Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
1.
FASEB J ; 38(14): e23827, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39012295

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2, has had a significant worldwide impact, affecting millions of people. COVID-19 is characterized by a heterogenous clinical phenotype, potentially involving hyperinflammation and prolonged tissue damage, although the exact underlying mechanisms are yet to be fully understood. Sphingolipid metabolites, which govern cell survival and proliferation, have emerged as key players in inflammatory signaling and cytokine responses. Given the complex metabolic pathway of sphingolipids, this study aimed to understand their potential role in the pathogenesis of COVID-19. We conducted a comprehensive examination of sphingolipid modulations across groups classified based on disease severity, incorporating a time-course in serum and urine samples. Several sphingolipids, including sphingosine, lactosylceramide, and hexosylceramide, emerged as promising indicators of COVID-19 severity, as validated by correlation analyses conducted on both serum and urine samples. Other sphingolipids, such as sphingosine 1-phosphate, ceramides, and deoxy-dihydroceramides, decreased in both COVID-19 patients and individuals with non-COVID infectious diseases. This suggests that these sphingolipids are not specifically associated with COVID-19 but rather with pathological conditions caused by infectious diseases. Our analysis of urine samples revealed elevated levels of various sphingolipids, with changes dependent on disease severity, potentially highlighting the acute kidney injury associated with COVID-19. This study illuminates the intricate relationship between disturbed sphingolipid metabolism, COVID-19 severity, and clinical factors. These findings provide valuable insights into the broader landscape of inflammatory diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , Sphingolipids , COVID-19/metabolism , COVID-19/blood , COVID-19/virology , Humans , Sphingolipids/metabolism , Sphingolipids/blood , Male , Female , Middle Aged , Adult , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Aged , Biomarkers/blood , Biomarkers/metabolism
2.
J Proteome Res ; 23(8): 3598-3611, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39008891

ABSTRACT

Lipidomics emerges as a promising research field with the potential to help in personalized risk stratification and improve our understanding on the functional role of individual lipid species in the metabolic perturbations occurring in coronary artery disease (CAD). This study aimed to utilize a machine learning approach to provide a lipid panel able to identify patients with obstructive CAD. In this posthoc analysis of the prospective CorLipid trial, we investigated the lipid profiles of 146 patients with suspected CAD, divided into two categories based on the existence of obstructive CAD. In total, 517 lipid species were identified, from which 288 lipid species were finally quantified, including glycerophospholipids, glycerolipids, and sphingolipids. Univariate and multivariate statistical analyses have shown significant discrimination between the serum lipidomes of patients with obstructive CAD. Finally, the XGBoost algorithm identified a panel of 17 serum biomarkers (5 sphingolipids, 7 glycerophospholipids, a triacylglycerol, galectin-3, glucose, LDL, and LDH) as totally sensitive (100% sensitivity, 62.1% specificity, 100% negative predictive value) for the prediction of obstructive CAD. Our findings shed light on dysregulated lipid metabolism's role in CAD, validating existing evidence and suggesting promise for novel therapies and improved risk stratification.


Subject(s)
Algorithms , Biomarkers , Coronary Artery Disease , Lipidomics , Humans , Coronary Artery Disease/blood , Lipidomics/methods , Male , Female , Biomarkers/blood , Middle Aged , Aged , Machine Learning , Lipids/blood , Lipid Metabolism , Sphingolipids/blood , Prospective Studies
3.
J Proteome Res ; 23(7): 2619-2628, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38910295

ABSTRACT

Chromatography-mass spectrometry-based lipidomics represents an essential tool for elucidating lipid dysfunction mechanisms and is extensively employed in investigating disease mechanisms and identifying biomarkers. However, the detection of low-abundance lipids in biological matrices, along with cumbersome operational procedures, complicates comprehensive lipidomic analyses, necessitating the development of highly sensitive, environmentally friendly, and automated methods. In this study, an online phase transition trapping-supercritical fluid extraction-chromatography-mass spectrometry (PTT-SFEC-MS/MS) method was developed and successfully applied to plasma lipidomics analysis in Type 1 diabetes (T1D) rats. The PTT strategy captured entire extracts at the column head by converting CO2 from a supercritical state to a gaseous state, thereby preventing peak spreading, enhancing peak shape for precise quantification, and boosting sensitivity without any sample loss. This method utilized only 5 µL of plasma and accomplished sample extraction, separation, and detection within 27 min. Ultimately, 77 differential lipids were identified, including glycerophospholipids, sphingolipids, and glycerolipids, in T1D rat plasma. The results indicated that the progression of the disease might be linked to alterations in glycerophospholipid and sphingolipid metabolism. Our findings demonstrated a green, highly efficient, and automated method for the lipidomics analysis of biological samples, providing a scientific foundation for understanding the pathogenesis and diagnosis of T1D.


Subject(s)
Chromatography, Supercritical Fluid , Diabetes Mellitus, Type 1 , Lipidomics , Tandem Mass Spectrometry , Animals , Lipidomics/methods , Tandem Mass Spectrometry/methods , Rats , Chromatography, Supercritical Fluid/methods , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/metabolism , Lipids/blood , Lipids/chemistry , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/metabolism , Male , Rats, Sprague-Dawley , Phase Transition , Biomarkers/blood , Sphingolipids/blood , Sphingolipids/analysis , Sphingolipids/isolation & purification
4.
J Surg Res ; 300: 25-32, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795670

ABSTRACT

INTRODUCTION: Previous literature suggests that sphingolipids may impact systemic coagulation and platelet aggregation, thus modulating the risks of thrombotic events. The goal of this investigation was to evaluate the role of serum sphingolipids on intrinsic platelet function to assess whether pharmacologic manipulation of sphingolipid metabolites would impact platelet aggregability. METHODS: C57BL/6J mice were injected with either normal saline, 1 mg/kg FTY720 (synthetic sphingosine-1-phosphate [S1P] receptor analog), or 5 mg/kg SLM6031434 (sphingosine kinase two inhibitor). Mice were sacrificed at 6 h and whole blood (WB) was collected for impedance aggregometry assessing platelet responsiveness to arachidonic acid or adenosine diphosphate. Ex vivo studies utilized WB or platelet-rich plasma that was pretreated with S1P, FTY720, amitriptyline, or d-sphingosine then analyzed by aggregability and flow cytometry for platelet and platelet-derived microvesicle characteristics. RESULTS: FTY720 and SLM6031434 pretreated induced similar arachidonic acid and adenosine diphosphate-mediated platelet aggregation as controls. Ex vivo WB and platelet-rich plasma treatment with S1P, FTY720, amitriptyline and d-sphingosine did not impact platelet aggregation. The percentages of CD41+, CD62P+ and CD41+/ceramide+, CD62P+/ceramide + platelets, and platelet-derived microvesicle were not significantly different between amitriptyline-treated and normal saline-treated cohorts. CONCLUSIONS: Sphingolipid modulating agents, such as FTY720, SLM6031434, S1P, amitriptyline, ceramide, and d-sphingosine do not appear to independently impact platelet aggregation in murine models.


Subject(s)
Blood Platelets , Fingolimod Hydrochloride , Mice, Inbred C57BL , Platelet Aggregation , Sphingolipids , Sphingosine , Animals , Platelet Aggregation/drug effects , Fingolimod Hydrochloride/pharmacology , Sphingosine/analogs & derivatives , Sphingosine/blood , Mice , Blood Platelets/drug effects , Blood Platelets/metabolism , Sphingolipids/blood , Sphingolipids/metabolism , Male , Lysophospholipids/pharmacology , Lysophospholipids/blood , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Arachidonic Acid/pharmacology , Amitriptyline/pharmacology , Adenosine Diphosphate/pharmacology
5.
BMC Psychiatry ; 24(1): 355, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741058

ABSTRACT

BACKGROUND: Sleep disturbances are a common occurrence in patients with schizophrenia, yet the underlying pathogenesis remain poorly understood. Here, we performed a targeted metabolomics-based approach to explore the potential biological mechanisms contributing to sleep disturbances in schizophrenia. METHODS: Plasma samples from 59 drug-naïve patients with schizophrenia and 36 healthy controls were subjected to liquid chromatography-mass spectrometry (LC-MS) targeted metabolomics analysis, allowing for the quantification and profiling of 271 metabolites. Sleep quality and clinical symptoms were assessed using the Pittsburgh Sleep Quality Index (PSQI) and the Positive and Negative Symptom Scale (PANSS), respectively. Partial correlation analysis and orthogonal partial least squares discriminant analysis (OPLS-DA) model were used to identify metabolites specifically associated with sleep disturbances in drug-naïve schizophrenia. RESULTS: 16 characteristic metabolites were observed significantly associated with sleep disturbances in drug-naïve patients with schizophrenia. Furthermore, the glycerophospholipid metabolism (Impact: 0.138, p<0.001), the butanoate metabolism (Impact: 0.032, p=0.008), and the sphingolipid metabolism (Impact: 0.270, p=0.104) were identified as metabolic pathways associated with sleep disturbances in drug-naïve patients with schizophrenia. CONCLUSIONS: Our study identified 16 characteristic metabolites (mainly lipids) and 3 metabolic pathways related to sleep disturbances in drug-naïve schizophrenia. The detection of these distinct metabolites provide valuable insights into the underlying biological mechanisms associated with sleep disturbances in schizophrenia.


Subject(s)
Metabolomics , Schizophrenia , Sleep Wake Disorders , Humans , Schizophrenia/blood , Schizophrenia/complications , Metabolomics/methods , Female , Male , Adult , Sleep Wake Disorders/blood , Sleep Wake Disorders/metabolism , Chromatography, Liquid , Mass Spectrometry , Sphingolipids/blood , Sphingolipids/metabolism , Case-Control Studies , Young Adult , Glycerophospholipids/blood
6.
Transfus Med ; 34(3): 189-199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679572

ABSTRACT

OBJECTIVES: Cold storage is being implemented as an alternative to conventional room-temperature storage for extending the shelf-life of platelet components beyond 5-7 days. The aim of this study was to characterise the lipid profile of platelets stored under standard room-temperature or cold (refrigerated) conditions. METHODS: Matched apheresis derived platelet components in 60% PAS-E/40% plasma (n = 8) were stored at room-temperature (20-24°C with agitation) or in the cold (2-6°C without agitation). Platelets were sampled on day 1, 5 and 14. The lipidome was assessed by ultra-pressure liquid chromatography ion mobility quadrupole time of flight mass spectrometry (UPLC IMS QToF). Changes in bioactive lipid mediators were measured by ELISA. RESULTS: The total phospholipid and sphingolipid content of the platelets and supernatant were 44 544 ± 2915 µg/mL and 38 990 ± 10 880 µg/mL, respectively, and was similar over 14 days, regardless of storage temperature. The proportion of the procoagulant lipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), increased by 2.7% and 12.2%, respectively, during extended cold storage. Cold storage for 14 days increased sphingomyelin (SM) by 4.1% and decreased ceramide by 1.6% compared to day 1. Further, lysophosphatidylcholine (LPC) species remained unchanged during cold storage for 14 days. The concentration of 12- and 15-hydroxyeicosatetraenoic acid (HETE) were lower in the supernatant of cold-stored platelets than room-temperature controls stored for 14 days. CONCLUSION: The lipid profile of platelets was relatively unchanged during storage for 5 days, regardless of temperature. However, during extended cold storage (14 days) the proportion of the procoagulant lipids, PS and PE, increased, while LPC and bioactive lipids were stable.


Subject(s)
Blood Platelets , Blood Preservation , Cold Temperature , Lipidomics , Humans , Blood Platelets/metabolism , Male , Female , Time Factors , Phospholipids , Adult , Sphingolipids/blood
7.
Lipids Health Dis ; 23(1): 200, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937745

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) causes neuroinflammation and can lead to long-term neurological dysfunction, even in cases of mild TBI (mTBI). Despite the substantial burden of this disease, the management of TBI is precluded by an incomplete understanding of its cellular mechanisms. Sphingolipids (SPL) and their metabolites have emerged as key orchestrators of biological processes related to tissue injury, neuroinflammation, and inflammation resolution. No study so far has investigated comprehensive sphingolipid profile changes immediately following TBI in animal models or human cases. In this study, sphingolipid metabolite composition was examined during the acute phases in brain tissue and plasma of mice following mTBI. METHODS: Wildtype mice were exposed to air-blast-mediated mTBI, with blast exposure set at 50-psi on the left cranium and 0-psi designated as Sham. Sphingolipid profile was analyzed in brain tissue and plasma during the acute phases of 1, 3, and 7 days post-TBI via liquid-chromatography-mass spectrometry. Simultaneously, gene expression of sphingolipid metabolic markers within brain tissue was analyzed using quantitative reverse transcription-polymerase chain reaction. Significance (P-values) was determined by non-parametric t-test (Mann-Whitney test) and by Tukey's correction for multiple comparisons. RESULTS: In post-TBI brain tissue, there was a significant elevation of 1) acid sphingomyelinase (aSMase) at 1- and 3-days, 2) neutral sphingomyelinase (nSMase) at 7-days, 3) ceramide-1-phosphate levels at 1 day, and 4) monohexosylceramide (MHC) and sphingosine at 7-days. Among individual species, the study found an increase in C18:0 and a decrease in C24:1 ceramides (Cer) at 1 day; an increase in C20:0 MHC at 3 days; decrease in MHC C18:0 and increase in MHC C24:1, sphingomyelins (SM) C18:0, and C24:0 at 7 days. Moreover, many sphingolipid metabolic genes were elevated at 1 day, followed by a reduction at 3 days and an absence at 7-days post-TBI. In post-TBI plasma, there was 1) a significant reduction in Cer and MHC C22:0, and an increase in MHC C16:0 at 1 day; 2) a very significant increase in long-chain Cer C24:1 accompanied by significant decreases in Cer C24:0 and C22:0 in MHC and SM at 3 days; and 3) a significant increase of C22:0 in all classes of SPL (Cer, MHC and SM) as well as a decrease in Cer C24:1, MHC C24:1 and MHC C24:0 at 7 days. CONCLUSIONS: Alterations in sphingolipid metabolite composition, particularly sphingomyelinases and short-chain ceramides, may contribute to the induction and regulation of neuroinflammatory events in the early stages of TBI, suggesting potential targets for novel diagnostic, prognostic, and therapeutic strategies in the future.


Subject(s)
Brain , Ceramides , Sphingolipids , Sphingomyelin Phosphodiesterase , Sphingosine , Animals , Mice , Sphingolipids/blood , Sphingolipids/metabolism , Brain/metabolism , Brain/pathology , Ceramides/blood , Ceramides/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Sphingomyelin Phosphodiesterase/blood , Sphingomyelin Phosphodiesterase/genetics , Sphingosine/analogs & derivatives , Sphingosine/blood , Sphingosine/metabolism , Disease Models, Animal , Male , Sphingomyelins/blood , Sphingomyelins/metabolism , Brain Concussion/blood , Brain Concussion/metabolism , Mice, Inbred C57BL , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/pathology , Lysophospholipids/blood , Lysophospholipids/metabolism
8.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791200

ABSTRACT

Anderson-Fabry disease is a lysosomal storage disorder caused by mutations in the GLA gene, which encodes the enzyme α-galactosidase A. The GLA gene is located on the X-chromosome, causing an X-linked pathology: due to lyonization, female patients usually manifest a variable symptomatology, ranging from asymptomatic to severe phenotypes. The confirmation of the clinical diagnosis of Fabry disease, achieved by measuring α-galactosidase A activity, which is usually the first test used, shows differences between male and female patients. This assay is reliable in male patients with causative mutations in the GLA gene, in whom the enzymatic activity is lower than normal values; on the other hand, in female Fabry patients, the enzymatic activity is extremely variable between normal and pathological values. These fluctuations are also found in female patients' blood levels of globotriaosylsphingosine (LysoGb3) for the same reason. In this paper, we present a retrospective study conducted in our laboratories on 827 Fabry patients with causative mutations in the GLA gene. Our results show that 100% of male patients had α-galactosidase A activity below the reference value, while more than 70% of female patients had normal values. It can also be observed that almost half of the female patients with pathogenic mutations in the GLA gene showed normal values of LysoGb3 in blood. Furthermore, in women, blood LysoGb3 values can vary over time, as we show in a clinical case presented in this paper. Both these tests could lead to missed diagnoses of Fabry disease in female patients, so the analysis of the GLA gene represents the main diagnostic test for Fabry disease in women to date.


Subject(s)
Fabry Disease , Glycolipids , Sphingolipids , alpha-Galactosidase , Humans , Fabry Disease/diagnosis , Fabry Disease/blood , Fabry Disease/genetics , alpha-Galactosidase/genetics , alpha-Galactosidase/blood , Female , Male , Sphingolipids/blood , Glycolipids/blood , Adult , Middle Aged , Mutation , Retrospective Studies , Adolescent , Young Adult , Aged , Child
9.
Hepatology ; 73(2): 571-585, 2021 02.
Article in English | MEDLINE | ID: mdl-32246544

ABSTRACT

BACKGROUND AND AIMS: Alcoholic hepatitis (AH) is diagnosed by clinical criteria, although several objective scores facilitate risk stratification. Extracellular vesicles (EVs) have emerged as biomarkers for many diseases and are also implicated in the pathogenesis of AH. Therefore, we investigated whether plasma EV concentration and sphingolipid cargo could serve as diagnostic biomarkers for AH and inform prognosis to permit dynamic risk profiling of AH subjects. APPROACH AND RESULTS: EVs were isolated and quantified from plasma samples from healthy controls, heavy drinkers, and subjects with end-stage liver disease (ESLD) attributed to cholestatic liver diseases and nonalcoholic steatohepatitis, decompensated alcohol-associated cirrhosis (AC), and AH. Sphingolipids were quantified by tandem mass spectroscopy. The median plasma EV concentration was significantly higher in AH subjects (5.38 × 1011 /mL) compared to healthy controls (4.38 × 1010 /mL; P < 0.0001), heavy drinkers (1.28 × 1011 /mL; P < 0.0001), ESLD (5.35 × 1010 /mL; P < 0.0001), and decompensated AC (9.2 × 1010 /mL; P < 0.0001) disease controls. Among AH subjects, EV concentration correlated with Model for End-Stage Liver Disease score. When EV counts were dichotomized at the median, survival probability for AH subjects at 90 days was 63.0% in the high-EV group and 90.0% in the low-EV group (log-rank P value = 0.015). Interestingly, EV sphingolipid cargo was significantly enriched in AH when compared to healthy controls, heavy drinkers, ESLD, and decompensated AC (P = 0.0001). Multiple sphingolipids demonstrated good diagnostic and prognostic performance as biomarkers for AH. CONCLUSIONS: Circulating EV concentration and sphingolipid cargo signature can be used in the diagnosis and differentiation of AH from heavy drinkers, decompensated AC, and other etiologies of ESLD and predict 90-day survival permitting dynamic risk profiling.


Subject(s)
Alcoholism/diagnosis , End Stage Liver Disease/diagnosis , Hepatitis, Alcoholic/diagnosis , Liver Cirrhosis/diagnosis , Sphingolipids/blood , Adult , Aged , Alcoholism/blood , Alcoholism/complications , Biomarkers/blood , Biopsy , Case-Control Studies , Diagnosis, Differential , End Stage Liver Disease/blood , Extracellular Vesicles , Female , Hepatitis, Alcoholic/blood , Hepatitis, Alcoholic/epidemiology , Hepatitis, Alcoholic/pathology , Humans , Liver/pathology , Liver Cirrhosis/blood , Male , Middle Aged , Prospective Studies , Risk Assessment/methods , Severity of Illness Index
10.
Arterioscler Thromb Vasc Biol ; 41(2): 651-667, 2021 02.
Article in English | MEDLINE | ID: mdl-33327742

ABSTRACT

OBJECTIVE: HDL (high-density lipoprotein) particles are known to possess several antiatherogenic properties that include the removal of excess cholesterol from peripheral tissues, the maintenance of endothelial integrity, antioxidant, and anti-inflammatory activities. ApoA-I overexpression in apoE-deficient (EKO) mice has been shown to increase HDL levels and to strongly reduce atherosclerosis development. The aim of the study was to investigate gene expression patterns associated with atherosclerosis development in the aorta of EKO mice and how HDL plasma levels relate to gene expression patterns at different stages of atherosclerosis development and with different dietary treatments. Approach and Results: Eight-week-old EKO mice, EKO mice overexpressing human apoA-I, and wild-type mice as controls were fed either normal laboratory or Western diet for 6 or 22 weeks. Cholesterol distribution among lipoproteins was evaluated, and atherosclerosis of the aorta was quantified. High-throughput sequencing technologies were used to analyze the transcriptome of the aorta of the 3 genotypes in each experimental condition. In addition to the well-known activation of inflammation and immune response, the impairment of sphingolipid metabolism, phagosome-lysosome system, and osteoclast differentiation emerged as relevant players in atherosclerosis development. The reduced atherosclerotic burden in the aorta of EKO mice expressing high levels of apoA-I was accompanied by a reduced activation of immune system markers, as well as reduced perturbation of lysosomal activity and a better regulation of the sphingolipid synthesis pathway. CONCLUSIONS: ApoA-I modulates atherosclerosis development in the aorta of EKO mice affecting the expression of pathways additional to those associated with inflammation and immune response.


Subject(s)
Aorta/metabolism , Aortic Diseases/genetics , Apolipoprotein A-I/metabolism , Atherosclerosis/genetics , Inflammation/genetics , Lysosomes/genetics , Sphingolipids/metabolism , Transcriptome , Animals , Aorta/pathology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Cholesterol/blood , Diet, High-Fat , Disease Models, Animal , Gene Expression Profiling , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Inflammation/metabolism , Inflammation/pathology , Lysosomes/metabolism , Lysosomes/pathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Protein Interaction Maps , Signal Transduction , Sphingolipids/blood , Time Factors , Triglycerides/blood
11.
J Med Genet ; 58(10): 692-700, 2021 10.
Article in English | MEDLINE | ID: mdl-32963035

ABSTRACT

INTRODUCTION: Recent studies showed the usefulness of globotriaosylsphingosine (lyso-Gb3) and related analogues, deacylated forms of globotriaosylceramide (Gb3), for high-risk screening, treatment monitoring and follow-up for patients with Fabry disease. METHODS: We evaluated Gb3, lyso-Gb3 and analogues using tandem mass spectrometry in 57 women with Fabry disease followed during a period of 15.4 years. Twenty-one women were never treated and 36 received treatment (agalsidase-beta, n=30; agalsidase-alfa, n=5; or migalastat, n=1). Lyso-Gb3 and analogues at m/z (-28), (-2), (+16), (+34) and (+50) were analysed in plasma and urine. Total Gb3 and lyso-Gb3 analogues at m/z (-12) and (+14) were evaluated in urine while the analogue at m/z (+18) was evaluated in plasma. RESULTS: A strong correlation between plasma and urine lyso-Gb3 and analogue levels was revealed. Plasma and urine lyso-Gb3 and analogue levels were not statistically different between patients carrying missense (n=49), nonsense (n=6) or deletion mutations (n=2). Never treated patients had lower plasma lyso-Gb3 and analogues at m/z (-28), (-2), (+16), (+34) and the seven urinary lyso-Gb3 analogues compared with pretreatment levels of the treated patients. A significant reduction of plasma lyso-Gb3 and five analogues, as well as urine Gb3 and six lyso-Gb3 analogues, but not lyso-Gb3 and lyso-Gb3 at m/z (+50), was observed post-treatment with agalsidase-beta. The same tendency was observed with agalsidase-alfa. CONCLUSION: Women with Fabry disease who started treatment based on clinical manifestations had higher lyso-Gb3 and analogue biomarker levels than never treated women. This indicates that a biomarker cut-off could potentially be a decision tool for treatment initiation in women with Fabry disease.


Subject(s)
Fabry Disease/blood , Fabry Disease/diagnosis , Glycolipids/blood , Glycolipids/urine , Sphingolipids/blood , Sphingolipids/urine , Alleles , Amino Acid Substitution , Biomarkers , Cohort Studies , Denmark/epidemiology , Disease Management , Enzyme Replacement Therapy , Fabry Disease/genetics , Fabry Disease/therapy , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Treatment Outcome , alpha-Galactosidase/genetics
12.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232726

ABSTRACT

Eleven patients from Yakutia with a new lysosomal disease assumed then as mucopolysaccharidosis-plus syndrome (MPS-PS) were reported by Gurinova et al. in 2014. Up to now, a total number of 39 patients have been reported; in all of them, the c.1492C>T (p.Arg498Trp) variant of the VPS33A gene was detected. Here, we describe the first Polish MPS-PS patient with a novel homozygous c.599G>C (p.Arg200Pro) VPS33A variant presenting over 12 years of follow-up with some novel clinical features, including fetal ascites (resolved spontaneously), recurrent joint effusion and peripheral edemas, normal growth, and visceral obesity. Functional analyses revealed a slight presence of chondroitin sulphate (only) in urine glycosaminoglycan electrophoresis, presence of sialooligosaccharides in urine by thin-layer chromatography, and normal results of lysosomal enzymes activity and lysosphingolipids concentration in dried blood spot. The comparison with other MPS-PS described cases was also provided. The presented description of the natural history of MPS-PS in our patient may broaden the spectrum of phenotypes in this disease.


Subject(s)
Mucopolysaccharidoses , Vesicular Transport Proteins , Chondroitin Sulfates/urine , Glycosaminoglycans/urine , Humans , Mucopolysaccharidoses/blood , Mucopolysaccharidoses/diagnosis , Mucopolysaccharidoses/genetics , Mucopolysaccharidoses/urine , Mutation , Poland , Sphingolipids/blood , Vesicular Transport Proteins/genetics
13.
J Biol Chem ; 295(7): 1889-1897, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31862735

ABSTRACT

Sphingolipids (SLs) are structurally diverse lipids that are defined by the presence of a long-chain base (LCB) backbone. Typically, LCBs contain a single Δ4E double bond (DB) (mostly d18:1), whereas the dienic LCB sphingadienine (d18:2) contains a second DB at the Δ14Z position. The enzyme introducing the Δ14Z DB is unknown. We analyzed the LCB plasma profile in a gender-, age-, and BMI-matched subgroup of the CoLaus cohort (n = 658). Sphingadienine levels showed a significant association with gender, being on average ∼30% higher in females. A genome-wide association study (GWAS) revealed variants in the fatty acid desaturase 3 (FADS3) gene to be significantly associated with the plasma d18:2/d18:1 ratio (p = -log 7.9). Metabolic labeling assays, FADS3 overexpression and knockdown approaches, and plasma LCB profiling in FADS3-deficient mice confirmed that FADS3 is a bona fide LCB desaturase and required for the introduction of the Δ14Z double bond. Moreover, we showed that FADS3 is required for the conversion of the atypical cytotoxic 1-deoxysphinganine (1-deoxySA, m18:0) to 1-deoxysphingosine (1-deoxySO, m18:1). HEK293 cells overexpressing FADS3 were more resistant to m18:0 toxicity than WT cells. In summary, using a combination of metabolic profiling and GWAS, we identified FADS3 to be essential for forming Δ14Z DB containing LCBs, such as d18:2 and m18:1. Our results unravel FADS3 as a Δ14Z LCB desaturase, thereby disclosing the last missing enzyme of the SL de novo synthesis pathway.


Subject(s)
Fatty Acid Desaturases/genetics , Genome-Wide Association Study , Sphingolipids/genetics , Animals , Fatty Acid Desaturases/blood , HEK293 Cells , Humans , Lipids/genetics , Mice , Sphingolipids/blood , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Spine/metabolism
14.
Curr Issues Mol Biol ; 43(1): 389-404, 2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205365

ABSTRACT

Fabry disease is an X-linked disorder of α-galactosidase A (GLA) deficiency. Our previous interim analysis (1 July 2014 to 31 December 2015) revealed plasma globotriaosylsphingosine as a promising primary screening biomarker for Fabry disease probands. Herein, we report the final results, including patients enrolled from 1 January to 31 December 2016 for evaluating the potential of plasma globotriaosylsphingosine and GLA activity as a combined screening marker. We screened 5691 patients (3439 males) referred from 237 Japanese specialty clinics based on clinical findings suggestive of Fabry disease using plasma globotriaosylsphingosine and GLA activity as primary screening markers, and GLA variant status as a secondary screening marker. Of the 14 males who tested positive in the globotriaosylsphingosine screen (≥2.0 ng/mL), 11 with low GLA activity (<4.0 nmol/h/mL) displayed GLA variants (four classic, seven late-onset) and one with normal GLA activity and no pathogenic variant displayed lamellar bodies in affected organs, indicating late-onset biopsy-proven Fabry disease. Of the 19 females who tested positive in the globotriaosylsphingosine screen, eight with low GLA activity displayed GLA variants (six classic, two late-onset) and five with normal GLA activity displayed a GLA variant (one classic) and no pathogenic variant (four late-onset biopsy-proven). The combination of plasma globotriaosylsphingosine and GLA activity can be a primary screening biomarker for classic, late-onset, and late-onset biopsy-proven Fabry disease probands.


Subject(s)
Biomarkers/blood , Fabry Disease/blood , Glycolipids/blood , Mass Screening/methods , Sphingolipids/blood , alpha-Galactosidase/blood , Adolescent , Adult , Aged , Asian People , Child , Cohort Studies , Fabry Disease/diagnosis , Fabry Disease/ethnology , Female , Humans , Japan , Male , Middle Aged , Sensitivity and Specificity , alpha-Galactosidase/metabolism
15.
Int J Obes (Lond) ; 45(4): 860-869, 2021 04.
Article in English | MEDLINE | ID: mdl-33504931

ABSTRACT

BACKGROUND: Fetal exposure to maternal excess adiposity and hyperglycemia is risk factors for childhood adverse metabolic outcomes. Using data from a prospective pre-birth cohort, we aimed to further understand the prenatal determinants of fetal metabolic programming based on analyses of maternal adiposity and glycemic traits across pregnancy with childhood metabolomic profiles. METHODS: This study included 330 mother-child pairs from the Gen3G cohort with information on maternal adiposity and glycemic markers at 5-16 (visit 1) and 24-30 (visit 2) weeks of pregnancy. At mid-childhood (4.8-7.2 years old), we collected fasting plasma and measured 1116 metabolites using an untargeted approach. We constructed networks of interconnected metabolites using a weighted-correlation network analysis algorithm. We estimated Spearman's partial correlation coefficients of maternal adiposity and glycemic traits across pregnancy with metabolite networks and individual metabolites, adjusting for maternal age, gravidity, race/ethnicity, history of smoking, and child's sex and age at blood collection for metabolite measurement. RESULTS: We identified a network of 16 metabolites, primarily glycero-3-phosphoethanolamines (GPE) at mid-childhood that showed consistent negative correlations with maternal body mass index, waist circumference, and body-fat percentage at visits 1 and 2 (ρadjusted = -0.14 to -0.21) and post-challenge glucose levels at visit 2 (ρadjusted = -0.10 to -0.13), while positive correlations with Matsuda index (ρadjusted = 0.13). Within this identified network, 1-palmitoyl-2-decosahexaenoyl-GPE and 1-stearoyl-2-decosahexaenoyl-GPE appeared to be driving the associations. In addition, a network of 89 metabolites, primarily phosphatidylcholines, plasmalogens, sphingomyelins, and ceramides showed consistent negative correlations with insulin at visit 1 and post-challenge glucose at visit 2, while positive correlation with adiponectin at visit 2. CONCLUSIONS: Prenatal exposure to maternal higher adiposity and hyperglycemic traits and lower insulin sensitivity markers were associated with a unique metabolomic pattern characterized by low serum phospho- and sphingolipids in mid-childhood.


Subject(s)
Blood Glucose , Metabolome , Obesity, Maternal , Prenatal Exposure Delayed Effects/metabolism , Adiposity , Body Mass Index , Canada , Child , Child, Preschool , Cohort Studies , Female , Humans , Hyperglycemia , Insulin Resistance , Phospholipids/blood , Pregnancy , Prospective Studies , Risk Factors , Sphingolipids/blood , Waist Circumference
16.
PLoS Biol ; 16(2): e2004285, 2018 02.
Article in English | MEDLINE | ID: mdl-29485983

ABSTRACT

The use of consumer-grade wearables for purposes beyond fitness tracking has not been comprehensively explored. We generated and analyzed multidimensional data from 233 normal volunteers, integrating wearable data, lifestyle questionnaires, cardiac imaging, sphingolipid profiling, and multiple clinical-grade cardiovascular and metabolic disease markers. We show that subjects can be stratified into distinct clusters based on daily activity patterns and that these clusters are marked by distinct demographic and behavioral patterns. While resting heart rates (RHRs) performed better than step counts in being associated with cardiovascular and metabolic disease markers, step counts identified relationships between physical activity and cardiac remodeling, suggesting that wearable data may play a role in reducing overdiagnosis of cardiac hypertrophy or dilatation in active individuals. Wearable-derived activity levels can be used to identify known and novel activity-modulated sphingolipids that are in turn associated with insulin sensitivity. Our findings demonstrate the potential for wearables in biomedical research and personalized health.


Subject(s)
Cardiovascular Physiological Phenomena , Fitness Trackers , Sphingolipids/blood , Adult , Cardiomegaly/diagnosis , Exercise , Female , Healthy Volunteers , Heart Rate , Humans , Insulin Resistance , Life Style , Male , Medical Overuse/prevention & control , Middle Aged , Surveys and Questionnaires , Ventricular Remodeling
17.
J Med Genet ; 57(1): 38-47, 2020 01.
Article in English | MEDLINE | ID: mdl-31519711

ABSTRACT

BACKGROUND: Fabry disease is a progressive multisystemic disease, which affects the kidney and cardiovascular systems. Various treatments exist but decisions on how and when to treat are contentious. The current marker for monitoring treatment is plasma globotriaosylsphingosine (lyso-Gb3), but it is not informative about the underlying and developing disease pathology. METHODS: We have created a urine proteomic assay containing a panel of biomarkers designed to measure disease-related pathology which include the inflammatory system, lysosome, heart, kidney, endothelium and cardiovascular system. Using a targeted proteomic-based approach, a series of 40 proteins for organ systems affected in Fabry disease were multiplexed into a single 10 min multiple reaction monitoring Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) assay and using only 1 mL of urine. RESULTS: Six urinary proteins were elevated in the early-stage/asymptomatic Fabry group compared with controls including albumin, uromodulin, α1-antitrypsin, glycogen phosphorylase brain form, endothelial protein receptor C and intracellular adhesion molecule 1. Albumin demonstrated an increase in urine and could indicate presymptomatic disease. The only protein elevated in the early-stage/asymptomatic patients that continued to increase with progressive multiorgan involvement was glycogen phosphorylase brain form. Podocalyxin, fibroblast growth factor 23, cubulin and Alpha-1-Microglobulin/Bikunin Precursor (AMBP) were elevated only in disease groups involving kidney disease. Nephrin, a podocyte-specific protein, was elevated in all symptomatic groups. Prosaposin was increased in all symptomatic groups and showed greater specificity (p<0.025-0.0002) according to disease severity. CONCLUSION: This work indicates that protein biomarkers could be helpful and used in conjunction with plasma lyso-Gb3 for monitoring of therapy or disease progression in patients with Fabry disease.


Subject(s)
Biomarkers/urine , Fabry Disease/metabolism , Proteomics , Urine/chemistry , Chromatography, Liquid , Fabry Disease/blood , Fabry Disease/urine , Female , Glycolipids/blood , Humans , Male , Sphingolipids/blood , Tandem Mass Spectrometry
18.
Lipids Health Dis ; 20(1): 6, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33461570

ABSTRACT

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is of particular importance in cholesterol metabolism with high levels contributing to hypercholesterolemia. Cholesterol and sphingolipids are low in patients with liver cirrhosis. Purpose of this study was to find associations of plasma PCSK9 with circulating cholesterol and sphingolipid species and measures of liver disease severity in patients with liver cirrhosis. METHODS: PCSK9 protein levels were determined by ELISA in systemic vein (SVP), hepatic vein (HVP) and portal vein plasma of patients with mostly alcoholic liver cirrhosis. PCSK9 and LDL-receptor protein expression were analysed in cirrhotic and non-cirrhotic liver tissues. RESULTS: Serum PCSK9 was reduced in patients with liver cirrhosis in comparison to non-cirrhotic patients. In liver cirrhosis, plasma PCSK9 was not correlated with Child-Pugh score, Model for End-Stage Liver Disease score, bilirubin or aminotransferases. A negative association of SVP PCSK9 with albumin existed. PCSK9 protein in the liver did not change with fibrosis stage and was even positively correlated with LDL-receptor protein levels. Ascites volume and variceal size were not related to PCSK9 levels. Along the same line, transjugular intrahepatic shunt to lower portal pressure did not affect PCSK9 concentrations in the three blood compartments. Serum cholesterol, sphingomyelin and ceramide levels did not correlate with PCSK9. Stratifying patients by high versus low PCSK9 levels using the median as cut-off, several cholesteryl ester species were even low in the subgroup with high PCSK9 levels. A few sphingomyelin species were also reduced in the patients with PCSK9 levels above the median. PCSK9 is highly expressed in the liver but systemic, portal and hepatic vein levels were similar. PCSK9 was not correlated with the inflammatory proteins C-reactive protein, IL-6, galectin-3, resistin or pentraxin 3. Of note, HVP PCSK9 was positively associated with HVP chemerin and negatively with HVP adiponectin levels. CONCLUSIONS: In the cohort of patients with liver cirrhosis mostly secondary to alcohol consumption high PCSK9 was associated with low levels of certain cholesteryl ester and sphingomyelin species. Positive correlations of PCSK9 and LDL-receptor protein in the liver of patients with chronic liver injury are consistent with these findings.


Subject(s)
Cholesterol/blood , Liver Cirrhosis/blood , Liver Cirrhosis/pathology , Proprotein Convertase 9/metabolism , Severity of Illness Index , Adipokines/blood , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cholesterol, LDL/blood , Chronic Disease , Cohort Studies , Female , Humans , Inflammation Mediators/blood , Kidney/physiopathology , Liver/blood supply , Liver/metabolism , Liver/physiopathology , Liver Cirrhosis/complications , Liver Cirrhosis/physiopathology , Male , Middle Aged , Proprotein Convertase 9/blood , Receptors, LDL/metabolism , Sphingolipids/blood , Sphingomyelins/blood
19.
BMC Pulm Med ; 21(1): 91, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33731064

ABSTRACT

BACKGROUND: Silicosis is a progressive pneumoconiosis characterized by interstitial fibrosis following exposure to silica dust. The role of metabolic dysregulation in the pathogenesis of silicosis has not been investigated in detail. This study aimed to identify different metabolic features in the plasma of patients with silicosis and dust-exposed workers without silicosis in metabolomics studies. METHODS: Patients with silicosis, dust-exposed workers (DEWs) without silicosis and age-matched healthy controls were recruited in a case-control study. The metabolomics analyses by ultra-high performance liquid chromatography-mass spectrometry were conducted. Distinct metabolic features (DMFs) were identified in the pilot study and were validated in the validation study. The enriched signalling pathways of these DMFs were determined. The ability of DMFs to discriminate among the groups was analysed through receiver operating characteristic (ROC) curves. The correlations between DMFs and clinical features were also explored. RESULTS: Twenty-nine DMFs and 9 DMFs were detected and had the same trend in the pilot study and the validation study in the plasma of the DEW and silicosis groups, respectively. Sphingolipid metabolism was the major metabolic pathway in the DEWs, and arginine and proline metabolism was associated with silicosis. Twenty DMFs in the DEWs and 3 DMFs in the patients with silicosis showed a discriminatory ability with ROC curve analysis. The abundance of kynurenine was higher in Stage III silicosis than in Stage I or Stage II silicosis. L-arginine and kynurenine were both negatively correlated with the percentage of forced vital capacity predicted in silicosis. CONCLUSIONS: Distinct metabolic features in the plasma of DEWs and the patients with silicosis were found to be different. Sphingolipid metabolism and arginine and proline metabolism were identified as the major metabolic pathway in the DEW and silicosis groups, respectively. L-arginine and kynurenine were correlated with the severity of silicosis.


Subject(s)
Arginine/blood , Kynurenine/blood , Proline/blood , Silicosis/blood , Sphingolipids/blood , Aged , Case-Control Studies , China , Dust , Female , Humans , Male , Middle Aged , Occupational Exposure , Pilot Projects , ROC Curve , Silicosis/diagnosis , Silicosis/physiopathology , Vital Capacity
20.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34638539

ABSTRACT

The reason behind the high inter-individual variability in response to SARS-CoV-2 infection and patient's outcome is poorly understood. The present study targets the sphingolipid profile of twenty-four healthy controls and fifty-nine COVID-19 patients with different disease severity. Sera were analyzed by untargeted and targeted mass spectrometry and ELISA. Results indicated a progressive increase in dihydrosphingosine, dihydroceramides, ceramides, sphingosine, and a decrease in sphingosine-1-phosphate. These changes are associated with a serine palmitoyltransferase long chain base subunit 1 (SPTLC1) increase in relation to COVID-19 severity. Severe patients showed a decrease in sphingomyelins and a high level of acid sphingomyelinase (aSMase) that influences monosialodihexosyl ganglioside (GM3) C16:0 levels. Critical patients are characterized by high levels of dihydrosphingosine and dihydroceramide but not of glycosphingolipids. In severe and critical patients, unbalanced lipid metabolism induces lipid raft remodeling, leads to cell apoptosis and immunoescape, suggesting active sphingolipid participation in viral infection. Furthermore, results indicated that the sphingolipid and glycosphingolipid metabolic rewiring promoted by aSMase and GM3 is age-dependent but also characteristic of severe and critical patients influencing prognosis and increasing viral load. AUCs calculated from ROC curves indicated ceramides C16:0, C18:0, C24:1, sphingosine and SPTLC1 as putative biomarkers of disease evolution.


Subject(s)
COVID-19/blood , Sphingolipids/blood , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Female , Humans , Lipidomics , Male , Middle Aged , Prognosis , SARS-CoV-2/isolation & purification , Severity of Illness Index , Sphingolipids/analysis , Sphingomyelins/analysis , Sphingomyelins/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL