Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 675
Filter
1.
Microb Pathog ; 191: 106657, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649100

ABSTRACT

Staphylococcus aureus is a major human pathogen that can cause infections that range from superficial skin and mucosal infections to life threatening disseminated infections. S. aureus can attach to medical devices and host tissues and form biofilms that allow the bacteria to evade the host immune system and provide protection from antimicrobial agents. To counter host-generated oxidative and nitrosative stress mechanisms that are part of the normal host responses to invading pathogens, S. aureus utilizes low molecular weight (LMW) thiols, such as bacillithiol (BSH). Additionally, S. aureus synthesizes its own nitric oxide (NO), which combined with its downstream metabolites may also protect the bacteria against specific host responses. We have previously shown that LMW thiols are required for biofilm formation in Mycobacterium smegmatis and Pseudomonas aeruginosa. Here, we show that the S. aureus bshC mutant strain, which is defective in the last step of the BSH pathway and lacks BSH, is impaired in biofilm formation. We also identify a possible S-nitrosobacillithiol reductase (BSNOR), similar in sequence to an S-nitrosomycothiol reductase found in M. smegmatis and show that the putative S. aureus bsnoR mutant strain has reduced levels of BSH and decreased biofilm formation. Our studies also show that NO plays an important role in biofilm formation and that acidified sodium nitrite severely reduces biofilm thickness. These studies provide insight into the roles of oxidative and nitrosative stress mechanisms on biofilm formation and indicate that BSH and NO are key players in normal biofilm formation in S. aureus.


Subject(s)
Biofilms , Cysteine , Glucosamine , Nitric Oxide , Staphylococcus aureus , Biofilms/growth & development , Staphylococcus aureus/physiology , Staphylococcus aureus/genetics , Glucosamine/analogs & derivatives , Glucosamine/metabolism , Cysteine/analogs & derivatives , Cysteine/metabolism , Nitric Oxide/metabolism , Sodium Nitrite/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/physiology , Mycobacterium smegmatis/metabolism , Mutation , Humans , Oxidoreductases/metabolism , Oxidoreductases/genetics , Sulfhydryl Compounds/metabolism , Oxidative Stress
2.
Analyst ; 149(5): 1518-1526, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38265063

ABSTRACT

Sodium nitrite is a commonly used preservative and color protectant in the food industry. Conventional analytical methods are highly susceptible to food matrix interference, time-consuming and costly. In this study, the ion cross-linking method was employed to prepare alginate hydrogel substrates, and phenosafranin was chosen as a single-molecule probe to analyze sodium nitrite. Our investigation centered on elucidating the effects of alginate and cross-linking ion concentrations on Raman signal characteristics. The optimal Raman response was observed in the precursor solution with 1% sodium alginate and 0.1 mol L-1 cross-linking ions. The relative standard deviations (RSDs) of the feature peaks from the three substrate batches ranged from 1.22% to 16.30%, attesting the robustness and consistency of the substrates. The signal reduction of the substrates after a four-week storage period remained below 10%, indicating that the substrates had good reproducibility and stability. The limits of detection (LODs) for sodium nitrite in extracts from cured meat, luncheon meat, and sliced ham were determined to range from 3.75 mg kg-1 to 8.11 mg kg-1, with low interference from the food matrix. The support vector machine algorithm was utilized to train and predict the data, which proved to be more accurate (98.6%-99.8% recovery) than the traditional linear regression model (81.9%-112.7% recovery) in predicting the spiked samples. The application of hydrogel-based surface-enhanced Raman spectroscopy (SERS) substrates for nitrite detection in food, combined with machine learning for regression prediction in data processing, collectively augmented the potential of SERS technology in the field of food analysis.


Subject(s)
Meat Products , Sodium Nitrite , Sodium Nitrite/pharmacology , Spectrum Analysis, Raman/methods , Hydrogels , Reproducibility of Results
3.
Foodborne Pathog Dis ; 21(5): 339-352, 2024 May.
Article in English | MEDLINE | ID: mdl-38422213

ABSTRACT

Clostridium botulinum is a foodborne pathogen responsible for severe neuroparalytic disease associated with the ingestion of pre-formed toxin in food, with processed meats and canned foods being the most affected. Control of this pathogen in meat products is carried out using the preservative sodium nitrite (NaNO2), which in food, under certain conditions, such as thermal processing and storage, can form carcinogenic compounds. Therefore, the objective was to use nanoemulsified essential oils (EOs) as natural antimicrobial agents, with the aim of reducing the dose of NaNO2 applied in mortadella. The antimicrobial activity of nanoemulsions prepared with mixtures of EOs of garlic, clove, pink pepper, and black pepper was evaluated on endospores and vegetative cells of C. botulinum and Clostridium sporogenes (surrogate model) inoculated in mortadella prepared with 50 parts per million NaNO2. The effects on the technological (pH, water activity, and color) and sensory characteristics of the product were also evaluated. The combinations of EOs and their nanoemulsions showed sporicidal effects on the endospores of both tested microorganisms, with no counts observed from the 10th day of analysis. Furthermore, bacteriostatic effects on the studied microorganisms were observed. Regarding the technological and sensorial characteristics of the product, the addition of the combined EOs had a negative impact on the color of the mortadella and on the flavor/aroma. Despite the strong commercial appeal of adding natural preservatives to foods, the effects on flavor and color must be considered. Given the importance of controlling C. botulinum in this type of product, as well as the reduction in the amount of NaNO2 used, this combination of EOs represents a promising antimicrobial alternative to this preservative, encouraging further research in this direction.


Subject(s)
Clostridium botulinum , Clostridium , Meat Products , Oils, Volatile , Oils, Volatile/pharmacology , Clostridium botulinum/drug effects , Meat Products/microbiology , Clostridium/drug effects , Food Microbiology , Sodium Nitrite/pharmacology , Emulsions , Humans , Food Preservation/methods , Spores, Bacterial/drug effects , Food Preservatives/pharmacology , Taste , Anti-Bacterial Agents/pharmacology
4.
Artif Organs ; 47(7): 1104-1121, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36820496

ABSTRACT

BACKGROUND: Nitric oxide is a chemical agent produced by endothelial cells in a healthy blood vessel, inhibiting the overgrowth of vascular smooth muscle cells and regulating vessel tone. Liposomes are biocompatible and biodegradable drug carriers with a similar structure to cell bilayer phospholipid membrane that can be used as useful nitric oxide carriers in vascular grafts. METHOD: Using a custom-designed apparatus, the sheep carotid arteries were decellularized while still maintaining important components of the vascular extracellular matrix (ECM), allowing them to be used as small-diameter vascular grafts. A chemical signal of sodium nitrite was applied to control smooth muscle cells' behavior under static and dynamic cell culture conditions. The thin film hydration approach was used to create nano-liposomes, which were then used as sodium nitrite carriers to control the drug release rate and enhance the amount of drug loaded into the liposomes. RESULTS: The ratio of 80:20:2 for DPPC: Cholesterol: PEG was determined as the optimum formulation of the liposome structure with high drug encapsulation efficiency (98%) and optimum drug release rate (the drug release rate was 40%, 65%, and 83% after 24, 48, and 72 h, respectively). MTT assay results showed an improvement in endothelial cell proliferation in the presence of nano-liposomal sodium nitrite (LNS) at the concentration of 0.5 µg/mL. Using a suitable concentration of liposomal sodium nitrite (0.5 µg/mL) put onto the constructed scaffold resulted in the controllable development of smooth muscle cells in the experiment. The culture of smooth muscle cells in a pulsatile perfusion bioreactor indicated that in the presence of synthesized liposomal sodium nitrite, the overgrowth of smooth muscle cells was inhibited in dynamic cell culture conditions. The mechanical properties of ECM graft were measured, and a multi-scale model with an accuracy of 83% was proposed to predict mechanical properties successfully. CONCLUSION: The liposomal drug-loaded small-diameter vascular graft can prevent the overgrowth of SMCs and the formation of intimal hyperplasia in the graft. Aside from that, the effect of LNS on endothelial has the potential to stimulate endothelial cell proliferation and re-endothelialization.


Subject(s)
Liposomes , Tissue Engineering , Animals , Sheep , Tissue Engineering/methods , Sodium Nitrite/pharmacology , Sodium Nitrite/metabolism , Endothelial Cells , Nitric Oxide/metabolism , Blood Vessel Prosthesis , Myocytes, Smooth Muscle/metabolism
5.
Proc Natl Acad Sci U S A ; 117(9): 4921-4930, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32071223

ABSTRACT

Antibiotic-resistant superbug bacteria represent a global health problem with no imminent solutions. Here we demonstrate that the combination (termed AB569) of acidified nitrite (A-NO2-) and Na2-EDTA (disodium ethylenediaminetetraacetic acid) inhibited all Gram-negative and Gram-positive bacteria tested. AB569 was also efficacious at killing the model organism Pseudomonas aeruginosa in biofilms and in a murine chronic lung infection model. AB569 was not toxic to human cell lines at bactericidal concentrations using a basic viability assay. RNA-Seq analyses upon treatment of P. aeruginosa with AB569 revealed a catastrophic loss of the ability to support core pathways encompassing DNA, RNA, protein, ATP biosynthesis, and iron metabolism. Electrochemical analyses elucidated that AB569 produced more stable SNO proteins, potentially explaining one mechanism of bacterial killing. Our data implicate that AB569 is a safe and effective means to kill pathogenic bacteria, suggesting that simple strategies could be applied with highly advantageous therapeutic/toxicity index ratios to pathogens associated with a myriad of periepithelial infections and related disease scenarios.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Edetic Acid/pharmacology , Sodium Nitrite/pharmacology , Animals , Anti-Bacterial Agents/therapeutic use , Biofilms/drug effects , Disease Models, Animal , Down-Regulation , Drug Resistance, Bacterial/drug effects , Edetic Acid/chemistry , Lung Diseases/drug therapy , Lung Diseases/microbiology , Metabolic Networks and Pathways , Mice , Nitrites/chemistry , Nitrites/pharmacology , Pseudomonas aeruginosa/drug effects
6.
Int J Mol Sci ; 24(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37628999

ABSTRACT

Preeclampsia is a maternal hypertension disorder associated with vascular dysfunction and fetal and placental growth restrictions. Placental ischemia is suggested as the primary trigger of preeclampsia-associated impairments of both endothelium-derived nitric oxide (NO) and the vascular activity of extracellular matrix metalloproteinase-2 (MMP-2). Reduced uteroplacental perfusion pressure (RUPP) is a placental ischemia model of preeclampsia. Reduction of sodium nitrite to NO may occur during ischemic conditions. However, sodium nitrite effects in the RUPP model of preeclampsia have not yet been investigated. Pregnant rats were divided into four groups: normotensive pregnant rats (Norm-Preg), pregnant rats treated with sodium nitrite (Preg + Nitrite), preeclamptic rats (RUPP), and preeclamptic rats treated with sodium nitrite (RUPP + Nitrite). Maternal blood pressure and fetal and placental parameters were recorded. Vascular function, circulating NO metabolites, and the gelatinolytic activity of vascular MMP-2 were also examined. Sodium nitrite attenuates increased blood pressure, prevents fetal and placental weight loss, counteracts vascular hyper-reactivity, and partially restores NO metabolites and MMP-2 activity. In conclusion, sodium nitrite reduction to NO may occur during RUPP-induced placental ischemia, thereby attenuating increased blood pressure, fetal and placental growth restriction, and vascular hyper-reactivity associated with preeclampsia and possibly restoring NO and MMP-2 activity, which underlie the blood pressure-lowering effects.


Subject(s)
Pre-Eclampsia , Sodium Nitrite , Female , Pregnancy , Animals , Rats , Humans , Sodium Nitrite/pharmacology , Matrix Metalloproteinase 2 , Pre-Eclampsia/drug therapy , Blood Pressure , Placenta , Ischemia/drug therapy , Nitric Oxide
7.
Bioconjug Chem ; 33(6): 1093-1105, 2022 06 15.
Article in English | MEDLINE | ID: mdl-34990112

ABSTRACT

Hypoxia is an important mechanism of resistance to radiation therapy in many human malignancies including prostate cancer. It has been recently shown that ultrasound targeted microbubble cavitation (UTMC) can increase blood perfusion in skeletal muscle by triggering nitric oxide signaling. Interestingly, this effect was amplified with a sodium nitrite coinjection. Since sodium nitrite has been shown to synergize with radiotherapy (RT), we hypothesized that UTMC with a sodium nitrite coinjection could further radiosensitize solid tumors by increasing blood perfusion and thus reduce tumor hypoxia. We evaluated (1) the ability of UTMC with and without nitrite to increase perfusion in muscle (mouse hindlimbs) and human prostate tumors using different pulse lengths and pressure; (2) the efficacy of this approach as a provascular therapy given directly before RT in the human prostate subcutaneous xenografts PC3 tumor model. Using long pulses with various pressures, in muscle, the provascular response following UTMC was strong (6.61 ± 4.41-fold increase in perfusion post-treatment). In tumors, long pulses caused an increase in perfusion (2.42 ± 1.38-fold) at lower mechanical index (MI = 0.25) but not at higher MI (0.375, 0.5, and 0.750) when compared to control (no UTMC). However, when combined with RT, UTMC with long pulses (MI = 0.25) did not improve tumor growth inhibition. With short pulses, in muscle, the provascular response following UTMC (SONOS) + nitrite was strong (13.74 ± 8.60-fold increase in perfusion post-treatment). In tumors, UTMC (SONOS) + nitrite also caused a provascular response (1.94 ± 1.20-fold increase in perfusion post-treatment) that lasted for at least 10 min, but not with nitrite alone. Interestingly, the blunted provascular response observed for long pulses at higher MI without nitrite was reversed with the addition of nitrite. UTMC (SONOS) with and without nitrite caused an increase in perfusion in tumors. The provascular response observed for UTMC (SONOS) + nitrite was confirmed by histology. Finally, there was an improved growth inhibition for the 8 Gy RT dose + nitrite + UTMC group vs 8 Gy RT + nitrite alone. This effect was not significant with mice treated by UTMC + nitrite and receiving doses of 0 or 2 Gy RT. In conclusion, UTMC + nitrite increased blood flow leading to an increased efficacy of higher doses of RT in our tumor model, warranting further study of this strategy.


Subject(s)
Microbubbles , Neoplasms , Animals , Humans , Male , Mice , Muscle, Skeletal/blood supply , Sodium Nitrite/pharmacology , Sodium Nitrite/therapeutic use , Ultrasonography
8.
J Appl Microbiol ; 133(3): 1660-1675, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35702895

ABSTRACT

AIMS: The work aimed to understand the important changes during glucose metabolism in Saccharomyces cerevisiae under acidified sodium nitrite (ac.NaNO2 ) mediated nitrosative stress. METHODS AND RESULTS: Confocal microscopy and fluorescence-activated cell sorting analysis were performed to investigate the generation of reactive nitrogen and oxygen species, and redox homeostasis under nitrosative stress was also characterized. Quantitative PCR analysis revealed that the expression of ADH genes was upregulated under such condition, whereas the ACO2 gene was downregulated. Some of the enzymes of the tricarboxylic acid cycle were partially inhibited, whereas malate metabolism and alcoholic fermentation were increased under nitrosative stress. Kinetics of ethanol production was also characterized. A network analysis was conducted to validate our findings. In the presence of ac.NaNO2 , in vitro protein tyrosine nitration formation was checked by western blotting using pure alcohol dehydrogenase and aconitase. CONCLUSIONS: Alcoholic fermentation rate was increased under stress condition and this altered metabolism might be conjoined with the defence machinery to overcome the nitrosative stress. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first work of this kind where the role of metabolism under nitrosative stress has been characterized in S. cerevisiae and it will provide a base to develop an alternative method of industrial ethanol production.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Ethanol/metabolism , Fermentation , Glucose/metabolism , Nitrosative Stress , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sodium Nitrite/metabolism , Sodium Nitrite/pharmacology
9.
Molecules ; 27(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014400

ABSTRACT

The present study describes the green biofunctional synthesis of magnesium oxide (MgO) nanoparticles using the aqueous Tarenna asiatica fruit extract. The characterization of Tarenna asiatica fruit extract MgO nanoparticles (TAFEMgO NPs) was achieved by X-ray powder diffraction, UV-Vis spectroscopy, FTIR, TEM, SEM, and energy-dispersive X-ray diffraction. TAFEMgO NPs scavenged the DPPH free radicals with an IC50 value of 55.95 µg/µL, and it was highly significant compared to the standard. To authenticate the observed antioxidant potential of TAFEMgO NPs, oxidative stress was induced in red blood cells (RBC) using sodium nitrite (NaNO2). Interestingly, TAFEMgO NPs ameliorated the RBC damage from oxidative stress by significantly restoring the stress parameters, such as the protein carbonyl content (PCC), lipid peroxidation (LPO), total thiol (TT), super-oxide dismutase (SOD), and catalase (CAT). Furthermore, oxidative stress was induced in-vivo in Sprague Dawley female rats using diclofenac (DFC). TAFEMgO NPs normalized the stress parameters in-vivo and minimized the oxidative damage in tissues. Most importantly, TAFEMgO NPs restored the function and architecture of the damaged livers, kidneys, and small intestines by regulating biochemical parameters. TAFEMgO NPs exhibited an anticoagulant effect by increasing the clotting time from 193 s in the control to 885 s in the platelet rich plasma. TAFEMgO NPs prolonged the formation of the clot process in the activated partial thromboplastin time and the prothrombin time, suggest the effective involvement in both intrinsic and extrinsic clotting pathways of the blood coagulation cascade. TAFEMgO NPs inhibited adenosine di-phosphate (ADP)-induced platelet aggregation. TAFEMgO NPs did not show hemolytic, hemorrhagic, and edema-inducing properties at the tested concentration of 100 mg/kgbody weight, suggesting its non-toxic property. In conclusion, TAFEMgO NPs mitigates the sodium nitrite (NaNO2)- and diclofenac (DFC)-induced stress due to oxidative damage in both in vitro and in vivo experimental models.


Subject(s)
Metal Nanoparticles , Nanoparticles , Thrombosis , Animals , Diclofenac/pharmacology , Female , Magnesium Oxide/chemistry , Magnesium Oxide/pharmacology , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Oxidative Stress , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protein Carbonylation , Rats , Rats, Sprague-Dawley , Sodium Nitrite/pharmacology
10.
Nitric Oxide ; 115: 23-29, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34133975

ABSTRACT

INTRODUCTION: The mechanical obstruction and pulmonary vasoconstriction are major determinants of the sudden right ventricular (RV) afterload increases observed during acute pulmonary thromboembolism (APT). Vasodilators and antioxidants agents have been shown to mitigate pulmonary hypertension. We examined whether sodium nitrite and the antioxidant tempol combination could be advantageous in an APT sheep model. METHODS: APT was induced in anesthetized sheep by autologous blood clots (250 mg/kg) into the right atrium. Thirty minutes after APT induction, the animals received a continuous infusion of tempol (1.0 mg/kg/min), increasing sodium nitrite infusion (5, 15, and 50 µmol/kg), or a simultaneous combination of both drugs. Saline was used as a control treatment. Hemodynamic measurements were carried out every 15 min. Also, whole blood nitrite and serum 8-isoprostanes levels were measured. RESULTS: APT induced sustained pulmonary hypertension, increased dp/dtmax, and rate pressure product (RPP). Nitrite or tempol treatments attenuated these increases (P < 0.05). When both drugs were combined, we found a robust reduction in the RV RPP compared with the treatments alone (P < 0.05). The sole nitrite infusion increased blood nitrite concentrations by 35 ± 6 µM (P < 0.05), whereas the nitrite and tempol combination produced higher blood nitrite concentrations by approximately 54 ± 7 µM. Tempol or nitrite infusions, both alone or combined, blunted the increases in 8-isoprostane concentrations observed after APT. CONCLUSIONS: Nitrite and tempol combination protects against APT-induced RV wall stress. The association of both drugs may offer an advantage to treat RV failure during severe APT.


Subject(s)
Antioxidants/pharmacology , Cyclic N-Oxides/pharmacology , Heart Ventricles/drug effects , Hypertension, Pulmonary/drug therapy , Sodium Nitrite/pharmacology , Acute Disease , Animals , Antioxidants/administration & dosage , Cyclic N-Oxides/administration & dosage , Heart Ventricles/metabolism , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/metabolism , Male , Sheep , Sodium Nitrite/administration & dosage , Spin Labels
11.
Nitric Oxide ; 106: 55-65, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33283760

ABSTRACT

Aneurysmal subarachnoid haemorrhage (SAH) is a devastating subset of stroke. One of the major determinates of morbidity is the development of delayed cerebral ischemia (DCI). Disruption of the nitric oxide (NO) pathway and consequently the control of cerebral blood flow (CBF), known as cerebral autoregulation, is believed to play a role in its pathophysiology. Through the pharmacological manipulation of in vivo NO levels using an exogenous NO donor we sought to explore this relationship. Phase synchronisation index (PSI), an expression of the interdependence between CBF and arterial blood pressure (ABP) and thus cerebral autoregulation, was calculated before and during sodium nitrite administration in 10 high-grade SAH patients acutely post-rupture. In patients that did not develop DCI, there was a significant increase in PSI around 0.1 Hz during the administration of sodium nitrite (33%; p-value 0.006). In patients that developed DCI, PSI did not change significantly. Synchronisation between ABP and CBF at 0.1 Hz has been proposed as a mechanism by which organ perfusion is maintained, during periods of physiological stress. These findings suggest that functional NO depletion plays a role in impaired cerebral autoregulation following SAH, but the development of DCI may have a distinct pathophysiological aetiology.


Subject(s)
Cerebrovascular Circulation/drug effects , Sodium Nitrite/pharmacology , Subarachnoid Hemorrhage/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Arterial Pressure/drug effects , Female , Humans , Male , Middle Aged , Nitric Oxide/metabolism , Young Adult
12.
Molecules ; 26(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810327

ABSTRACT

Impaired skin nitric oxide production contributes to delayed wound healing in type 2 diabetes (T2D). This study aims to determine improved wound healing mechanisms by acidified nitrite (AN) in rats with T2D. Wistar rats were assigned to four subgroups: Untreated control, AN-treated control, untreated diabetes, and AN-treated diabetes. AN was applied daily from day 3 to day 28 after wounding. On days 3, 7, 14, 21, and 28, the wound levels of vascular endothelial growth factor (VEGF) were measured, and histological and stereological evaluations were performed. AN in diabetic rats increased the numerical density of basal cells (1070 ± 15.2 vs. 936.6 ± 37.5/mm3) and epidermal thickness (58.5 ± 3.5 vs. 44.3 ± 3.4 µm) (all p < 0.05); The dermis total volume and numerical density of fibroblasts at days 14, 21, and 28 were also higher (all p < 0.05). The VEGF levels were increased in the treated diabetic wounds at days 7 and 14, as was the total volume of fibrous tissue and hydroxyproline content at days 14 and 21 (all p < 0.05). AN improved diabetic wound healing by accelerating the dermis reconstruction, neovascularization, and collagen deposition.


Subject(s)
Citric Acid/pharmacology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Skin Cream/pharmacology , Sodium Nitrite/pharmacology , Wound Healing/drug effects , Animals , Citric Acid/therapeutic use , Collagen/metabolism , Male , Neovascularization, Physiologic/drug effects , Rats , Rats, Sprague-Dawley , Rats, Wistar , Skin/blood supply , Skin/metabolism , Skin Cream/therapeutic use , Sodium Nitrite/therapeutic use , Vascular Endothelial Growth Factor A/metabolism
13.
Article in English | MEDLINE | ID: mdl-32094133

ABSTRACT

Bacterial persisters are phenotypic variants that temporarily demonstrate an extraordinary tolerance toward antibiotics. Persisters have been linked to the recalcitrance of biofilm-related infections; hence, a complete understanding of their physiology can lead to improvement of therapeutic strategies for such infections. Mechanisms pertaining to persister formation are thought to be associated with stress response pathways triggered by intra- or extracellular stress factors. Unfortunately, studies demonstrating the effects of osmolyte- and/or pH-induced stresses on bacterial persistence are largely missing. To fill this knowledge gap within the field, we studied the effects of various osmolytes and pH conditions on Escherichia coli persistence with the use of phenotype microarrays and antibiotic tolerance assays. Although we found that a number of chemicals and pH environments, including urea, sodium nitrite, and acidic pH, significantly reduced persister formation in E. coli compared to no-osmolyte/no-buffer controls, this reduction in persister levels was less pronounced in late-stationary-phase cultures. Our results further demonstrated a positive correlation between cell growth and persister formation, which challenges the general notion in the field that slow-growing cultures have more persister cells than fast-growing cultures.


Subject(s)
Drug Resistance, Bacterial , Escherichia coli/drug effects , Escherichia coli/growth & development , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Buffers , Culture Media , Environment , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Microbial Viability/drug effects , Ofloxacin/pharmacology , Osmolar Concentration , Sodium Nitrite/pharmacology , Urea/pharmacology
14.
J Mol Cell Cardiol ; 134: 40-50, 2019 09.
Article in English | MEDLINE | ID: mdl-31226341

ABSTRACT

Although nitrite improves vascular function and lowers blood pressure, its cardiac effects are not completely known. We investigated whether nitrite improves the cardiac function in normotensive and in hypertensive rats. Two-kidney, one-clip hypertension model (2K1C) was induced in Wistar rats. Blood pressure was evaluated by tail-cuff plethysmography over 6 weeks. By the end of week 2, hypertensive and normotensive rats received nitrite (daily dose of 1 or 15 mg/kg) by gavage for 4 weeks. Cardiac morphology and function were performed by transthoracic echocardiography. Intrinsic heart function was evaluated using the isolated heart model (Langendorff's preparation). Starling curves were generated under nitrite (1 µmol/L) and/or ascorbate (1 mmol/L) or vehicle. Cardiac tissue was collected and snap frozen for biochemical analysis. Nitrite treatment (15 mg/kg) lowered both systolic blood pressure and the increases in left ventricular (LV) mass found in 2K1C rats (P < .05). In addition, nitrite treatment restored the decreased cardiac output in 2K1C rats (P < .05) and improved the cardiac function. These findings were associated with increased nitrite, S-nitrosothiols, and protein S-nitrosylation (all P < .05) assessed in heart tissue. The cardiac effects of nitrite were further investigated in the isolated heart model, and nitrite infusion (1 µmol/L) enhanced cardiac contractility and relaxation. This infusion increased S-nitrosothiols concentrations and protein S-nitrosylation in the heart. Ascorbate completely blunted all nitrite-induced effects. These findings show that treatment with oral nitrite improves cardiac function by mechanisms involving increased S-nitrosothiols generation and S-nitrosylation of cardiac proteins. Pharmacological strategies promoting cardiac S-nitrosylation may be useful to improve myocardial function in heart diseases.


Subject(s)
Cardiomyopathies/etiology , Cardiomyopathies/prevention & control , Hypertension/complications , Myocardium/metabolism , Nitrates/metabolism , Sodium Nitrite/pharmacology , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Cardiomyopathies/metabolism , Heart/drug effects , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Male , Myocardium/pathology , Nitrosation/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar , Sodium Nitrite/therapeutic use
15.
J Physiol ; 597(22): 5429-5443, 2019 11.
Article in English | MEDLINE | ID: mdl-31541562

ABSTRACT

KEY POINTS: Dietary nitrate supplementation increases plasma nitrite concentration, which provides an oxygen-independent source of nitric oxide and can delay skeletal muscle fatigue. Nitrate supplementation has been shown to increase myofibre calcium release and force production in mouse skeletal muscle during contractions at a supra-physiological oxygen tension, but it is unclear whether nitrite exposure can delay fatigue development and improve myofibre calcium handling at a near-physiological oxygen tension. Single mouse muscle fibres acutely treated with nitrite had a lower force and cytosolic calcium concentration during single non-fatiguing contractions at a near-physiological oxygen tension. Nitrite treatment delayed fatigue development during repeated fatiguing isometric contractions at near-physiological, but not at supra-physiological, oxygen tension in combination with better maintenance of myofilament calcium sensitivity and sarcoplasmic reticulum calcium pumping. These findings improve understanding of the mechanisms by which increased skeletal muscle nitrite exposure might be ergogenic and imply that this is related to improved calcium handling. ABSTRACT: Dietary nitrate (NO3- ) supplementation, which increases plasma nitrite (NO2- ) concentration, has been reported to attenuate skeletal muscle fatigue development. Sarcoplasmic reticulum (SR) calcium (Ca2+ ) release is enhanced in isolated single skeletal muscle fibres following NO3- supplementation or NO2- incubation at a supra-physiological PO2 but it is unclear whether NO2- incubation can alter Ca2+ handling and fatigue development at a near-physiological PO2 . We hypothesised that NO2- treatment would improve Ca2+ handling and delay fatigue at a physiological PO2 in intact single mouse skeletal muscle fibres. Each muscle fibre was perfused with Tyrode solution pre-equilibrated with either 20% ( PO2 ∼150 Torr) or 2% O2 ( PO2  = 15.6 Torr) in the absence and presence of 100 µM NaNO2 . At supra-physiological PO2 (i.e. 20% O2 ), time to fatigue was lowered by 34% with NaNO2 (control: 257 ± 94 vs. NaNO2 : 159 ± 46 s, Cohen's d = 1.63, P < 0.05), but extended by 21% with NaNO2 at 2% O2 (control: 308 ± 217 vs. NaNO2 : 368 ± 242 s, d = 1.14, P < 0.01). During the fatiguing contraction protocol completed with NaNO2 at 2% O2 , peak cytosolic Ca2+ concentration ([Ca2+ ]c ) was not different (P > 0.05) but [Ca2+ ]c accumulation between contractions was lower, concomitant with a greater SR Ca2+ pumping rate (P < 0.05) compared to the control condition. These results demonstrate that increased exposure to NO2- blunts fatigue development at near-physiological, but not at supra-physiological, PO2 through enhancing SR Ca2+ pumping rate in single skeletal muscle fibres. These findings extend our understanding of the mechanisms by which increased NO2- exposure can mitigate skeletal muscle fatigue development.


Subject(s)
Muscle Fatigue/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Oxygen/metabolism , Sodium Nitrite/pharmacology , Animals , Calcium/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle Contraction/drug effects , Myofibrils/drug effects , Myofibrils/metabolism , Nitric Oxide/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
16.
J Vasc Res ; 56(3): 109-116, 2019.
Article in English | MEDLINE | ID: mdl-31085923

ABSTRACT

BACKGROUND/AIMS: Soluble guanylate cyclase (sGC) exists as reduced, oxidized, and heme-free forms. Currently, it is unclear whether endovascular mechanical stenosis has an impact on vascular tone control by drugs targeting sGC, namely cGMP generators. METHODS: Pharmacological responses to acidified sodium nitrite (reduced sGC stimulant) and BAY 60-2770 (oxidized/heme-free sGC stimulant) were studied in balloon-injured rat carotid arteries at several time points. In addition, sGC expression was detected by immunohistochemistry. RESULTS: At 1 day after injury, acidified sodium nitrite-induced relaxation was attenuated in the injured artery, whereas BAY 60-2770-induced relaxation was augmented. Similar attenuation of response to acidified sodium nitrite was seen at 7 and 14 days after injury. On the other hand, the augmentation of response to BAY 60-2770 disappeared at 7 and 14 days after injury. At 1 day after injury, the immunohistochemical expression pattern of sGC in the smooth muscle layer of the injured artery was not different from that of the uninjured artery. However, in the injured artery, the intensity of sGC staining was weak at 7 and 14 days after injury. CONCLUSION: Balloon injury alters vascular responsiveness to cGMP generators, which seems to be associated with the form and/or expression of sGC.


Subject(s)
Benzoates/pharmacology , Biphenyl Compounds/pharmacology , Carotid Artery Injuries/drug therapy , Cyclic GMP/metabolism , Enzyme Activators/pharmacology , Hydrocarbons, Fluorinated/pharmacology , Muscle, Smooth, Vascular/drug effects , Nitric Oxide Donors/pharmacology , Sodium Nitrite/pharmacology , Soluble Guanylyl Cyclase/metabolism , Vasodilation/drug effects , Angioplasty, Balloon , Animals , Carotid Arteries/drug effects , Carotid Arteries/enzymology , Carotid Arteries/pathology , Carotid Artery Injuries/enzymology , Carotid Artery Injuries/pathology , Disease Models, Animal , Enzyme Activation , Male , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/pathology , Rats, Sprague-Dawley , Second Messenger Systems , Time Factors
17.
Photochem Photobiol Sci ; 18(2): 505-515, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30534721

ABSTRACT

We have recently shown that a wide range of different inorganic salts can potentiate antimicrobial photodynamic inactivation (aPDI) and TiO2-mediated antimicrobial photocatalysis. Potentiation has been shown with azide, bromide, thiocyanate, selenocyanate, and most strongly, with iodide. Here we show that sodium nitrite can also potentiate broad-spectrum aPDI killing of Gram-positive MRSA and Gram-negative Escherichia coli bacteria. Literature reports have previously shown that two photosensitizers (PS), methylene blue (MB) and riboflavin, when excited by broad-band light in the presence of nitrite could lead to tyrosine nitration. Addition of up to 100 mM nitrite gave 6 logs of extra killing in the case of Rose Bengal excited by green light against E. coli, and 2 logs of extra killing against MRSA (eradication in both cases). Comparable results were obtained for other PS (TPPS4 + blue light and MB + red light). Some bacterial killing was obtained when bacteria were added after light using a functionalized fullerene (LC15) + nitrite + blue light, and tyrosine ester amide was nitrated using both "in" and "after" modes with all four PS. The mechanism could involve formation of peroxynitrate by a reaction between superoxide radicals and nitrogen dioxide radicals; formation of the latter species was demonstrated by spin trapping with nitromethane.


Subject(s)
Anti-Bacterial Agents/pharmacology , Light , Microbial Viability/drug effects , Microbial Viability/radiation effects , Nitrates/metabolism , Sodium Nitrite/pharmacology , Drug Synergism , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli/physiology , Escherichia coli/radiation effects , Fullerenes/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/metabolism , Methicillin-Resistant Staphylococcus aureus/physiology , Methicillin-Resistant Staphylococcus aureus/radiation effects , Models, Molecular , Molecular Conformation
18.
J Cell Biochem ; 119(4): 3744-3754, 2018 04.
Article in English | MEDLINE | ID: mdl-29240267

ABSTRACT

Sodium nitrite (NaNO2 ) is widely used as a food additive and preservative in fish and meat products. We have evaluated the effect of a single acute oral dose of NaNO2 on oxidative stress parameters, antioxidant capacity, and DNA in rat kidney. Male Wistar rats were divided into four groups and given single oral dose of NaNO2 at 20, 40, 60, and 75 mg/kg body weight; untreated rats served as the control group. All animals in NaNO2 -treated groups showed marked alterations in various parameters of oxidative stress as compared to the control group. This included increase in lipid peroxidation, protein oxidation, hydrogen peroxide levels, and decrease in reduced glutathione content and antioxidant capacity. Administration of NaNO2 also increased DNA damage as evident from release of free nucleotides and confirmed by comet assay. It also led to greater cross-linking of DNA to proteins. Histological analysis showed marked morphological changes in the kidney of NaNO2 -treated animals. These alterations could be due to increased free radical generation or direct chemical modification by reaction intermediates. Our results suggest that nitrite-induced nephrotoxicity is mediated through redox imbalance and results in DNA damage.


Subject(s)
DNA Damage/drug effects , Kidney/drug effects , Kidney/metabolism , Sodium Nitrite/pharmacology , Animals , DNA Damage/genetics , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Male , Oxidation-Reduction/drug effects , Rats , Rats, Wistar
19.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R242-R251, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29046317

ABSTRACT

Nitrite ([Formula: see text]) causes vasodilation in mammals due to the formation of (nitric oxide) NO by endogenous [Formula: see text] reduction in the vascular wall. In this study, we determined if a similar mechanism operates in amphibians. Dual-wire myography of the iliac artery from Rhinella marina showed that applied [Formula: see text] caused a concentration-dependent vasodilation in normoxia (21% O2; EC50: 438 µM). Hypoxia (0.63% O2) significantly increased the maximal dilation to [Formula: see text] by 5% ( P = 0.0398). The addition of oxyhemoglobin significantly increased the EC50 ( P = 0.0144; EC50: 2,236 µM) but did not affect the maximal vasodilation. In contrast, partially deoxygenated hemoglobin (90% desaturation) did not affect the EC50 ( P = 0.1189) but significantly ( P = 0.0012) increased the maximal dilation to [Formula: see text] by 11%. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) completely abolished the response to [Formula: see text] ( P < 0.0001), and of the nitric oxide synthase inhibitors, only N5-(1-imino-3-butenyl)-l-ornithine (vinyl-l-NIO; P = 0.0028) significantly reduced the [Formula: see text] vasodilation. The xanthine oxidoreductase inhibitor allopurinol ( P = 0.927), the nitric oxide-scavenger 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide (C-PTIO; P = 0.478), and disruption of the endothelium ( P = 0.094) did not affect the [Formula: see text] vasodilation. Incubation of iliac arteries with 1 mM [Formula: see text] did not a cause a change in the cGMP concentration (P = 0.407). Plasma [Formula: see text] was found to be 0.86 ± 0.20 µmol/l, while nitrate ([Formula: see text]) was 19.55 ± 2.55 µmol/l. Both cygb and ngb mRNAs were expressed in the iliac artery, and it is possible that these globins facilitate [Formula: see text] reduction in hypoxia. In addition, [Formula: see text] intracellular disproportionation processes could be important in the generation of NO from [Formula: see text].


Subject(s)
Iliac Artery/drug effects , Sodium Nitrite/pharmacology , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Bufo marinus , Cytoglobin/genetics , Cytoglobin/metabolism , Female , Hemoglobins/metabolism , Iliac Artery/metabolism , In Vitro Techniques , Male , Neuroglobin/genetics , Neuroglobin/metabolism , Nitric Oxide/metabolism , Nitrite Reductases/metabolism , Oxidation-Reduction , Oxyhemoglobins/metabolism , Sodium Nitrite/metabolism , Vasodilator Agents/metabolism
20.
Nitric Oxide ; 80: 82-88, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30179715

ABSTRACT

Adequate perfusion of the placental vasculature is essential to meet the metabolic demands of fetal growth and development. Lacking neural control, local tissue metabolites, circulating and physical factors contribute significantly to blood flow regulation. Nitric oxide (NO) is a key regulator of fetoplacental vascular tone. Nitrite, previously considered an inert end-product of NO oxidation, has been shown to provide an important source of NO. Reduction of nitrite to NO may be particularly relevant in tissue when the oxygen-dependent NO synthase (NOS) activity is compromised, e.g. in hypoxia. The contribution of this pathway in the placenta is currently unknown. We hypothesised that nitrite vasodilates human placental blood vessels, with enhanced efficacy under hypoxia. Placentas were collected from uncomplicated pregnancies and the vasorelaxant effect of nitrite (10-6-5x10-3 M) was assessed using wire myography on isolated pre-constricted chorionic plate arteries (CPAs) and veins (CPVs) under normoxic (pO2 ∼5%) and hypoxic (pO2 ∼1%) conditions. The dependency on the NO-sGC-cGMP pathway and known nitrite reductase (NiR) activities was also investigated. Nitrite caused concentration-dependent vasorelaxation in both arteries and veins, and this effect was enhanced by hypoxia, significantly in CPVs (P < 0.01) and with a trend in CPAs (P = 0.054). Pre-incubation with NO scavengers (cPTIO and oxyhemoglobin) attenuated (P < 0.01 and P < 0.0001, respectively), and the sGC inhibitor ODQ completely abolished nitrite-mediated vasorelaxation, confirming the involvement of NO and sGC. Inhibition of potential NiR enzymes xanthine oxidoreductase, mitochondrial aldehyde dehydrogenase and mitochondrial bc1 complex did not attenuate vasorelaxation. This data suggests that nitrite may provide an important reservoir of NO bioactivity within the placenta to enhance blood flow when fetoplacental oxygenation is impaired, as occurring in pregnancy diseases such as pre-eclampsia and fetal growth restriction.


Subject(s)
Arteries/physiology , Chorion/blood supply , Hypoxia/metabolism , Nitrites/metabolism , Veins/physiology , Adult , Arteries/drug effects , Benzoates/pharmacology , Cyclic GMP/metabolism , Dose-Response Relationship, Drug , Female , Humans , Imidazoles/pharmacology , Nitrites/pharmacology , Placenta/blood supply , Pregnancy , Sodium Nitrite/administration & dosage , Sodium Nitrite/pharmacology , Vasodilation/drug effects , Vasodilation/physiology , Veins/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL