how Shh signaling similarly functions during developmental ray branching of both paired and unpaired fins while resolving cellular dynamics of branching by live imaging. We found shha is expressed uniquely by basal epidermal cells overlying pre-osteoblast pools at the distal aspect of outgrowing juvenile fins. Lateral splitting of each shha-expressing epidermal domain followed by the pre-osteoblast pools precedes overt ray branching. We use ptch2:Kaede fish and Kaede photoconversion to identify short stretches of shha+basal epidermis and juxtaposed pre-osteoblasts as the Shh/Smoothened (Smo) active zone. Basal epidermal distal collective movements continuously replenish each shha+domain with individual cells transiently expressing and responding to Shh. In contrast, pre-osteoblasts maintain Shh/Smo activity until differentiating. The Smo inhibitor BMS-833923 prevents branching in all fins, paired and unpaired, with surprisingly minimal effects on caudal fin initial skeletal patterning, ray outgrowth or bone differentiation. Staggered BMS-833923 addition indicates Shh/Smo signaling acts throughout the branching process. We use live cell tracking to find Shh/Smo restrains the distal movement of basal epidermal cells by apparent 'tethering' to pre-osteoblasts. We propose short-range Shh/Smo signaling promotes these heterotypic associations to couple instructive basal epidermal collective movements to pre-osteoblast repositioning as a unique mode of branching morphogenesis.


Subject(s)
Animal Fins/embryology , Epidermal Cells/physiology , Epidermis/embryology , Hedgehog Proteins/physiology , Morphogenesis , Zebrafish Proteins/physiology , Animal Fins/cytology , Animal Fins/metabolism , Animals , Benzamides/pharmacology , Cell Movement , Epidermis/metabolism , Patched-2 Receptor/metabolism , Quinazolines/pharmacology , Signal Transduction/drug effects , Smoothened Receptor/physiology , Zebrafish
3.
J Biol Chem ; 294(25): 9787-9798, 2019 06 21.
Article in English | MEDLINE | ID: mdl-30992365

ABSTRACT

Hedgehog proteins are pivotal morphogens acting through a canonical pathway involving first activation of ligand binding to Patched followed by alleviation of Smoothened receptor inhibition, leading to activation of Gli transcription factors. Noncanonical Hedgehog signaling remains poorly characterized but is thought to be mainly dependent on Smoothened. However, Smoothened inhibitors have yielded only partial success in combating Hedgehog signal transduction-dependent cancer, suggesting that noncanonical Smoothened-independent pathways also are clinically relevant. Moreover, several Smoothened-dependent effects (e.g. neurite projection) do not require transcriptional activation, further suggesting biological importance of noncanonical Smoothened-dependent pathways. We comprehensively characterized the cellular kinome in Hedgehog-challenged murine WT and Smoothened-/- fibroblasts as well as Smoothened agonist-stimulated cells. A peptide assay-based kinome analysis (in which cell lysates are used to phosphorylate specific kinase substrates), along with endocytosis, Lucifer Yellow-based, and immunoblotting assays, identified an elaborate signaling network of both Smoothened-dependent and -independent pathways that mediates actin reorganization through Src-like kinases, activates various proinflammatory signaling cascades, and concomitantly stimulates Wnt and Notch signaling while suppressing bone morphogenetic protein (BMP) signaling. The contribution of noncanonical Smoothened-independent signaling to the overall effects of Hedgehog on cellular physiology appears to be much larger than previously envisioned and may explain the transcriptionally independent effects of Hedgehog signaling on cytoskeleton. The observation that Patched-dependent, Smoothened-independent, noncanonical Hedgehog signaling increases Wnt/Notch signaling provides a possible explanation for the failure of Smoothened antagonists in combating Hedgehog-dependent but Smoothened inhibitor-resistant cancer. Our findings suggest that inhibiting Hedgehog-Patched interaction could result in more effective therapies as compared with conventional Smoothened-directed therapies.


Subject(s)
Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Hedgehog Proteins/metabolism , Signal Transduction , Smoothened Receptor/physiology , Animals , Cells, Cultured , Embryo, Mammalian/cytology , Fibroblasts/cytology , Mice , Mice, Knockout
4.
FASEB J ; 33(6): 7213-7224, 2019 06.
Article in English | MEDLINE | ID: mdl-30865837

ABSTRACT

MicroRNAs (miRNAs) crucially modulate fundamental biologic processes such as angiogenesis. In the present study, we focused on the molecular function of miRNA-370-3p (miR-370) in regulating the angiogenic activity of endothelial cells (ECs). Transfection with miR-370 mimic (miR-370m) significantly inhibited the sprouting of human dermal microvascular EC (HDMEC) and HUVEC spheroids and mouse aortic rings, whereas miR-370 inhibitor (miR-370i) promoted sprout formation. Additional in vitro assays demonstrated the pleiotropic inhibitory effects of miR-370m on HDMEC proliferation, migration, and tube formation. Moreover, Matrigel plugs containing miR-370m-transfected HDMECs exhibited a reduced microvessel density after implantation into CD1 nude mice when compared with controls. In contrast, miR-370i exerted proangiogenic effects. Mechanistic analyses revealed that miR-370 directly targets smoothened (SMO) and down-regulates bone morphogenetic protein (BMP)-2 expression in HDMECs. Accordingly, inhibition of SMO by cyclopamine reversed miR-370i-induced HDMEC proliferation and migration. In addition, BMP-2 treatment counteracted miR-370m-suppressed tube formation of HDMECs, whereas blockade of BMP-2 with neutralizing antibody significantly inhibited miR-370i-induced tube formation. Taken together, these novel findings indicate that miR-370 is a potent inhibitor of angiogenesis, which directly targets SMO and BMP-2.-Gu, Y., Becker, V., Zhao, Y., Menger, M. D., Laschke, M. W. miR-370 inhibits the angiogenic activity of endothelial cells by targeting smoothened (SMO) and bone morphogenetic protein (BMP)-2.


Subject(s)
Bone Morphogenetic Protein 2/physiology , Endothelial Cells/metabolism , MicroRNAs/physiology , Neovascularization, Physiologic/genetics , Smoothened Receptor/physiology , Animals , Aorta , Bone Morphogenetic Protein 2/antagonists & inhibitors , Capillaries/cytology , Cell Division , Cell Movement , Cells, Cultured , Endothelial Cells/transplantation , Fibroblasts , Human Umbilical Vein Endothelial Cells , Humans , Keratinocytes , Male , Mice , Mice, Nude , MicroRNAs/genetics , Neovascularization, Physiologic/drug effects , Organ Culture Techniques , Osteoblasts , RNA Interference , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Skin/blood supply , Smoothened Receptor/antagonists & inhibitors , Smoothened Receptor/genetics , Spheroids, Cellular , Transfection , Veratrum Alkaloids/pharmacology
5.
J Hepatol ; 70(6): 1192-1202, 2019 06.
Article in English | MEDLINE | ID: mdl-30711403

ABSTRACT

BACKGROUND & AIMS: The mammalian circadian clock controls various aspects of liver metabolism and integrates nutritional signals. Recently, we described Hedgehog (Hh) signaling as a novel regulator of liver lipid metabolism. Herein, we investigated crosstalk between hepatic Hh signaling and circadian rhythm. METHODS: Diurnal rhythms of Hh signaling were investigated in liver and hepatocytes from mice with ablation of Smoothened (SAC-KO) and crossbreeds with PER2::LUC reporter mice. By using genome-wide screening, qPCR, immunostaining, ELISA and RNAi experiments in vitro we identified relevant transcriptional regulatory steps. Shotgun lipidomics and metabolic cages were used for analysis of metabolic alterations and behavior. RESULTS: Hh signaling showed diurnal oscillations in liver and hepatocytes in vitro. Correspondingly, the level of Indian Hh, oscillated in serum. Depletion of the clock gene Bmal1 in hepatocytes resulted in significant alterations in the expression of Hh genes. Conversely, SAC-KO mice showed altered expression of clock genes, confirmed by RNAi against Gli1 and Gli3. Genome-wide screening revealed that SAC-KO hepatocytes showed time-dependent alterations in various genes, particularly those associated with lipid metabolism. The clock/hedgehog module further plays a role in rhythmicity of steatosis, and in the response of the liver to a high-fat diet or to differently timed starvation. CONCLUSIONS: For the first time, Hh signaling in hepatocytes was found to be time-of-day dependent and to feed back on the circadian clock. Our findings suggest an integrative role of Hh signaling, mediated mainly by GLI factors, in maintaining homeostasis of hepatic lipid metabolism by balancing the circadian clock. LAY SUMMARY: The results of our investigation show for the first time that the Hh signaling in hepatocytes is time-of-day dependent, leading to differences not only in transcript levels but also in the amount of Hh ligands in peripheral blood. Conversely, Hh signaling is able to feed back to the circadian clock.


Subject(s)
Circadian Clocks/physiology , Fatty Liver/etiology , Hedgehog Proteins/physiology , Animals , Lipid Metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/physiology , Signal Transduction/physiology , Smoothened Receptor/physiology , Zinc Finger Protein GLI1/physiology , Zinc Finger Protein Gli3/physiology
6.
Am J Pathol ; 188(11): 2605-2616, 2018 11.
Article in English | MEDLINE | ID: mdl-30366594

ABSTRACT

Although hedgehog (Hh) signaling pathway is inactive in adult healthy liver, it becomes activated during acute and chronic liver injury and, thus, modulates the reparative process and disease progression. We developed a novel mouse model with liver-specific knockout of Smoothened (Smo LKO), and animals were subjected to Fas-induced liver injury in vivo. Results showed that Smo deletion in hepatocytes enhances Fas-induced liver injury. Activation of Hh signaling in hepatocytes in the setting of Fas-induced injury was indicated by the fact that Jo2 treatment enhanced hepatic expression of Ptch1, Smo, and its downstream target Gli1 in control but not Smo LKO mice. Primary hepatocytes from control mice showed increased Hh signaling activation in response to Jo2 treatment in vitro. On the other hand, the Smo KO hepatocytes were devoid of Hh activation and were more susceptible to Jo2-induced apoptosis. The levels of NF-κB and related signaling molecules, including epidermal growth factor receptor and Akt, were lower in Smo KO livers/hepatocytes than in control livers/hepatocytes. Accordingly, hydrodynamic gene delivery of active NK-κB prevented Jo2-induced liver injury in the Smo LKO mice. Our findings provide important evidence that adult hepatocytes become responsive to Hh signaling through up-regulation of Smo in the setting of Fas-induced liver injury and that such alteration leads to activation of NF-κB/epidermal growth factor receptor/Akt, which counteracts Fas-induced hepatocyte apoptosis.


Subject(s)
Acute Lung Injury/etiology , Apoptosis , ErbB Receptors/metabolism , Hedgehog Proteins/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Smoothened Receptor/physiology , fas Receptor/metabolism , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Cells, Cultured , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/metabolism , Male , Mice , Mice, Knockout
7.
Lab Invest ; 98(5): 682-691, 2018 05.
Article in English | MEDLINE | ID: mdl-29453401

ABSTRACT

Sonic Hedgehog (Shh) signaling induces neovascularization and angiogenesis. It is not known whether the hedgehog signaling pathway in endothelial cells is essential to angiogenesis. Smoothened (Smo) transduces hedgehog signaling across the cell membrane. This study assessed whether endothelial Smoothened-dependent Shh signaling is required for Shh-mediated angiogenesis and ischemic tissue repair. Endothelial-specific smoothened knockout mice, eSmoNull were created using Cre-lox recombination system. eSmoNull mice had no observable phenotype at baseline and showed normal cardiac function. Smoothened in CD31+ cells isolated from eSmoNull hearts was significantly reduced compared to CD31+ cells from eSmoWT littermate control hearts. Fluorescence immunostaining of eSmoNull heart sections showed Smo expression in endothelial cells was abolished. The hind-limb ischemia (HLI) model was used to assess the response to ischemic injury. Perfusion ratio, limb motor function, and limb necrosis were not significantly different after HLI between eSmoNull mice and eSmoWT. Capillary densities in the ischemic limb in eSmoNull mice were also similar to eSmoWT at 4 weeks after HLI. Next, response to exogenous Shh was assessed in the corneal angiogenesis model. There was no significant difference in corneal angiogenesis induced by administration of Shh pellets between eSmoWT and eSmoNull mice. Furthermore, in vitro experiments demonstrated that direct Shh had limited effects on endothelial cell proliferation and migration. However, conditioned media from Shh-treated fibroblasts had a more potent effect on endothelial cell proliferation and migration than non-treated conditioned media. Furthermore, Shh treatment of fibroblasts dramatically stimulated angiogenic growth factor expression, including PDGF-B, VEGF-A, HGF and IGF. PDGF-B was the most upregulated and may contribute to the large neo-vessels associated with Shh-induced angiogenesis. Taken together, these data demonstrate that Shh signaling via Smoothened in endothelial cells is not required for angiogenesis and ischemic tissue repair. Shh signaling via stromal cells likely mediates its angiogenic effects.


Subject(s)
Endothelial Cells/physiology , Hedgehog Proteins/physiology , Ischemia/physiopathology , Neovascularization, Physiologic , Signal Transduction/physiology , Smoothened Receptor/physiology , Animals , Cells, Cultured , Fibroblasts/physiology , Hindlimb/blood supply , Male , Mice
8.
Reproduction ; 153(4): 481-492, 2017 04.
Article in English | MEDLINE | ID: mdl-28123059

ABSTRACT

The influence of the hedgehog signaling pathway on reproduction was studied in transgenic mice in which a dominant active allele of the hedgehog signal transducer, smoothened (Smo), was conditionally expressed in the developing Müllerian duct and gonads through recombination mediated by anti-Müllerian hormone receptor 2-cre (Amhr2cre ). Previous studies showed that development of the oviduct and uterus are abnormal in female Amhr2cre/+SmoM2 mice. In the current study, focusing on mutant males, litter size was reduced 53% in crosses with wild-type females. An extra band of undifferentiated tissue extended along each epididymis and vas deferens, a position suggesting derivation from Müllerian ducts that failed to regress fully. Hedgehog signaling was elevated in this tissue, based on mRNA levels of target genes. Amhr2 mRNA was dramatically reduced in the uterus of mutant females and in the extra tissue in the tract of mutant males, suggesting that AMHR2 signaling was inadequate for complete Müllerian duct regression. Spermatogenesis and sperm motility were normal, but testis weight was reduced 37% and epididymal sperm number was reduced 36%. The number of sperm recovered from the uteri of wild-type females after mating with mutant males was reduced 78%. This suggested that sperm transport through the male tract was reduced, resulting in fewer sperm in the ejaculate. Consistent with this, mutant males had unusually tortuous vas deferentia with constrictions within the lumen. We concluded that persistence of a relatively undifferentiated remnant of Müllerian tissue is sufficient to cause subtle changes in the male reproductive tract that reduce fertility.


Subject(s)
Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Infertility/pathology , Mullerian Ducts/metabolism , Receptors, Peptide/physiology , Receptors, Transforming Growth Factor beta/physiology , Smoothened Receptor/physiology , Animals , Epididymis/cytology , Epididymis/metabolism , Female , Infertility/etiology , Infertility/metabolism , Integrases/metabolism , Male , Mice , Mice, Knockout , Mice, Transgenic , Mullerian Ducts/cytology , Reproduction/physiology , Seminiferous Tubules/cytology , Seminiferous Tubules/metabolism , Signal Transduction , Spermatogenesis
9.
Pediatr Neonatol ; 61(5): 498-505, 2020 10.
Article in English | MEDLINE | ID: mdl-32564932

ABSTRACT

BACKGROUND: Hyperoxia increases Sonic hedgehog (Shh) expression in neonatal rat lungs. The effect of mesenchymal stem cells (MSCs) on the hedgehog signaling pathway in hyperoxia-induced lung injury is unknown. This study evaluated whether MSCs could inhibit hedgehog signaling and improve established hyperoxia-induced lung injury in newborn rats. METHODS: Newborn rats were assigned to room air (RA) or hyperoxia (85% O2) groups from postnatal day 4-15, and some received intravenous injection of human MSCs (9 × 105 cells) in 90 µL of normal saline (NS) through the tail vein on postnatal day 15. We obtained four study groups as follows: RA + NS, RA + MSCs, O2 + NS, and O2 + MSCs. Pups from each group were sacrificed on postnatal days 15 and 29, and lungs were removed for histological and Western blot analyses. RESULTS: Neonatal hyperoxia on postnatal days 4-15 reduced the body weight, increased the mean linear intercept, and decreased the vascular density of the rats, and these effects were associated with increased Shh and Smoothened (Smo) expression and decreased Patched expression. By contrast, the MSC-treated hyperoxic pups exhibited improved alveolarization, increased vascularization, and decreased Shh and Smo expression on postnatal day 29. CONCLUSION: Human MSC treatment reversed established hyperoxia-induced lung injury in newborn rats, probably through suppression of the hedgehog pathway.


Subject(s)
Hyperoxia/complications , Lung Injury/therapy , Mesenchymal Stem Cell Transplantation , Placenta/cytology , Animals , Animals, Newborn , Female , Hedgehog Proteins/physiology , Humans , Pregnancy , Rats , Rats, Sprague-Dawley , Smoothened Receptor/physiology
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(3): 274-282, 2018 Mar 20.
Article in Zh | MEDLINE | ID: mdl-29643032

ABSTRACT

OBJECTIVE: To investigate the regulatory role of classical Shh signaling pathway in the development of the epithelium and mesenchyme (bronchial cartilage and smooth muscles) during lung development in fetal mice. METHODS: Immunohistochemical technique was used to detect the expression of Shh signaling pathway receptor Smo and Pdgfr-α in murine fetal lungs to explore the spatial and temporal characteristics of their expression. Based on the interstitial specificity of Pdgfr-α expression, we constructed a Pdgfr-α-cre to establish a E12.5 - E16.5 transgenic mice with specific knockout of the key Shh signaling molecule Smo in the pulmonary interstitium with tamoxifen induction. Immunofluorescence technique was used to observe the epithelium and mesenchyme (bronchial cartilage and smooth muscle) during fetal lung development in the transgenic mice to assess the role of Shh signaling pathway in the epithelial-to-mesenchymal (EMT) transition during the lung development. RESULTS: Smo was highly expressed in the epithelial and stromal lung tissues in the pseudoglandular stage and was gradually lowered over time with its distribution mainly in the interstitial tissues. Pdgfr-α was enriched in the distal lung epithelial and mesenchy tissues in early embryonic lungs and gradually migrated to the proximal stroma until becoming concentrated around the main bronchial proximal stroma. We successfully specific established mouse models of specific mesenchymal Smo knockout. Compared with the control group, the transgenic mice during E12.5-E16.5 showed significantly reduced lung the volume and bronchial branching with also decreased expression of the proximal epithelial P63 (P<0.05). The transgenic mice exhibited alterations in the expression of α-smooth muscle actin with delayed bronchial cartilage development and decreased expression of mucoprotein. CONCLUSION: The temporospatial specific expression of Shh signaling pathway plays an important role in developmental regulation of mouse embryonic lung epithelium and mesenchyme (bronchial cartilage and smooth muscle).


Subject(s)
Epithelium/embryology , Hedgehog Proteins/physiology , Lung/embryology , Signal Transduction , Animals , Epithelial-Mesenchymal Transition , Mice , Mice, Knockout , Receptor, Platelet-Derived Growth Factor alpha/physiology , Smoothened Receptor/genetics , Smoothened Receptor/physiology
11.
Neuron ; 97(2): 326-340.e4, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29346753

ABSTRACT

At the optic chiasm choice point, ipsilateral retinal ganglion cells (RGCs) are repelled away from the midline by guidance cues, including Ephrin-B2 and Sonic Hedgehog (Shh). Although guidance cues are normally produced by cells residing at the choice point, the mRNA for Shh is not found at the optic chiasm. Here we show that Shh protein is instead produced by contralateral RGCs at the retina, transported anterogradely along the axon, and accumulates at the optic chiasm to repel ipsilateral RGCs. In vitro, contralateral RGC axons, which secrete Shh, repel ipsilateral RGCs in a Boc- and Smo-dependent manner. Finally, knockdown of Shh in the contralateral retina causes a decrease in the proportion of ipsilateral RGCs in a non-cell-autonomous manner. These findings reveal a role for axon-axon interactions in ipsilateral RGC guidance, and they establish that remotely produced cues can act at axon guidance midline choice points.


Subject(s)
Axonal Transport/physiology , Axons/physiology , Hedgehog Proteins/metabolism , Nerve Tissue Proteins/physiology , Optic Chiasm/embryology , Retinal Ganglion Cells/metabolism , Animals , Immunoglobulin G/physiology , Mice , Optic Chiasm/metabolism , Protein Transport , Receptors, Cell Surface/physiology , Smoothened Receptor/physiology
12.
Methods Cell Biol ; 132: 147-64, 2016.
Article in English | MEDLINE | ID: mdl-26928543

ABSTRACT

Smoothened belongs to the class of atypical G protein-coupled receptors and serves as the transducing molecule in Hedgehog (Hh) signaling. Hh proteins comprise a family of secreted, cholesterol-modified ligands, which act both as morphogens and as signaling molecules. Binding of Hh proteins to their direct receptor, the transmembrane protein Patched-1, relieves Smoothened from tonal inhibition by Patched-1 and causes the translocation of Smoothened into the cilium. Here, the Hh signaling cascade is initiated and results in transcriptional activation of Hh target genes such as gli1 or patched-1. This induces a plethora of physiological outcomes including normal embryonic development, but also cancer, which is the reason why scientists aim to develop strategies to manipulate as well as monitor Smoothened-mediated Hh signaling. The zebrafish has emerged as a valuable tool for the assessment of Smoothened-mediated Hh signaling. In this chapter we thus describe how Smoothened-mediated Hh signaling can be monitored and also quantified using zebrafish embryos.


Subject(s)
Hedgehog Proteins/physiology , Smoothened Receptor/physiology , Zebrafish Proteins/physiology , Animals , Animals, Genetically Modified , Gene Expression Profiling , Gene Knockdown Techniques , Morpholinos/genetics , Transcriptome , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL